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Abstract

We investigate the practical aspects of some recent marker dependent hazard esti-

mators when applied to mortality models. We analyse the development over time of

Danish longevity from 1974-1998, whith mortality considered as a two-dimensional

function of age and chronological time, respectively. A method of bootstrapping con-

Þdence bands of marker dependent estimator is applied to identify signiÞcant changes

in the mortality patterns. Functionals of the hazard rate estimator, such as expected

remaining lifetime and probability of survival, are also presented. We outline the

usefulness of this methodology to analyse the age and time effect on longevity and its

implications for life insurance risk management. The estimation techniques can be a

starting point for more advanced prediction models.

Key Words: Longevity; Expected Remaining Lifetime; Kernel Hazard Estimation;

Cross-validation.

2



1 Introduction

Longevity is a dynamic phenomenon. Welfare and scientiÞc achievements have caused

increasing values of life expectancy almost all over the world in recent decades (see

Macdonald, Cairns, Gwilt and Miller, 1998 for a recent comparative study based on

SMR, standard mortality ratios). This trend has been well established in the general

population, but it may not be uniform across the age range because some causes of

mortality have a stronger impact on speciÞc age groups. The evolution of longevity

over time may also be accelerating or decelerating. This development has immense

importance for political planning and for pricing and reserving of life insurance prod-

ucts. It is therefore crucial for actuarial science to develop methods that are able to

increase our insight into this question, especially as new medical advances come on

to scene. Genetic knowledge, for example, may have a great impact on increasing

life expectancy, thus we strongly believe that longevity prediction is of considerable

importance for the future of life insurance companies. The method presented in this

paper gives a visual impression of historical data. This is an important Þrst step

while searching for predictive methods of old age mortality.

Mortality analysis has a long tradition in actuarial science (see Cramer and Wold,

1935, Buus, 1960 and more recently Benjamin and Soliman, 1995). Conventional

practice uses parametric graduation techniques to smooth out wild ßuctuations when

estimating probabilities of death for a given population. Graduation allows us to

obtain a clear picture of the mortality curve, in other words the probability of death

as a function of age. In the simple one-dimensional case in which it is assumed that

mortality only depends on age, a signiÞcant amount of literature exists on nonpara-
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metric kernel estimators of the mortality function (see for example Ramlau-Hansen,

1983b, Gavin, Haberman and Verrall, 1995 and Nielsen 1998a). Renshaw, Haberman

and Hatzopoulos (1996) developed a parametric model which incorporates both the

effect of age on mortality and of underlying time trends on mortality rates so that the

model captures the evolution of the mortality curve over time; and Ramlau-Hansen et

al. (1987) presents an actuarial application of multidimensional mortality estimation

of Danish diabetics based on a semiparametric kernel smoothing technique.

Here, we want to make use of the important recent developments in smoothing

theory in the area of mathematical statistics. We work within the framework of

counting processes, as they are suitable for statistical analysis in survival models.

The model is described in the appendix, but for a complete presentation of counting

processes in mortality analysis see Macdonald (1996). We take as our starting point

the two-dimensional mortality estimator, which was deÞned theoretically in Nielsen

and Linton (1995) and applied to Danish and Spanish mortality experience data in

Felipe, Guillen and Nielsen (2001). This two-dimensional estimator considers mor-

tality as a function of chronological time, t and age x. We apply the graduation

principle of kernel hazard estimation as introduced by Nielsen and Linton (1995) to

obtain an estimator of the force of mortality that we call α (t, x) (see Gerber, 1995,

for standard actuarial deÞnitions). Although this two-dimensional function is easily

estimated, it can be hard to draw good conclusions from a two-dimensional graph.

Felipe et al. (2001) looked at the relative quantity:

α (t+∆t, x)

α (t, x)

for Þxed x, t and ∆t. Based on this relative quantity they concluded that the devel-
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opment of mortality is indeed very different for different age groups, when studying

the period from 1975 to 1993. The general tendency being that while mortality has

been decreasing for children, teenagers and the elderly, it decreased a lot less for the

working ages (between 30 and 60) or perhaps even increased for adults and specially

for Danish women between 60 and 70. The most notable case is a 70 percent increase

of mortality in 30-year-old Spanish males over those two decades. Felipe et al. (2001)

also discussed the estimated level curves, where the mortality development is studied

for one particular age x as a function of chronological time, α (·, x).

In this paper we restrict ourselves to the Danish population data and update the

data set to cover from 1974 until 1998. The data are also extended so that we have

mortality information in the age interval from 0 to 98 years. The study of Felipe et al.

