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S U M M A R Y
We introduce the concept of multi-objective optimization to cast the regularized inverse direct
current resistivity problem into a general formulation. This formulation is suitable for the effi-
cient application of a genetic algorithm, which is known as a global and non-linear optimization
tool. The genetic inverse algorithm generates a set of solutions reflecting the trade-off between
data misfit and some measure of model features. Examination of such an ensemble is highly
preferable to classical approaches where just one ‘optimal’ solution is examined since a better
overview over the range of possible inverse models is gained. However, the computational cost
to obtain this ensemble is enormous. We demonstrate that at the current state of computer per-
formance inversion of 2-D direct current resistivity data using genetic algorithms is possible
if state-of-the-art computational techniques such as parallelization and efficient 2-D forward
operators are applied.

Key words: electrical resistivity, finite-difference methods, numerical techniques, stochastic
inversion.

1 I N T RO D U C T I O N

The geophysical inverse problem can be described as the task to de-
duce the subsurface distribution of physical properties from physical
measurements which are made at the earth’s surface or within the
subsurface. This deduction process may be divided into two parts
(Scales & Snieder 2000)—estimating inverse models from a num-
ber of given data and appraising the inverse models with respect to
the unknown true earth model. Solutions of the estimation problem
in the direct current resistivity case are non-unique due to a finite
number of measurements (a finite number of both current injection
and potential sampling points), restricted access to the boundary of
the volume under investigation as well as finite precision of data
aquisition (Friedel 2003). In short, there exists a set of inverse mod-
els all of which explain a given data set within error limits. The
estimation of this set of inverse models can be achieved either sta-
tistically (Bayesian approach) or deterministically. The determin-
istic approach can be characterized by a search for those inverse
models that aim at minimizing data misfit and—possibly—model
constraints taking into account a priori information or assumptions
about smoothness, least entropy, least structure, etc. We will only
consider the deterministic view of the estimation problem here.

The minimization task of the inverse problem is performed us-
ing a genetic algorithm. Genetic algorithms can be classified as
non-linear, global and stochastic optimization schemes which are
inspired by processes of biological evolution and genetics. For a
general description see, for example, the monographs of Holland
(1975), Davis (1996) and Deb (2001). Application of a genetic

algorithm has several advantages over classical optimization meth-
ods. Whereas classical methods such as quasi-Newton or conjugate
gradients require the calculation of derivatives—the Jacobian of
the model-data mapping—as well as an appropriate initial guess,
genetic algorithms do not require these. Using derivative informa-
tion, classical minimization techniques are very efficient to locate a
minimum with high accuracy but at the same time are prone to be
trapped in suboptimal points, that is, to fail the global minimum of
a multi-modal function. Genetic algorithms, on the other hand, are
a more global and robust but much slower approach. Furthermore,
they can be adjusted to find a set of solutions to multi-modal and
even multi-objective optimization tasks. An optimization problem
is called multi-objective if a number of possibly conflicting scalar
objective functions are to be optimized simultaneously. In contrast
to the genetic algorithm, the classical approach only yields one so-
lution corresponding to one local minimum and a particular linear
combination of the objective function’s vector components. Genetic
algorithms, therefore, open the possibility to gain a better overview
over the range of inverse models and to take a further step on the way
from estimating a single inverse model to appraising the ensemble
of inverse models.

Genetic algorithms have been applied in a number of geophysical
disciplines—first of all in seismics (Stoffa & Sen 1991; Gallagher
et al. 1991; Wilson & Vasudevan 1991; Sen & Stoffa 1992; Kennett
& Sambridge 1992), later for resistivity sounding inversion (Sen
et al. 1993) and the inversion of magnetotelluric (Everett & Schultz
1993), gravity and magnetic data (Boschetti et al. 1997). For further
references see, for example, Gallagher & Sambridge (1994) and
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Sambridge & Mosegaard (2002). In resistivity and magnetotelluric
methods, application of genetic algorithms to the inverse problem
was restricted to models with a very limited number of parameters
and models which could be evaluated using fast, semi-analytical al-
gorithms. More complex models require numerical techniques, that
is, finite difference, finite element or integral equation methods. Us-
ing finite difference modelling, Chunduru et al. (1996, 1997) com-
pared a genetic algorithm with simulated annealing and found the
simulated annealing to be more efficient. Only recently, the combi-
nation of a genetic algorithm with a 2-D magnetotelluric finite dif-
ference modelling code has been reported (Pérez-Flores & Schultz
2002).

