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A method is described for smooth interpolation between random data points in two or more dimensions.
The method gives a smooth surface passing exactly through the given data points, and is suitable
for graphical applications. It has practical advantages over other published algorithms, including
that recently described by Maude (1973), to which it is similar, being both easier to implement and
faster in computer operation.
(Received March 1974)

1. Introduction
In this paper we describe a method for smooth interpolation in
two dimensions between data provided at a set of points
arbitrarily distributed on a plane. Because the method ensures
the continuity of the resulting surface, and its first two
derivatives, it is suitable for graphical applications.
Most approaches to this problem involve subdividing the

plane into small regions, and determining different approxi-
mating functions within the different regions. Thus Bengtsson
and Nordbeck (1964) partition the plane into triangles by
connecting data points, and interpolate linearly within each
triangle from the data values at the vertices. This method has
the disadvantage that, although the surface is continuous across
the edges of the triangles, its slope is not, so that, for example,
a contour line usually has a kink when it crosses an edge. In the
completely different and ingenious method of Hayes and
Halliday (1972), Hayes (1973), the plane is divided into rect-
angles, and a bicubic spline determined using the edges of the
rectangles as its nodes. The coefficients of the spline are not
found from the values at the nodes, as in the usual applications
of bicubic splines when the data are given on a regular mesh
(De Boor, 1962), but are calculated using a statistical least-
squares fit, so that the resulting surface fits as closely as possible
with the data. The surface produced by this technique is, of
course, smooth and visually acceptable, but it will not in general
pass through all the data points. In a third, very different
approach, Maude (1973) splits the plane into regions which are
formed by the intersections of circles, one circle surrounding
each data point; Maude's method will be discussed in more
detail below.

Departing from the concept of subdivision of the plane into
regions usually leads to unacceptably large computer time,
unless the calculation is used only to calculate the interpolated
function at the nodes of a regular mesh, so that a simpler
formula, such as bicubic splines (De Boor, 1962) can sub-
sequently be used (McLain, 1974). This approach is adopted in
a number of proprietory contouring programs, but the resulting
surface will not normally pass through any of the original data
points which are not on the rectangular mesh.
The method of this paper is, in many ways, similar to that of

Maude (1973), and in practice gives similar results over the
regions where the later is valid. But instead of being based on
circles and their intersections, it uses the triangles of Bengtsson
and Nordbeck (1964). We shall show that there are substantial
computational advantages in this.

2. Maude's method
For each data point Pd, Maude calculates a polynomial
approximation

f(x,y) = a00 + a10x + a01y + a20x
2 + atlxy + a02y

2

using the function values at that point and the five nearest
points to determine the six coefficients. This function is used

within the circle with centres Pd and with radius just large
enough to enclose the five nearest data points. The approxi-
mation at any point P is a weighted average of the function
values corresponding to all those circles which enclose P. The
weights for the averaging process can be chosen to make the
resulting function smooth across the boundaries of the separate
regions, by ensuring that, at the circumference of each circle,
the associated weight and its leading derivatives are zero. The
concepts behind the averaging process are similar to those
underlying the well known surfaces of Coons (1969), lucidly
described in Forrest (1972), where the functions serving a
similar purpose to Maude's weights are presented as 'blending
functions'.
Unfortunately the method is both somewhat awkward to

implement and inefficient in computer operation. The
implementation difficulties arise from the number of special
cases which should be included in the computer program to
allow for degenerate situations. Consider, for example, a
number N of data points regularly spaced round a circle with
centre C. For N = 12 the regions of validity of the approxi-
mations intersect as shown in Fig. 1, with 12 circular regions
enclosing C. However as N is increased the radii of these
circular regions decreases, until when N = 18 they all pass
precisely through C, the radii of the circles being equal to the
radius of the original circle. Maude's approximation at the
point C is degenerate in this case, as all the weights are zero.
When JV exceeds 18 none of these regions encloses C, their
radii being smaller than that of the original circle, and a differ-
ent type of degeneracy occurs.

Fig. 1 Regions of significance using Maude's method
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Fig. 2 Triangulating the plane

The cause of inefficiency in the computer run time is the
complexity of the boundaries of the regions where the circles
intersect. Probably the most efficient way to implement typical
applications, such as contouring, where the approximation
must be repeatedly calculated for a series of neighbouring
points, is to retain not only a list of the circles in which the
current point lies, but also a list of neighbouring circles and
their distances, frequently updating both lists.