(2001) did not consider mortality above age 90. This age group is of particular interest

to us, since we are studying the development of expected future lifetime of people of

old age. We also study the development of mortality as a function of chronological

time and Þxed age. Moreover, we study the evolution of the survival probability

for pensioners of different age groups, the probability to survive at least until the

99th birthday. All the studied quantities are functions of the two-dimensional curve

α (t, x) and we estimate them all by taking the corresponding function of our general

kernel hazard estimator of α (t, x) . The estimation of α (t, x) is therefore crucial to

all our applications in this paper. Our non-parametric approach eliminates the need

for a complete speciÞcation, arising when a generalized linear model framework is

used (see Renshaw et al., 1996, p. 454). In this paper we also tackle two issues when

using a kernel method: bandwidth choice and conÞdence interval estimation. We
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use cross-validation while selecting the degree of smoothing while estimating α (t, x).

This method is based on the analogue to cross-validation for our type of data and

has been introduced to similar counting process estimators in Ramlau-Hansen (1981),

Nielsen (1990) and Nielsen and Linton (1995). We also introduce a general procedure

based on bootstrapping for constructing conÞdence bands for all functionals of our

estimator. See Efron (1979) for an early account of the bootstrap principle and Hall

(1992) for a more recent monograph. Our method is an adjustment of the well known

bootstrap principle to our counting process type of data. Details of our bootstrap

method are given in appendix A.4.

The results in this paper deal with one of the core entities in insurance, mortality.

We provide practitioners with a statistical methodology to explore the nature of

longevity evolution in a given portfolio or subpopulation. Our discussion is not limited

to estimated values, it is extended to the deviations from expected values, thereby

quantifying risk in the proper sense. We apply these new techniques to describe

mortality changes experienced in Denmark for both genders in the past twenty-Þve

years. It is seen that Danish women over 80 have an increasingly longer future

lifetime. Even for men we observe some longevity increasing trends, but these are not

as signiÞcant as for women. These results are important and will have impact when

actuaries calculate the needed reserves for the annuities of old-aged policy holders.

In section 2 we specify the marker dependent hazard model considering mortality

as a function of age and chronological time. In section 3 we show howmortality curves

can be analyzed based on the two-dimensional marker dependent hazard deÞned in

the previous section. We consider risk proÞles for people of age 30, 50, 70 and 90.
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In section 4 we extend the analysis to the expected remaining lifetime. We consider

the expected future lifetime for people of age 60, 70, 80 and 90. In section 5 we

extend the analysis to the remaining survival time to age 99. We consider survival

probabilities for people of age 60, 70, 80 and 90.

All technicalities and estimation techniques are left to the appendix. Appendix

A.1 states the general model formulation based on counting processes, and in A.2 we

deÞne the version of the kernel hazard estimator of Nielsen and Linton (1995), which

is of particular interest to our study. In A.3 we deÞne the cross-validation principle

that the amount of smoothing of our actual estimator is based on and, Þnally, in

A.4 we introduce the new general principle of bootstrapping conÞdence bands for all

functionals of our estimator of α (t, x) .

2 Model and data

Let us assume that the future lifetime Tx of a person aged x is a random variable

with a probability distribution function Gx(z) = Pr(Tx ≤ z) for z ≥ 0. The interna-

tional actuarial community uses the following notation: zqx = Gx(z), indicating the

probability for a person aged x to die before age x+ z. So, zpx = 1−Gx(z) denotes

the probability that a person aged x will survive at least z years.

In this context, the force of mortality (or hazard) is deÞned by:

µx = −
d

dz
ln[1−Gx(z)],

so, the probability of dying between age x and age x+ dz equals µxdz for small dz.

All these quantities are the basic principles for life insurance calculations. But

the estimation of mortality probabilities and of the force of mortality has to be done
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from statistical data and, consequently, it makes use of statistical assumptions. Our

method is general in two directions. Firstly, it needs fewer assumptions than the

existing graduation models i.e. we do not restrict ourselves to e.g. the Makeham for-

mula and, secondly, it takes into account that modern societies experience continuous

innovations that cause structural changes in the patterns of mortality. One immedi-

ate consequence is that it is not reasonable to assume that Gx(·) stays the same over

a time period of more than two decades. So, if we introduce a time dimension, we

may denote Gt,x(·) the probability distribution function of survival time for age x in

year t. We will use α (t, x) to denote the force of mortality in year t for age x, thus

allowing for a chronological evolution of mortality as well as the usual dependence on

the age component. Then, by deÞnition, the time-dependent hazard is:

α (t, x) = − d

dz
ln[1−Gt,x(z)]. (1)

We propose the estimation of α (t, x), so that we will be able to analyse the

changes in shape over the two axes simultaneously. This is useful for identifying age-

speciÞc evolution of mortality over time, or in other words, to be able to visualize

the dynamics of the estimated current life table. Our method is nonparametric with

smosthness as the only functional assumption α.