In this article we present a fully non-linear inverse algorithm to
find an ensemble of inverse models. We introduce the concept of
multi-objective optimization to the direct current resistivity prob-
lem so as to treat the simultaneous minimization of data misfit and
model restriction in an as much general as possible way. The inverse
algorithm combines a genetic algorithm and a 2-D finite difference
modelling code. Whereas Chunduru et al. (1996, 1997) used a spline
parameterization to reduce the number of parameters to be deter-
mined during inversion, we face the challenging task to search for
the block parameters corresponding to the underlying finite differ-
ence grid directly.

The multi-objective formulation of the inverse problem will be
the subject of the following section. Next, the genetic algorithm will
be outlined followed by the description of refinements we applied
to our finite difference forward modelling code in order to enhance
speed and accuracy. The last section will present two synthetic data
examples the genetic inversion algorithm was applied to and con-
clude with inversion results of a resistivity field data set.

2 T H E I N V E R S E P RO B L E M

Estimating inverse models from resistivity data can be described as
an inverse modelling process: Take an initial guess of the subsurface
conductivity distribution, calculate this model’s hypothetical resis-
tivity data set, and refine the model until synthetic data fit measured
data up to a certain degree depending on the noise level of the mea-
sured data. Assuming Gaussian distributed noise, data misfit can be
expressed as

f1(m) =
∥∥∥∥d − F(m)√

n − 1 s

∥∥∥∥
�p

=
(

n∑
i=1

∣∣∣∣di − Fi (m)√
n − 1 si

∣∣∣∣
p
)1/p

, 1 ≤ p < ∞, (1)

where m denotes the model parameters, d measured data, s their
standard deviation, n the number of data points, and F(m) syn-
thetic data as calculated by the model-data mapping. Note that the
expectation of [ f 1(m)]2 is 1 if p = 2. We used logarithms of appar-
ent resistivity, d = logρa, and of model conductivity, m = logσ,
throughout this study. Estimated standard deviation ∆ρa is trans-
formed according to s = log(1 + ∆ρa/ρa) (Friedel 2003). The
assumption of Gaussian distributed noise is no longer valid under
this transformation.

Because of data noise, all inverse models which satisfy f 1(m) ≤
const. should be accepted where const. depends on s. There is an
infinite number of solutions to this problem. Now, either a statistical
approach can be used to characterize the ensemble of inverse models
or, following the deterministic view, one model with particular ad-

ditional properties to be defined can be searched. The deterministic
approach is applied here and achieved by

(1) replacing f 1(m) ≤ const. by minimization with respect to m,
f 1(m) → min! and

(2) restricting solutions to a certain class of models which may
satisfy additional constraints.

Model space is restricted in the following ways:

(1) Since a finite difference algorithm is used to compute the
synthetic data, the subsurface conductivity model is parameterized
accordingly by piecewise constant conductivity blocks where the
block conductivity is variable and block geometry is fixed. (Hence,
the model is denoted by a vector m.)

(2) Due to limited resolution provided by the data, it is sufficient
to consider a finite and discrete set of ‘representative’ conductivity
values only, much less than could be expressed by the standard
computer floating point variables. This fact will be exploited for the
use of encodings within the genetic algorithm.

(3) Minimizing data misfit only can lead to misinterpretation be-
cause noise can be mistaken as signal. Thus, a second objective func-
tion f 2(m) is introduced and will be simultaneously minimized. f 2

can account, for example, for deviations from an initial model adding
a priori knowledge or for a measure of roughness adding certain as-
sumptions about a particular conductivity distribution. Following
the classical approach, roughness is calculated by a first- or second-
order finite difference operator applied to the discrete conductivity
distribution and finally, the �2-norm is taken. This writes for the
first finite difference with normalized distances and 2-D models
(∂σ/∂ y ≡ 0) of piecewise constant conductivity on a rectangular
grid as

f (a)
2 (m) =

(
p∑

i=2

q∑
j=1

(mi, j − mi−1, j )
2 +

p∑
i=1

q∑
j=2

(mi, j − mi, j−1)2

)1/2

,

(2)

where model vector m has been rearranged to an array and contains
the logarithms of block conductivity, mi, j = log σ (x , z) for xi ≤ x ≤
x i+1, i = 1, . . . , p, zj ≤ z ≤ z j+1, j = 1, . . . , q. Further, we propose
an �1-measure which is derived by taking the first derivative of the
non-discrete and logarithmized conductivity distribution m(r) =
log σ (r) and integrating the absolute value over the considered 2-D
model domain �,

f (b)
2 (m) =

∫
�

(∣∣∣∣∂m

∂x

∣∣∣∣ +
∣∣∣∣∂m

∂z

∣∣∣∣
)

dx dz. (3)

