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Quantum transport properties of disordered graphene with structural defects (Stone-Wales and

divacancies) are investigated using a realistic �-�� tight-binding model elaborated from ab initio

calculations. Mean free paths and semiclassical conductivities are then computed as a function of the

nature and density of defects (using an order-N real-space Kubo-Greenwood method). By increasing

the defect density, the decay of the semiclassical conductivities is predicted to saturate to a minimum

value of 4e2=�h over a large range (plateau) of carrier density (> 0:5� 1014 cm�2). Additionally,

strong contributions of quantum interferences suggest that the Anderson localization regime could be

experimentally measurable for a defect density as low as 1%.
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Clean graphene exhibits unique transport properties at

the Dirac point. The density of charge carriers vanishes but

the conductivity remains finite in the order of a few e2=h
[1,2]. This minimum of conductivity observed in the bal-

listic regime and related to contacts effects is also surpris-

ingly present in the diffusive regime where disorder plays

an important role. In conventional two-dimensional disor-

dered metals, it is well established that such a low con-

ductivity leads to an Anderson-type insulator at low

temperatures [3,4]. In the Anderson regime, the electronic

states are spatially localized over a characteristic length

scale, called localization length � [4], which drives the

exponential suppression of conductivity with system

length. The theory of Anderson localization initially de-

veloped for electrons has been demonstrated to be ubiq-

uitous in physics, applicable to other types of particles,

such as photons and atoms [3]. Surprisingly, however, to

date the observation of such metal-insulator transition

remains elusive in graphene, even in low-mobility devices.

One of the reasons stems from the peculiar nature of

localization effects in graphene whose charge carriers be-

have as massless Dirac fermions with chirality degree of

freedom at the origin of a sign reversal of the quantum

correction to the semiclassical conductivity (weak antiloc-

alization [5]). When intervalley scattering strongly pre-

dominates, ordinary weak localization is, however,

expected to drive the system to an Anderson insulator

[6,7], but those theoretical results restrict to simplified

disorder models, preserving the sp2 symmetry.

On the other hand, controlled defect engineering in sp2-

carbon-based materials has become a topic of great excite-

ment [8]. Indeed, the electronic (and transport) properties

of carbon nanotubes [9] and graphene-based materials

[10,11] can be considerably enriched by chemical modifi-

cations, including molecular doping and functionalization.

Strong modifications of sp2-bonded carbon materials by

incorporation of sp3 defects is also a suitable route for

making graphene more sensitive to localization phe-

nomena. Recently an attempt to turn graphene into a true

band insulator was endeavored by transforming sp2 bonds

into sp3 by hydrogenation [12]. Similar results have been

experimentally debated in fluorinated [13] or ozone treated

graphene flakes [14]. Using ion irradiation, specific types

of structural defects (vacancies) can be introduced in

sp2-based carbon nanostructures. Convincing room-

temperature signatures of an Anderson regime in Arþ

irradiated carbon nanotubes have been reported [15]. In

contrast, the conductivity of irradiated two-dimensional

graphene saturates at the Dirac point above e2=h even

down to cryogenic temperatures [16], suggesting a strong

robustness of defective graphene.

In this Letter, the electronic and transport properties of

disordered graphene are theoretically explored by introduc-

ing structural defects [Stone-Wales (SW) and divacancies]

randomly distributed in the honeycomb lattice. The pres-

ence of these structural defects triggers resonant impurity

levels, which broaden and generate impurity bands as their

density is increased. Ab initio calculations are performed to
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accurately describe the local energetics around the defects,

and a tight-binding (TB) model (�-��) is elaborated

from the corresponding band structures. Additionally, an

efficient order-N real-space Kubo-Greenwood transport

method is used to follow the transition from the diffusive

to the insulating regime.

In the present study, three types of nonmagnetic structural

defects are considered. The first one is the so-called Stone-

Wales defect which consists of two heptagons connected

with two pentagons [Fig. 1(a)]. Although its presence has

already been experimentally reported in graphene [10], its

influence on the transport properties remains unknown. Ma

et al. have reported in a theoretical study [8] that a

SW defect could produce a slight out-of-plane deformation.

We consider here an in-plane geometry as a first approach.

The two other defects consist in various reconstructions of

the divacancy: one being associated to the formation of

2 pentagons and 1 octagon [585; Fig. 1(b)], while the other

is composed of 3 pentagons and 3 heptagons [555–777;

Fig. 1(c)]. Our ab initio calculations predict the 555–777

reconstruction to be more stable than the 585 one by

�0:9 eV, in agreement with previous theoretical predictions

[17]. Finally, divacancies are known to be more stable than

two isolated monovacancies whose migration energy barrier

is rather low [8,17]. In contrast to the monovacancies, the

divacancies do not require a spin-dependent electronic struc-

ture treatment [18].