The data used in this paper were provided by Statistics Denmark, with detailed

information on exposure counts and the number of occurrences observed in the Danish

population each year from 1974 to 1998. Counts were given by gender and integer

age intervals.
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Table 1. Number of people (Exp.) and number
of deaths (Occ.) by age group. Danish males.

1974 1998
Age group Exp. Occ. Exp. Occ.

0-9 394,202 639 344,604 244
10-19 384,983 259 295,522 112
20-29 418,037 449 377,733 289
30-39 323,385 491 416,226 579
40-49 280,712 1,182 378,116 1,288
50-59 282,655 2,976 354,812 2,727
60-69 240,667 6,394 224,045 5,046
70-79 131,743 8,747 156,835 8,707
80-89 41,424 6,013 61,184 8,062
90-99 3,730 1,159 6,463 1,863

Table 1 shows the aggregated data in ten age groups, but the original information

for each integer age and each year is used in the estimation. In columns we present

the raw data in 1974 and 1998. The ratio between the number of occurrences and

the number of exposures produces the raw mortality rates.

Since the model speciÞcation of the two-dimensional mortality is slightly technical,

it is left to the appendix. The appendix relates the exact consequences of assuming

an underlying two-dimensional true hazard α (t, x) to the analyses of our data. It

speciÞes how α (t, x) can be estimated based on a given amount of smoothing and

it introduces a model selection criteria that chooses the amount of smoothing that

we apply in our actual study. Finally, a bootstrapping method is introduced. The

method is designed to construct conÞdence bands for all well behaved functionals

of the underlying two-dimensional force of mortality. The considered functionals in

this paper are the risk proÞles, the remaining life expectancies and various survival

probabilities. In the rest of the paper we therefore consider the situation in which a

two-dimensional estimator of the force mortality for Danish men and Danish women

is constructed and bootstrapped conÞdence bands exist on all considered functionals
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of the underlying mortality. All details regarding these issues are fully described in

the appendix.

3 Mortality Profiles

In this section we present the estimated mortality levels of (1) with Þxed age and

varying chronological time for Danish men and Danish women, together with their

corresponding conÞdence bounds. We restrict this presentation to the eight curves

resulting from considering both genders and ages of 30, 50, 70 and 90. The risk

proÞles provide a complete overview of the population�s mortality evolution for the

ages 30, 50, 70 and 90.

Firstly, we consider men, see Figure 1(a) to Figure 1(d), where the estimated

force of mortality is plotted for a given age throughout the twenty-Þve year period,

conÞdence bounds are also shown. The estimated hazard for the thirty-year-old

men does not show any signiÞcant long-term effect. The curves regarding the Þfty

and seventy-year-old do have a decreasing shape, so the force of mortality has been

lowering its level for these two ages. The decrease amounts to approximately 20

percent for the Þfty-year-old group and 15 percent for the seventy-year-old group.

Taking the conÞdence bands into consideration we conclude that the hazard level

in 1998 is signiÞcantly lower than in 1974 for adult men of 50 and 70 years. For

age 90, we see a somewhat unclear picture. The dominant peak in 1991-1996 has

an explanation. In 1994 Denmark had a series of tropical nights. July had about

twenty days with temperatures never going below 20 degrees Celsius (68oF). These

temperatures and a very high humidity, caused a high level in mortality for elderly
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people in Denmark. Throughout this paper we will see that 1994 has some special

impact when regarding mortality or functionals of the mortality hazard. Due to our

chosen smoothing procedure the peak shows in the interval 1992-1996.
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Figures 1(a) to 1(d). Estimates of the force of mortality for Danish men from 1974 to 1998
and 95% conÞdence bounds. a) 30 years, b) 50 years, c) 70 years and d) 90 years.

Secondly, we considered women, see Figure 2(a) to Figure 2(d). We see that at age

30 the force of mortality reaches a maximum in 1983. From 1983 to 1998 the hazard

curve decreases signiÞcantly. The shape of the curve is similar to the curve for males,

but the general hazard level is about 50 percent lower. For the Þfty-year-old women,

we see a clear trend towards a lower mortality in the observation period of more than

two decades. The decrease is approximately 22 percent. The hazard rate curve for

women aged 70 shows a minimum overall level from 1979 to 1989. Though the graph
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looks dramatic, it is worth noting that the total variation of the hazard curve is only

approximately 6 percent. Further studies of the hazard estimator in ages from 60-75

show that we actually Þnd an increasing mortality in the range 62-69 years. For

ages 70-74 the hazard does not show a clear trend, but from age 75 the hazard shifts

downwards with respect to calender time indicating some longevity effect from this

age. This result was also shown by Felipe et al. (2001). For women aged 90, we see

a clear decrease at about 20 percent in the force of mortality estimates.
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Figures 2(a) to 2(d). Estimates of the force of mortality for Danish women from 1974 to
1998 and 95% conÞdence bounds. (a) 30 years, (b) 50 years, (c) 70 years and (d) 90 years.