This extends for the rectangular grid with piecewise constant σ as
described above to

f (b)
2 (m) =

q∑
j=1

�z j

p∑
i=2

|mi, j − mi−1, j |

+
p∑

i=1

�xi

q∑
j=2

|mi, j − mi, j−1|, (4)

where �xi = x i+1 − xi and �zj = z j+1 − zj. To see this, consider,
for example, the vertical edge xi at zj < z < z j+1. There, m can be
written locally as

m = mi−1, j + (mi, j − mi−1, j )H (x − xi ) (5)

using the unit step function H(x). Since the formal derivative of
H(x) is the Dirac delta function, we have

∂m/∂x = (mi, j − mi−1, j )δ(x − xi ). (6)
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Taking the absolute value does not affect δ(x). Integrating over a
small area around the edge, we obtain∫ z j+1

z j

∫ xi +ε

xi −ε

∣∣∣∣∂m

∂x

∣∣∣∣ dx dz

= |mi, j − mi−1, j |
∫ z j+1

z j

∫ xi +ε

xi −ε

δ(x − xi ) dx dz

= |mi, j − mi−1, j |�z j (7)

and similarly the contributions of all other edges. Due to the absolute
value used, f (b)

2 yields the same result for transitions between two
blocks with different conductivities either taking one large step or
a number of smaller steps. Only the effective step magnitude is
penalized.

The two objective functions data misfit f 1(m) and model restric-
tion norm f 2(m) are to be minimized simultaneously. In general,
this can be expressed as a multi-objective optimization task or as
the task of optimizing a vector-valued functional

f(m) = ( f1(m), f2(m)) → min!. (8)

f 1(m) as well as f 2(m) depend non-linearly on their arguments
since the mapping of model conductivity σ = exp(m) to synthetic
data ρa = exp(d) is non-linear and norms other than the �2-norm
lead to non-linear optimization tasks.

The most popular approach for solving eq. (8) is to introduce a
regularization parameter λ and to minimize a scalar-valued func-
tional of the type f (m) = f 1(m) + λ f 2(m). For Newton-type min-
imization, f (m) = [ f 1(m)]2 + λ[ f 2(m)]2 is usually used in case
f 1 and f 2 denote �2-norm quantities (Constable et al. 1987; Park
& Van 1991; Farquharson & Oldenburg 2004). This can be inter-
preted just as a linear combination of both objective functions with
linear coefficients 1 and λ. By varying λ from 0 to ∞, a family of
solutions can be obtained with f 1 and f 2 given different weights.
Various approaches exist to choose an optimal value of λ like, for
example, the L-curve criterion, discrepancy principle, and general-
ized cross-validation (Engl et al. 2000; Günther 2004) whereas the
particular choice is still a subject of investigation (Farquharson &
Oldenburg 2004). Nevertheless, a better overview over the variety
of possible inverse solutions and a deeper insight into the nature of
the inverse problem can be achieved if not just one optimal solution
is considered but a complete set.

To obtain the whole family of solutions, minimization for a num-
ber of fixed values of λ has to be performed. Using a genetic al-
gorithm for the minimization task, we wish to obtain the solution
of problem (8) independently of λ, that is, to tackle problem (8) di-
rectly. Therefore, it is necessary to define the comparison of vectors.
Vector f∗ = ( f ∗

1 , f ∗
2 , . . . , f ∗

n ) is said to be less than vector f = ( f 1,
f 2, . . . , fn),

f∗ ≺ f, if

{
f ∗
i ≤ fi for i = 1, . . . , n and

f ∗
i < fi for at least one i.

(9)

Let S ⊆ D(f) where D denotes the domain of f and m∗ ∈ S. If
there exists no m ∈ S such that f(m) ≺ f(m∗), then m∗ is called
a Pareto-optimal solution of problem (8) (Fig. 1). The set of all
Pareto-optimal solutions

{m∗ ∈ S : � ∃m ∈ S such that f(m) ≺ f(m∗)} (10)

is called Pareto set. The Pareto set is termed global if S ≡ D(f)
and local otherwise. If objective functions are contradictory to each
other, the Pareto set contains a multitude of solutions, which repre-
sent optimal compromises between conflicting objective functions.

Figure 1. f is a mapping from model space to the vector space spanned by
data misfit f1 and model restriction norm f2, more precisely from the domain
D(f) to the range R(f).