To reduce the computational cost of the transport calcu-

lations, the electronic band structures (Fig. 1) first com-

puted with the SIESTA code [19,20] are then reproduced

using a parametrized 3rd nearest-neighbors �-�� TB

Hamiltonian model [22,23]. The agreement between this

TB model and the ab initio calculation is quite satisfactory,

especially in the transport energy region ½�1; 1� eV around

the Dirac point. The observed differences at higher ener-

gies are basically related to the inability of the �-�� TB

model to reproduce the conduction bands of graphene

along the K-M branch. The SW defect does not display

any doping character since both Fermi and Dirac energies

are aligned [Fig. 1(a)]. On the contrary, both divacancies

are found to act as acceptors since Fermi energy is below

the Dirac point [Figs. 1(b) and 1(c)].

Based on the present TB model, the density of states

(DOS) are calculated using the recursion method, which is

very efficient for large disordered systems [24]. In Fig. 2

(inset), the total DOS corresponding to a defect density

(nd) of 1% are displayed for the three different defects. A

large difference in the position of the defect-induced reso-

nant impurity levels can be observed. For instance, the

quasibound states localized around the SW defect yield a

bump in the DOS around 0.35 eV above the Dirac energy

(Fig. 2, solid line). The 585 defect exhibits a similar DOS

fingerprint but with an opposite behavior to the case of SW

defect. Indeed, for this defect the corresponding peak

FIG. 1 (color online). Top panels: Schematic of various defects: Stone-Wales (a), 585 (b), and 555–777 (c) divacancies. Bottom

panels: Corresponding electronic band structures computed using the SIESTA package (red solid lines) and parametrized using a 3rd

nearest-neighbors TB �-�� model (black dotted lines) along high-symmetry lines in the Brillouin zone (inset). Fermi energy is set at

zero and the Dirac energy is indicated with a horizontal blue dashed line.

-2 -1 0 1 2

Energy (eV)

0

10

20

30

40

50

M
ea

n
 F

re
e 

P
at

h
 (

n
m

)

1.0%    SW
1.0%    585
1.0% 555-777

-2 -1 0 1 2
Energy (eV)

0

1

2

3

4

5

D
O

S
 (

eV
-1

 n
m

-2
)

FIG. 2 (color online). Elastic mean free paths (main frame)

and total DOS (inset) for disordered graphene with a defect

density of 1% of SW (solid line), 585 (dashed line), or 555–777

(dot-dashed line) divacancies. All the DOS minima have been

aligned with the zero energy.
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appears around �0:35 eV (Fig. 2, dashed line). Finally, in

the presence of 555–777 defects, two different DOS impu-

rity peaks are reported: a wider impurity band in the hole

region (� 0:8 eV) and a sharp peak on the electron side

(0.6 eV) (Fig. 2, dash-dotted line). In all cases, the intensity

and the width of the defect-induced peaks are found to

increase with nd.
Transport properties of large and disordered graphene

systems are then calculated using an efficient order-N
Kubo-Greenwood method [24]. This powerful technique

gives a direct access to the elastic mean free paths at energy

E, extracted from the wave packet dynamics. The latter

is characterized by the time-dependent diffusivity coeffi-

cient DðE; tÞ ¼ �R2ðE; tÞ=t with �R2 ¼ �X2 þ �Y2 and

�X2ðE; tÞ ¼ Tr½�ðE � ĤÞjX̂ðtÞ � X̂ð0Þj2�=Tr½�ðE � ĤÞ�.

Tr is the trace overpz orbitals and Tr½�ðE� ĤÞ�=S ¼ �ðEÞ
is the total DOS (per unit of surface). The two position

operators X̂ðtÞ and ŶðtÞ are expressed in the Heisenberg

representation [X̂ðtÞ ¼ UyðtÞXð0ÞUðtÞ], and the time evo-

lution operator ÛðtÞ ¼ �N�1
n¼0 expðiĤ�t=@Þ, with �t the

chosen time step, is computed with a Chebyshev polyno-

mial expansionmethod [24]. Calculations are performed for

several initial random phase wave packets, and for total

elapsed time t � 1:5 ps. The typical size of the simulated

system is �0:074 �m2 (containing 2:8� 106 carbon

atoms), large enough to avoid finite size effects. In the

Kubo formalism, the different transport regimes can be

inferred from the behavior of DðE; tÞ. The wave packet

velocity vðEÞ can be extracted from the short time behavior

of the diffusivity, DðE; tÞ � v2ðEÞt, while the elastic mean

free path ‘eðEÞ is estimated from the maximum of the

diffusivity,DmaxðEÞ ¼ 2vðEÞ‘eðEÞ. Finally, theKubo semi-

classical conductivity reads �scðEÞ ¼
1
4
e2�ðEÞDmaxðEÞ.