We have also investigated the curves covering all ages from age 0 to age 98.

We were interested in any possible multiplicative or additive longevity effect. The
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variation in the shapes of the curves showed no systematic pattern to suggest a

multiplicative or additive model.

4 Development of expected remaining lifetime for
elderly people

For a given age and a given chronological time, the remaining lifetime is deÞned as:

◦
et,x=

Z ∞

0
exp

½
−
Z s

0
α (t+ u, x+ u) du

¾
ds.

Therefore the remaining lifetime is a function of the underlying two-dimensional

hazard α (t, x). See, Gerber (1995) or Jordan (1967) for classical references to ex-

pected remaining lifetime formulation and estimation. Newman (1986) introduces

some generalizations to life expentancy calculation, but he still assumes that the

forces of mortality are (calendar) time invariant.

We can therefore use our estimator of α (t, x) as an intermediate step while es-

timating the expected remaining lifetime and we can use our general bootstrapping

method to evaluate the conÞdence bands. As our observation interval 1974-1998 only

gave us a limited possibility for working in both the time and age direction at the

same time, we used another estimator of the populations expected remaining lifetime

at age x in year t.

This estimator is deÞned as:

et,x =
Z ∞

0
exp

½
−
Z s

0
α (t, x+ u) du

¾
ds.

We estimate the expected remaining lifetime for the sample under exposure in

every year from 1974 until 1998. Here, we restrict our presentation to the elderly,
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namely to the eight curves resulting from considering ages 60, 70, 80 and 90 and

both genders, separately. The estimator is often referred to as the population�s life

expectancy.

Regarding men, we observe that there has been an increase in the expected re-

maining lifetime in the past two decades (Figure 3a to 3d). For men aged 60, the

remaining life expectancy shifts from 17.3 years in 1974 to 18.5 years in 1998. This

corresponds to an increase of 7 percent. The high mortality peak experienced in 1994

is shown on the graph. If this year is omitted from the data, a linear development in

the remaining life expectancy from 1980 to 1998 shows up. During our observation

period there seems to be a systematic increase with no sign of convergence towards a

Þxed level of remaining life expectancy for men aged 60. The 70-year-old men show a

similar graph in Figure 3(b). Again, the 1994 effect is shown even more prominently

in the graph. We see an increase from 10.8 years in 1974 to 11.6 years in 1998. As for

age 60, it corresponds to a 7 percent increase. There is still no sign of convergence.

For men aged 80, the same features appear in Figure 3(c). While the 1994 peak is

signiÞcant, it seems to be explained primarily by the particular weather conditions.

The increase in life expectancy for an 80-year-old man is slightly less than 7 per-

cent. Finally, the remaining life expectancy for 90-year-old men does not show any

signiÞcant trend.

14



(a) (b)

Year

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y 
(y

ea
rs

)

1975 1980 1985 1990 1995

1
7

.4
1

7
.6

1
7

.8
1

8
.0

1
8

.2
1

8
.4

Life expectancy - 60-year-old men - w. confidence bands

Year

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y 
(y

ea
rs

)

1975 1980 1985 1990 1995

1
0

.8
1

1
.0

1
1

.2
1

1
.4

1
1

.6

Life expectancy - 70-year-old men - w. confidence bands

(c) (d)

Year

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y 
(y

ea
rs

)

1975 1980 1985 1990 1995

6
.2

6
.3

6
.4

6
.5

Life expectancy - 80-year-old men - w. confidence bands

Year

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y 
(y

ea
rs

)

1975 1980 1985 1990 1995

3
.1

5
3

.2
0

3
.2

5
3

.3
0

Life expectancy - 90-year-old men - w. confidence bands

Figures 3(a) to 3(d). Estimates of the expected remaining lifetime for Danish men from
1974 to 1998 and 95% conÞdence bounds. (a) 60, (b) 70, (c) 80 and (d) 90 years old.

When observing the behavior of data on Danish women aged 60 in Figure 4(a),

we see an increase in remaining life expectancy from 21.3 in 1974 to 22.1 in 1998.

This corresponds to an increase below 4 percent. The year 1994 shows a signiÞcant

low level of life expectancy for this age group, and due to smoothing all the years

1992-1996 are inßuenced by this outlier. The conÞdence bands show that we are

looking at a signiÞcant increase in life expectancy from the start in 1974 to the end

in 1998.