An approximation to the global Pareto set—a local Pareto set—
can be obtained with the Non-dominated Sorting Genetic Algorithm
NSGA-2 (Deb et al. 2000) described in the next section. Thus, lin-
ear combination of the objective function’s vector components and
linearization of non-linear objective functions—particularly of the
non-linear model-data mapping—can be avoided.

3 T H E G E N E T I C A L G O R I T H M

Genetic algorithms were developed by J. Holland in the 1960/1970s
(Holland 1975). They can be classified as one species of stochastic
optimization methods known as evolutionary algorithms. These al-
gorithms transfer principles and processes of biological evolution,
like Darwin’s survival of the fittest, genetics and adaptation of life to
its environment, onto artificial systems. Genetic algorithms operate
on a number of encoded representatives of points in model space
which form a population of strings. One string is, for example, the
concatenation of 8-bit sequences where each sequence represents
the model parameter of one model block and encodes 28 resistivity
values. Strings are assigned a fitness value that is calculated decod-
ing the string, evaluating the objective function and comparing the
resulting values of all strings in the current population. A number
of new strings is formed by the application of the genetic operators
selection, crossover and mutation (Fig. 2). The selection operator
chooses strings for further operation giving strings with higher fit-
ness values a higher probability to be selected. During crossover,
pairs of selected strings exchange parts of their information. Muta-
tion finally alters bits of information within a typically small number
of strings. All newly created strings again are decoded, evaluated and
assigned a fitness value. Taking individuals from the pool of old and
new strings, a new population is formed and the whole process is
repeated. Since survival of the fittest strings of the old or combined
population cannot be guaranteed using stochastic genetic operators
only, elitist strategies may be employed to ensure this. The artificial
evolution is terminated if sufficiently good solutions are found, a pre-
defined number of generations or objective function evaluations is
reached, or search stagnates.

To reduce the objective function values of a multi-objective op-
timization problem to a scalar fitness value, Deb et al. (2000) ap-
ply a scheme which sorts strings according to their degree of local
non-domination. A string Si is said to be non-dominated if its cor-
responding objective function f(Si) ≺ f(Sj) for all other strings Sj,
j �= i , of the considered set of strings (Fig. 3). In fact, Si is locally
non-dominated with respect to the domainD(f) since the population
represents only a subset of D(f). To perform the sort, first, all non-
dominated strings of the population are determined. They are given
the rank ‘1’ and called the first non-dominated set (S2, S3, S6 in
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generation t

10000110 ’7’

01101000 ’6’

11100111 ’5’

00110101 ’2’

01111011 ’4’

00111110 ’8’

00001010 ’3’

11011101 ’1’

selection

01101000

00110101

01101000

11011101

11011101

01111011

11011101

00110101

crossover

01101000

00110101

01001000

11111101

11011011

01111101

01011101

10110101

mutation

01101000

00110101

00001000

11111101

11011011

01111100

01011101

10110101

generation t + 1

t = t + 1 fitness ranking evaluation decoding

Figure 2. Scheme of a genetic algorithm applied to a population of eight binary encoded strings. Fitness values enclosed in inverted commas are each string’s
rank. Ranks are assigned according to the objective function value(s) calculated after decoding each string. Note that a particular, on average fitter string like
no. ‘3’ is not guaranteed to be selected since the selection operator used is a stochastic process as are crossover and mutation as well.

Figure 3. Subdivision of the f1 – f2-plane into dominated, dominating, and
indifferent parts with respect to string S1. Among the six strings S1 to S6,
strings S2, S3 and S6 are non-dominated and, therefore, form the local Pareto
set. Note that even though string S6 is non-dominated it does not dominate
any of the other strings. The non-dominated sorting procedure would assign
rank ‘1’ to strings S2, S3, S6, rank ‘2’ to string S1, and rank ‘3’ to strings
S4, S5.

Fig. 3). This procedure is repeated for the remaining strings which
are not assigned a rank, yet. Thus, rank ‘2’ is given for the second
non-dominated set (S1 in Fig. 3), rank ‘3’ for the third one (S4, S5

in Fig. 3), and so on until all strings are assigned a rank. In addition
to the ranks assigned according to non-domination, a second, aux-
iliary fitness value is calculated to distinguish between individuals
of the same rank and to obtain as diverse as possible solutions in
model or objective function space. The auxiliary fitness is either
the distance of a string to its neighbours in objective function space
or to all other strings in model space. Comparing two strings, first,
the ranks are considered, and second, the auxiliary fitness is used if
ranks are equal. Using this procedure coupled with an elitist strategy,
the genetic algorithm generates a series of local Pareto sets—local
with respect to all strings considered so far—which approximate the
global Pareto set increasingly well.