3. Triangulation of the plane
The first step in the present method is to partition the plane into
triangles by connecting neighbouring data points. It is perhaps
not as well known as it might be that a simple algorithm exists
not only to do this, but to form an optimal partition, as
described by Pitteway (1973). An optimal partition is one in
which, for any point within any triangle, that point lies at least
as close to one of the vertices of that triangle as to any other
data point. The algorithm is as follows.
Suppose that a number of triangles have been selected, and

that a line AB is a side of one (not two) of these, ABC, as in
Fig. 2. Then the algorithm should examine those points on the
side of AB opposite to C, e.g. the points D, E, F in Fig. 2.
For each of these, D say, it should find the centre of the circle
through the three points A, B, D and the distance of this centre
from the line AB, measured in such a direction that the distance
from C to AB is negative. The triangle ABD for which this
distance is least is then to be included in the list. Note that this
is not quite the same as choosing the triangle ABD whose
circumcentre lies closest to AB since the sign of the distance is
taken into account.
The algorithm may be started either with a line AB on the

boundary of the region or with a line joining any point to its
nearest neighbour; it terminates when no point can be found
on the appropriate side of any of the lines described above.
There is one complication which should be allowed for, when

two or more triangles ABD, ABE,... have the same circum-
centre. This will be detected if, when the distances to two
circumcentres are being compared, equality is found. The
simplest action to take in this situation is to record which
points are involved, to sort them into order, D, E, F, . . ., say,
as in Fig. 3 around the circumference of their circumcircle, e.g.
by finding (the cosines of) the angles DAB, EAB,..., and to
add all the triangles ABD, ADE, AEF,... to the list.
Appendix 1 gives ALGOL procedures to analyse on which

side of a line a point lies, and to find the distance of the cir-
cumcentre of a triangle ABD from a side AB.
Fig. 4 shows the result of applying this triangulation algorithm

to the data points shown. The figure includes lines outward

Fig. 3 Triangulating the plane—the special case

from the corners of the triangulated region to allow
extrapolation outside the region of the data points, as described
below.

4. The interpolation method
As in Maude's method, for each of the data points the program
should calculate the coefficients of a polynomial approximation

/datapolnt(*» jO = «00 + 10*
One may do this by Maude's method, to give an exact fit at that
point and the five nearest points. However, the author has
found that, in practice, one gets slightly more accurate results,
and at the same time avoids problems from degenerate cases,
by using more data points than six, and the method of distance-
weighted least squares fit of McLain (1974), in which the algor-
ithm is given as Appendix 1. This method is a variant of the
standard statistical technique which determines the coefficients
atJ to minimise the sum of the squares of the deviations between
the calculated values f(x, y) and the given values at the data
points, which weights the deviations so that remote points
carry much less weight than neighbouring points.
In each triangle the final approximation is found as the

Fig. 4 A triangulated plane using 25 points
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Fig. 5 A surface through 25 data points

weighted average of the three functions corresponding to the
vertices :

F = Wi/i + w2f2 + W3/3 .
To ensure smooth transition from one triangle to the next, we
need only ensure that each weight wt and its leading derivatives
are identically zero along the side of the triangle opposite to the
ith vertex. This can be achieved by making wt proportional to
the nth power d? of the distance from the side, for some n,
typically 3. The distance dt of the point (x, y) to the side is, of
course, a linear function of x and y

d( = l(x + mty + nx

where the coefficients /,-, /w(, «; can be found easily and only
once per side; they should be scaled to make dt = 1 at the
vertex i. Then

w, = d»/(d; + d« + dl) .
In practice it is inadvisable to have the number n larger than the
value 3 which ensures continuous first and second derivatives
from one triangle to another. The larger the value of n is made,
the more the transition between neighbouring functions/; will
be concentrated close to the perpendicular bisectors of the
sides of the triangles, giving visually unnatural surfaces.
It is easy to extend the method to extrapolate outside the

convex hull of the data points, i.e. outside the region covered
by the triangles. To do this one can partition the exterior of this
region by extending lines outwards from the data points on the
boundary, for example by bisecting the exterior angles at the
corners. The approximation may then be found as a weighted
average of the functions for the two boundary points, e.g. in
Fig. 4 for the points R, S in the region bounded by the lines
RS, RT, SU.

5. Implementation in graphical applications
A major practical advantage arises within the present approach
compared with that of Maude, because of the simple boundaries
of the regions over which the same formulae are applied, i.e.
the triangles. For example, if we are drawing contours, then we
might handle the triangles one at a time, drawing all the contour
lines within one triangle before considering the next. The test
for whether the current point is still inside a triangle is merely a
test of the signs of the three distances dt which have previously
been calculated—these will all be positive only if the point is
within the triangle.
Fig. 5 shows a perspective view of the surface obtained from

data provided at the 25 points shown in Fig. 4, the view being
drawn using the method of Ellis (1975). For comparison, Fig. 6
shows the surface obtained from the same data points using the
linear interpolation method of Bengtsson and Nordbeck (1964),
and the same triangulation of the plane.

6. Higher dimensions
It is straightforward to generalise the method to the problem of

Fig. 6 Linear interpolation through the same 25 data points

interpolation in three or more dimensions. Consider, for
example, the case of three dimensions. The points should be
grouped into fours to partition the region into tetrahedra, and
a method similar to that of Section 3 is suitable to do this.
Within each tetrahedron the interpolation is achieved by
averaging the polynomials defined at the four vertices. The
weights for the averaging process should be proportional to the
cube of the distances to the faces, and again these distances are
linear functions of the co-ordinates.