The 70-year-old women give us some interesting information. Figure 4(b) depicts

a one year absolute increase in life expectancy at this age, rising from 13.6 years in

1974 to 14.6 years in 1998. When compared to the 0.8 year increase for the 60-year-

old women we conclude that the overall mortality in ages sixty to seventy has been
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increasing in the time period 1974-1998. We are not able to give an explanation for

this result. Felipe et al. (2001) showed the same trend in their comparison between

the mortality of Danish women in 1975 and in 1993.

The 80-year-old women life expectancy estimates in Figure 4(c) again show one

year of increase (7.4 years in 1974 to 8.4 years in 1998). As this is the same increase as

for the 70-year-old women, it implies that women aged 70-80 years do not contribute

differently to the general development of life expectancy. Based on these graphs we

can conclude that the changes in life expectancy mainly originate in the behavior of

the female population over 80 year old.

The 90-year-old women show an increase in remaining life expectancy in Figure

4(d). While the total increase is only half a year, the relative increase is approximately

14 percent. As life expectancy for the 80 and 90-year-old women has signiÞcantly

increased, this shall be taken into consideration when pricing for annuities.

16



(a) (b)

Year

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y 
(y

ea
rs

)

1975 1980 1985 1990 1995

2
1

.4
2

1
.6

2
1

.8
2

2
.0

Life expectancy - 60-year-old women - w. confidence bands

Year

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y 
(y

ea
rs

)

1975 1980 1985 1990 1995

1
3

.6
1

3
.8

1
4

.0
1

4
.2

1
4

.4
1

4
.6

Life expectancy - 70-year-old women - w. confidence bands

(c) (d)

Year

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y 
(y

ea
rs

)

1975 1980 1985 1990 1995

7
.4

7
.6

7
.8

8
.0

8
.2

8
.4

Life expectancy - 80-year-old women - w. confidence bands

Year

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y 
(y

ea
rs

)

1975 1980 1985 1990 1995

3
.5

3
.6

3
.7

3
.8

3
.9

Life expectancy - 90-year-old women - w. confidence bands

Figures 4(a) to 4(d). Estimates of the expected remaining lifetime for Danish women from
1974 to 1998 and 95% conÞdence bounds. (a) 60, (b) 70, (c) 80 and (d) 90 years old.

5 Development of survival probability for elderly
people

For a given age x and a year t, the probability of surviving to age 99 years equals:

St,x = exp
½
−
Z 99−x

0
α (t+ u, x+ u) du

¾
.

It is clear that the survival function is a function of the underlying two-dimensional

hazard α (t, x) .We can therefore use our estimator of α (t, x) as an intermediate step

while estimating the survival time, and we can use our general bootstrapping method

to calculate the conÞdence bands.

Following the same arguments as in the previous section we choose to use the

following expression:
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St,x = exp
½
−
Z 99−x

0
α (t, x+ u) du

¾
.

Again this estimator can be interpreted as the survival probablilty derived from

the current moratlity pattern in the population.

We present the evolution of the survival probability estimates from 1974 to 1998.

The eight curves refers to the ages 60, 70, 80 and 90, and both genders separately.

An overall increase of this survival probability is expected, but if the estimates indi-

cate that the improvement is more signiÞcant for elderly people, then insurers should

reconsider the way reserves for annuities have been calculated and update the esti-

mated probability distribution of the net premiums (i.e. the expected present value

of payments).

When looking at the results for Danish men in Figures 5(a) to 5(d), the graphs

show no signiÞcant tendency. The survival probability, St,x increases in the interval

1974-1987. From 1987 St,x decreases, reaching a minimum in 1994. Due to the

bandwidth choice, the 1994 effect inßuences the estimates in the period from 1992 to

1996, but there is no evidence to see that in 1997 and 1998 higher survival probabilities

are higher than in 1987. Note that the conÞdence bands of the survival probability

are wide. Therefore, we are not able to derive any deÞnite conclusion on male survival

probability.
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Figures 5(a) to 5(d). Estimates of the probability to survive at least until 99 years old for
Danish men from 1974 to 1998 and 95% conÞdence bounds. (a) 60, (b) 70, (c) 80 and (d)
90 years old.

When analyzing Danish women, we see a much clearer trend in Figure 6(a) to

6(d). All the graphs show a signiÞcant increase in the survival probability. As we

have plenty of exposure (the number of surviving elderly women is larger than for

men), the conÞdence bands are quite narrow, giving us a good estimation of the

survival probability. As expected, again we notice that 1994 was a special year with

some excess mortality due to extreme weather conditions. Therefore 1994 shows a

local minimum of St,x. The overall picture does not give us any sign of convergence

in St,x over the observation period 1974-1998.
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Figures 6(a) to 6(d). Estimates of the probability to survive at least untill 99 years for
Danish women from 1974 to 1998 and 95% conÞdence bounds. (a) 60, (b) 70, (c) 80 and
(d) 90 years old.