The mean free paths are calculated for defect densities

varying from nd ¼ 0:1% to 1%. At a given energy, ‘e is

predicted to be inversely proportional to nd, as expected

from the Fermi golden rule. ‘e also displays a strong

energy dependence, with dips around the Dirac point

where it reaches values as low as few nanometers. These

dips are associated with the resonant impurity states, which

are specific to each defect. ‘eðEÞ can change by 1 order of

magnitude around the Dirac point depending on the nature

of the defect and the energy of charge carriers, as shown in

Fig. 2 (main frame) for a defect density nd ¼ 1%. For

instance, ‘e is estimated to be �5 nm at the Dirac point

in the presence of 585 defects, whereas ‘e ’ 50 nm for the

555–777 defects because the two associated energy reso-

nances (� 0:8 and 0.6 eV) are farther from the Dirac point.

Consequently, this defect nature dependence will strongly

impact both semiclassical and quantum transport regimes,

as discussed below.

Figure 3 illustrates the semiclassical conductivities for

disordered graphene with the three possible defects eval-

uated as �scðnÞ ¼
1
2
e2�ðnÞvðnÞ‘eðnÞ, where n is the carrier

density [25]. In addition to the strong dependence of �sc on

the carrier density, a saturation of the conductivity decay

with nd is observed, reaching the minimal value

of �min
sc ¼ 4e2=�h. As nd increases, a large plateau of

minimum conductivity develops close to the Dirac point,

similarly to the case of simpler point defects [26]. The

origin of such a minimum of conductivity has recently

been strongly debated in the literature [27]. Our simula-

tions suggest that such a value could be associated with a

graphene system containing structural defects, in the ab-

sence of quantum interferences (QI). One further observes

that for each type of defect, the plateaus of minimal con-

ductivity extend over the energy window encompassing the

corresponding resonant impurity bands. Indeed, for the SW

case, this plateau is primarily located at energies above the

Dirac point, in contrast with the 585 case, where the

minimum conductivity is observed below the Dirac point.

The case of 555–777 is more complicated due to the

presence of two impurity resonant energy windows. In

the present study, a rigid defect model has been considered,

ignoring the screening effects which could occur at high

carrier densities. However, we have carefully checked that

increasing the carrier density in the ab initio calculations

does not significantly modify the band structure, support-

ing this rigid defect model approximation.

One noteworthy observation is that the predicted short

mean free paths close to the Dirac point favor strong con-

tributions of QI, as long as the transport regime remains

quantum coherent. In the present Kubo formalism, these QI

contributions can be evidenced in the ratio DðtÞ=Dmax

which departs from unity at long times in the presence of

QI. Figure 4 (main panel) shows several typical behaviors of

DðtÞ=Dmax at selected energies and for the case of nd ¼ 1%
of SW defects. A more global picture (over a larger part

of the energy spectrum) is also given in the inset. At

E ¼ 0:5 eV [close enough to the resonance energy associ-

ated to the SW; see Fig. 2 (inset)],DðtÞ=Dmax exhibits a fast

decay consistent with the estimated short localization

length (�� 10 nm). Indeed, following the scaling theory

of localization, � can be determined once the semiclassical
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FIG. 3 (color online). Semiclassical conductivities in disordered

graphene versus carrier densities and various defect densities (from

0.1% to 1%) of Stone-Wales (left-hand panel), 585 (right-hand

panel main frame), and 555–777 (right-hand panel inset).
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transport length scales are known, as �ðEÞ ¼ ‘eðEÞ�
exp½�h�scðEÞ=2e

2� [4]. Similar values are found at the

resonant energies for both 1% of 585 defects (�� 10 nm)

and for 1% of 555–777 defects (�� 25 nm). Actually, in

the energy windows where �sc saturates to �min
sc , short

localization lengths (� < 100 nm) are obtained for all de-

fect cases. Much longer � are predicted for energies outside

the minimum conductivity plateaus, as illustrated in Fig. 4

for E ¼ 1:25 eV where the contribution of QI can even

become vanishingly small.

Specific conductance fingerprints will be thus obtained

depending on the nature and density of defects. Although

real samples of defective (irradiated) graphene are likely to

encompass a mixture of those different defects, the satura-

tion of the semiclassical conductivities and the typical

localization lengths (in the range of 30 nm for 1% defects)

close to the Dirac point will be a robust common feature to

all possible cases. Considering the reported weak electron-

phonon coupling [28], such an insulating state should be

observable even at room temperatures (preferentially using

suspended graphene, or graphene on boron nitride sub-

strates [29]).
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