Appendix 1
This appendix gives ALGOL procedures to assist in the
triangulation of the plane, as described in Section 3, above.
The first procedure, findlmn, calculates the coefficients /, m, n

of the equation Ix + my + n = Oof the line joining two points
A, B. The coefficients are adjusted so that the value of the
expression Ix + my + n is positive or negative according to
whether a point {x, y) lies respectively on the opposite or the
same side of the line AB as a third point C, see Fig. 2. The
co-ordinates of the three points are given as the six procedure
parameters xa, ya, xb, yb, xc, yc. The procedure also calculates
the value of a fourth variable c\, which is used in the procedure
distancetocentre, below.

procedure findlmn(xa, ya, xb, yb, xc, yc, 1, m, n, c\);
value xa, ya, xb, yb, xc, yc;
real xa, ya, xb, yb, xc, yc, l,m,n, c\;

begin
1 := yb — ya; m : = xa — xb;
n : = — / x xa — m x ya;
if / x xc + m x yc + n > 0 then
begin / : = —/; m : = — m; n : = — n end;
d : = m x (xa + xb) — / x (ya + yb)

end;

The second procedure distancetocentre may be used to compare
the distances from the line AB to the circumcentre of the tri-
angle ABD, for various points D. The procedure actually finds
a linear function of the distance from AB to such a circumcentre
(if / is the true distance, the procedure calculates
2(^//2 + m2 t — «)), which is sufficient if, as described in
Section 3, we need only find the minimum of these. It is
assumed that the procedure findlmn has been called prior to
distancetocentre.
The co-ordinates of the points A, D are given as the para-

meters xa, ya, xd, yd, and the values of the other parameters
/, m, c\ are those calculated by the procedure findlmn for the
line AB.

real procedure distancetocentre(xa, ya, xd, yd, I, m, cl);
value xa, ya, xd, yd, l,m,cl;
real xa, ya, xd, yd, l,m,c\;
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begin real al, bl, cl;
al := xa — xd; bl : = ya — yd;
d := al x (xa + xd) + bl x (ya + yd);

distancetocentre : = (I x (bl x cl + / x cl) + m x
(mxcl-alx c\))l(m xbl + lxal)

end;
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Advanced Study Institute
on Man-computer Interaction
A NATO Advanced Study Institute on man-computer interaction
(MCI) will be held at Mati near Athens, Greece from 5 to 18
September 1976.
The Institute will review current knowledge and recent research

on human aspects of man-computer interaction. Topics will include
hardware and software design, programming, interaction with
different classes of user, training and modelling; the emphasis
throughout will be upon the ergonomics/human factors problems
and solutions.
Papers on the main topics will be presented by invited lecturers,

and these will be followed up by seminars and discussions at which
participants will be expected to contribute.
The Advanced Study Institute's programme sponsored by NATO

aims to further international collaboration between scientists through
in-depth study of important areas of research.
Priority will be given to applicants who were accepted for the

1975 ASI on MCI which had to be postponed, but there will be
a number of places for new applicants.
Numbers are therefore restricted, so it is important to apply as

early as possible. Financial assistance may be available to suitably
qualified participants (usually doctoral and post-doctoral students).
For application form write to:

Professor B. Shackel—Director ASI on MCI,
Department of Human Sciences,
University of Technology,
Loughborough, UK.

Advanced Summer Institute on
Computer Architecture
Dates and Location: September 12-24, 1976, St. Raphael on the

French Riviera.

Sponsors:

Programme:

List of Lecturers:

Directors of the
School:

NATO Scientific Affairs Division European
Research Office.

Principles of Computing Systems; Funda-
mentals of Computer Architecture; Problem
and/or Language Orientated Machines; Hard-
ware components (including microprocessors);
Associative Processing Techniques; Speci-
fication and Evaluation of Computer
Structures; Computer Networks and Com-
munications; PDP 11 Systems Design; MU5
Computer Architecture.

G. Amdahl, Amdahl Corporation, USA;
D. Barber, NPL, UK; G. Bell, DEC, USA;
K. Bowden, University of Essex, UK; B.
Canet, Universite de Rennes, France; G.
Debruyne, INTEL, France; F. G. Heath,
Heriot-Watt University, UK; F. H. Sumner,
University of Manchester, UK; W. T. Wilner,
Burroughs Corporation, USA.

Professors G. Boulaye and D. Lewin.

General Information: All lecturers and delegates will be accom-
modated in a quiet comfortable hotel with
ample facilities for informal discussion.
Instruction will be by seminars and round-table
discussions.

Further information: from
Professor D. Lewin
Department of Electrical Engineering and
Electronics
Brunei University
Uxbridge
Middlesex UB8 3PH
(Tel.: Uxbridge 37188: ext. 118).
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