These results indicate how important it is for insurers to use these methods in

order to keep track of their risk. For instance, the increasing longevity of women

has an immediate consequence on reserving. One could even be interested in testing

whether the portfolio longevity behavior is similar to the population one.

As a general comment regarding conÞdence bands let us emphasise that in all our

studies it turns out that most conclusions that can be arrived by looking at the graphs

cannot be rejected on the basis of conÞdence. This was perhaps expected due to the

quite substantial size of our data set, but it is nevertheless good to have a scientiÞcally

based conÞrmation of this expectation. The new methodology of conÞdence bands

is even more important when studying data from different insurance populations,
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where the amount of data is often smaller than in a study of a nation-wide mortality

development.

6 Discussion

Longevity or life expectancy at birth is a standard indicator of welfare and general

socio-economic conditions of a population. For the life insurance industry, innova-

tions affecting the longevity of the elderly have an enormous impact because they

have a direct effect on the premium that should be charged for a number of their

products. Therefore there is a need for methods to examine changes in longevity and

to test their signiÞcance. Since annuities were probably calculated using an under-

estimated longevity, reserves should be modiÞed accordingly. Just two decades ago,

the probability of reaching the age of 100 was estimated to be so small that it was

usually neglected in practical actuarial calculations. It seems that longevity expecta-

tions are so different nowadays that actuaries should start considering higher survival

probabilities. In order to solve these questions, actuaries have to obtain precise esti-

mations of the force of mortality for advanced ages, thus incorporating the possibility

of improvements or even structural shocks. A structural change is likely to happen

if medical research achieves revolutionary remedies for diseases that are among the

main causes of mortality. The methods described in this paper are aimed at providing

a statistical tool to visualise observed trends of mortality. This type of visualisation

seems crucial as a starting point for the development of better predictions of future

mortality. Since portfolio information is usually based on a smaller number of expo-

sures than the usual frequencies in country mortality databases, one problem arising
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when inspecting portfolio mortality information is that portfolio raw mortality rates

are very erratic. Our smoothing method is particularily suitable to eliminate these

ßuctuations and to provide the practitioner with a useful tool to Þgure out the shape

of the estimated force of mortality and the form of all the other quantities that are

derived from it (future life expectancy or probability of survival). We have also pre-

sented how to obtain conÞdence bounds. This latter result is fundamental to improve

the practical usefulness of the methods described in this paper. In particular if the

data set at hand is small. By comparing conÞdence bounds, one could for example

evaluate whether longevity in a portfolio is signiÞcantly higher than the longevity in

the population.

Another interesting result that can be derived from the proposed conÞdence bound

calculation methodology is that using these bounds, conclusions can be drawn about

the effective differences in life expectancy levels for different geographical regions

or different subportfolios. Our proposed method seems to be very efficient for this

purpose since it is designed to give valuable results for both big and small data sets.

Appendix

All technicalities and estimation techniques are left to this appendix. In § A.1 we give

the very general model formulation based on counting processes. In § A.2. we deÞne

the version of the kernel hazard estimator of Nielsen and Linton (1995) that is of

particular interest to our study. In § A.3 we deÞne the cross-validation principle that

the amount of smoothing of our actual estimator is based on, and in § A.4 we introduce

the new general principle of bootstrapping conÞdence bands for all functionals of our
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estimator of α (t, x) .

A1. The model

We observe n individuals i = 1, .., n. Let N (n)
i count observed deaths for the i�th

individual in the time interval [1974, 1998]. We assume that N(n) = (N
(n)
1 , .., N (n)

n )

is an n-dimensional counting process with respect to an increasing, right continuous,

complete Þltration F (n)
t , t ∈ [1974, 1998], i.e. one that obeys les conditions habituelles

(see Andersen et al. 1992, p. 60). We model the random intensity process λ(n) =

(λ
(n)
1 , ..,λ(n)

n ) ofN(n) as depending on both chronological time, which is our time scale,

and age represented as a covariate

λ
(n)
i (t) = α{t,X(n)

i (t)}Y (n)
i (t),

where we have no restrictions on the functional form of α(·). Yi is a predictable

process taking values in {0, 1}, indicating (by the value 1) when the i�th individual is

under risk, while the age Xi(t) is a 1-dimensional, predictable, CADLAG, covariate

process. We assume that Ft = σ (N(s),X(s),Y(s); s ≤ t) , where Y = (Y1, Y2, .., Yn)

and X = (X1,X2, ..,Xn). With these deÞnitions, λ is predictable and the processes

Mi(t) = Ni(t)−Λi(t), i = 1, . . . , n, with compensators Λi(t) =
R t

0 λi(s) ds, are square

integrable local martingales on the considered time interval, see also Nielsen and

Linton (1995).

A2. Estimating α

The estimator suggested by Nielsen and Linton (1995) and Felipe and Guillen
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(1999) is:

bα(t, x) = Pn
i=1

R 1998
1974 Kb1 (t− s)Kb2 {x−Xi(s)} dNi(s)Pn

i=1

R 1998
1974 Kb1 (t− s)Kb2 {x−Xi(s)}Yi(s)ds

=
Ot,x

Et,x
.

where

Ot,x =
nX

i=1

Z 1998

1974
Kb1 (t− s)Kb2 {x−Xi(s)} dNi(s)

and

Et,x =
nX

i=1

Z 1998

1974
Kb1 (t− s)Kb2 {x−Xi(s)}Yi(s)ds

are respectively the smoothed occurrence and the smoothed exposure. Nielsen (1998b)

pointed out that this estimator could be interpreted as a local constant marker de-

pendent hazard estimator. Nielsen and Linton (1995) showed that this estimator is

asymptotically normal with an asymptotic bias. This result parallels the standard

type of results on asymptotic theory of smooth kernel estimators. While our life

expectancy curve and our conditional survival function have not been analysed the-

oretically, then we do however, point out, that they can be analysed using the same

principles as Nielsen and Linton (1995) did. These two latter estimators will also be

asymptotically normal with bias. We use the Epanechnikov kernels;

Kb1(t− s) = 0.75I(|t− s| ≤ b1)
(
1−

µ
t− s
b1

¶2
)

and

Kb2(x−Xi(s)) = 0.75I(|x−Xi(s)| ≤ b2)
1−

Ã
x−Xi(s)

b2

!2
 .

We note that it is an important feature of this estimation procedure that the

resulting estimator has the well known occurrence divided by exposure construction.
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Most practitioners know different types of occurrence divided by exposure methods.

For example the widespread method of piecewise constant mortalities has this con-

struction. The local constant kernel estimator here corresponds to the occurrence

exposure ratio. Let for a moment the kernel K(x) equal I(|x| < 1), then Ot,x cor-

responds to the observed number of failures with deaths in the chronological time

interval [t− b1, t+ b1] and age in the interval [x− b2, x+ b2], and Et,x corresponds to

the exposure time observed in the area in the chronological time interval [t−b1, t+b1]

and age in the interval [x− b2, x+ b2]. With the constant kernel, the estimator there-

fore is the traditional actuarial occurence exposure ratio. When we choose a smooth

kernel, we therefore get a smooth adjustment of the traditional actuarial estimation

method.

A3. Choice of bandwidth by cross-validation

In this section we consider the question of choosing the smoothing bandwidth

automatically. More precisely, we use the marker depend hazard estimation equivalent

to cross-validation. Little has been published on cross-validation for hazard models

based on counting process theory, however, the working paper of Ramlau-Hansen

(1981) contains a description of what to do in the one-dimensional case, and Nielsen

(1990) gave an extensive theoretical investigation of this approach showing that cross-

validation of one-dimensional kernel hazard estimation has all the same properties as

what was known on the equivalent kernel density cross-validation estimator at the

time. A practical application of the one-dimensional cross-validation approach was

given in Andersen et al. (1993) and a practical application of a marker dependent

hazard cross-validation was given in Nielsen and Linton (1995). We generalize the
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approach of Nielsen and Linton (1995) to our setting. There are many reasonable

choices of criteria for selecting bandwidth. We work with a stochastic L2 measure that

is tractable from the point of view of mathematical analysis. Let eαb be any estimator

of α considered in this paper that depends on a vector of bandwidths b = (b1, b2).

We want to minimize the quadratic term Qn(b):

Qn(b) =
1

n

nX
i=1

Z 1998

1974
[eαb{s,Xi(s)}− α{s,Xi(s)}]2 Yi(s)ds

=
1

n

nX
i=1

Z 1998

1974
eαb {s,Xi(s)}2 Yi(s)ds− 2

n

nX
i=1

Z 1998

1974
eαb {s,Xi(s)}α {s,Xi(s)}Yi(s)ds

+
1

n

nX
i=1

Z 1998

1974
α {s,Xi(s)}2 Yi(s)ds.

The third term in Qn(b) does not depend on the bandwidth, so it is not com-

puted. The Þrst term depends only on the data and can be computed directly. Only

the second term causes any problems, because it depends on the unknown α. The es-

timate 2
n

Pn
i=1

R 1998
1974 eαb {s,Xi(s)}Yi(s)dNi(s) is biased due to the correlation between

eα {s,Xi(s)} and dNi(s). This problem can be solved by replacing eαb {s,Xi(s)} by

the leave-one-out version eα−i {s,Xi(s)} . Thus, we will choose b to minimize

bQn(β) =
1

n

nX
i=1

Z 1998

1974
eαb {s,Xi(s)}2 Yi(s)ds− 2

n

nX
i=1

Z 1998

1974
eαb−i {s,Xi(s)} dNi(s).

From Figure 7 it can be seen that a smoothing parameter vector of chronological

time around 1-5 years and of age around 2-3 years seems appropriate for both genders.

So, the best smoothing parameter is a bandwidth of three years in the chronological

time direction and two years in the age direction. However it is clear that several

choices of b = (b1, b2) result in approximately the same Qn(b). Moreover, bandwidth

selection by cross validation is not too important when working on datasets with size

like the Danish population. We also used the cross validation technique on smaller
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datasets, and in that situation Qn(b) showed a clearer minimum. Correct bandwidth

selection is more important with smaller datasets than with larger datasets.

(a) (b)

Cross validation for bandwith choice - men Cross validation for bandwith choice - women

Figure 7(a) and (b). Cross validation results for different bandwidth choices (a)
Men (b) Women.

A4. bootstrapping the confidence bands

In this section we give a general bootstrapping procedure intended to evaluate

the conÞdence of any two-dimensional hazard estimator bα(t, x) or functional of this
hazard. We follow the original idea of Efron (1979). Let F be some distribution and

suppose we intend to estimate a functional H(F ) of this distribution. The basic boot-

strap answer to this question is to estimate H(F ) by H( bF ) where bF is an estimator of
F. In most practical situations H( bF ) is so complicated that is has to be calculated by
simulations. Therefore most bootstrap procedures involves a simulation step. While

we omit a theoretical analyses of our bootstrap procedure, we do note, that a stan-

dard bootstrap analyses involves an expansion of H(F ) - H( bF ). Hall (1992) is still
state-of-the-art when it comes to this type of bootstrap analyses.
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Consider now a functional of the underlying counting process data

Ψ {(Λ1, X1, Y1), .., (Λn, Xn, Yn)} , (2)

where Ψ is the appropriate functional. Our bootstrap procedure estimates this

functional by

Ψ
n
(bΛ1, X1,Y1), .., (bΛn, Xn,Yn)

o
, (3)

where the bΛi�s are the integrated kernel hazard smoother taken as a function of

the observed counting processes:

bΛi(t) =
Z t

0
bα {s,Xi(s)}Yi(s)ds.

Note that we have chosen to condition on the exposure. Preliminary theoretical

considerations has led to the conclusion that this gives the correct answer. For our

purposes we note that the three estimators considered in this paper, the hazard, the

conditional survival function and the expected lifetime, all can be represented as a

functional of the underlying counting process data. In practice we are interested in

the length of the conÞdence band of our estimators, namely the distance between

the 95% quantile and the 5% quantile of the estimator. This distance is therefore

also a functional of the underlying counting process data. These latter functionals

are estimated by our bootstrap procedure and used en Section 3 to construct our

conÞdence bands. We are not interested in representing the expected bias in our

conÞdence bands.

Conditional on the observed covariate and exposure processes the correct conÞ-

dence bands can be written as in the formula (2), see Theorem 1 in Nielsen and
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Linton (1995) for the corresponding unconditional version. In practise we calculate

our bootstrapped conÞdence band expression on the form (3) based on our grouped

data using a general procedure that we illustrate below for the hazard case presented

in Section 3. The calculations are performed as follows:

From the observed occurrence Ot,x and exposure Et,x we calculate the estimator

bα(t, x) of α(t, x) using the techniques of the sections A2 and A3. The second step
is to simulate n new set of occurrences. Each observation point in the occurrence

matrix is drawn from the binomial distribution Ok,∗
t,x = Bin(Et,x, bα(t, x)). For each

new simulated occurrence matrix Ok,∗
t,x a new estimator bαk,∗(t, x) is calculated based

on this new occurence matrix and the original exposure Et,x. These bαk,∗(t, x)0s ,

k = 1, ..., 200 are stored. For a given age x and year t, all bαk,∗(t, x)0s are ordered as

bα[1],∗(t, x), . . . , bα[200],∗(t, x). The size of the 95% percent conÞdence bound can then be

calculated as bα[195],∗(t, x)− bα[25],∗(t, x). The bootstraped conÞdence bounds of the life

expectancy and the conditional survival curves given in section 4 and 5 are calculated

using the same principle as used in the hazard case.
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