Based on the NSGA-2 (Deb et al. 2000) just described, we im-
plemented our genetic inversion algorithm. Apart from coding the
problem-specific objective functions (Section 2), restructuring, tun-
ing and porting the C-code of NSGA-2 to C++, a number of prin-
cipal changes were made to the genetic algorithm to improve ef-
ficiency. Integration of the controlled elitism described in Deb &
Goel (2000) guarantees an appropriate distribution of strings within
each rank, especially within the first one, as well as among the dif-

ferent ranks. Binary Gray-encoding replaces the standard binary
encoding and helps to avoid artifacts which arise due to the discrete
approximation of the underlying continuous optimization problem
(Rana 1999). Parallelization was crucial to render the genetic in-
version algorithm feasible for 2-D inversion at the current state of
computer power. To obtain solutions of sufficiently high quality, it
is necessary to use relatively large populations within the genetic
algorithm. Unfortunately, large populations require not only a large
number of objective function evaluations per generation but also a
large number of generations to reach convergency. Therefore, the
global population is split into a number of subpopulations, which
evolve independently and exchange their best individuals in regular
intervals. Thus, a faster convergency rate is obtained using rela-
tively small subpopulations whereas the larger total population size
guarantees sufficient sampling of model space. Each subpopulation
can additionally be forced to focus its search on a part of the Pareto
set (Deb et al. 2002). Further, all n subpopulations are assigned
an even share p/n of the number p of available processing units—
considering only the case where p is a multiple of n. Since the ac-
tual genetic algorithm, that is, genetic operators and non-dominated
sorting, has neglible run times compared to the objective function
evaluations, it is only carried out on one of each subpopulation’s
processors (sequentially with respect to each subpopulation but in
parallel with respect to the global population) while all processors
are used to evaluate the objective functions. Exchange of individu-
als and solutions between subpopulations is implemented using the
Message Passing Interface MPI (Gropp et al. 1996).

For the purpose of migration between the subpopulations, they
are assigned vertices on a hypercube of dimension log2n where the
number of subpopulations n is an integer power of 2. During mi-
gration, each subpopulation exchanges non-dominated individuals
with the subpopulation at the neighbouring vertex in the direction
of dimension i where i cycles through all dimensions of the hyper-
cube. Since it is difficult to make the optimal choice for the ge-
netic algorithm’s parameters crossover and mutation rate and since
long run times of real world problems prohibit appropriate tests to
find optimal values, they are generated at random. Each subpopu-
lation gets its own set of parameters and is thus exposed to slightly
different environmental conditions. To extract the last locally non-
dominated set of solutions, all subpopulations are gathered to form
one large population, which is sorted according to the degree of
non-domination.
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Tests regarding different numbers of subpopulations and the fo-
cussed search were not conclusive (Section 5). This is probably due
to a still too small population size compared with the number of
unknowns.

4 M O D E L L I N G

To evaluate the first objective function, data misfit, calculation of
synthetic data is required. To make feasible the large number of
model calculations that are required for the genetic inversion al-
gorithm, an especially adapted 2-D finite difference direct current
forward operator has been created. First, a singularity removal tech-
nique is combined with boundary conditions imposed on the sec-
ondary potential. Second, Gauss-quadrature formulae are applied to
compute the inverse Fourier transform. Third, source location loop,
wavenumber loop and solver for the system of linear equations are
arranged in such a way that optimum speed and accuracy for multi-
ple sources are obtained. See Dey & Morrison (1979) for the basic
finite difference formulation.

4.1 Singularity removal technique

We apply the singularity removal technique (Lowry et al. 1989; Zhao
& Yedlin 1996; Spitzer et al. 1999; Li & Spitzer 2002) described
for the 3-D case therein to the 2-D case here. Assuming that the
conductivity σ is constant with respect to one spatial direction, say
y, the quasistatic electrical potential ϕ is searched in the form of a
Fourier cosine transform

ϕ(x, y, z) = 2

π

∫ ∞

0
ϕ̃(x, ky, z) cos(ky y) dky . (11)

The transformed potential ϕ̃ is split into a normal and an anomalous
part, ϕ̃ = ϕ̃n + ϕ̃a . The boundary value problem is formulated in
terms of the anomalous potential ϕ̃a for a finite domain � with ho-
mogeneous Neumann boundary conditions at the air–earth interface
�0 and homogeneous mixed boundary conditions on the subsurface
boundary �1 (�0 ∪ �1 = ∂�)

−∇ · (σ∇ϕ̃a) + k2
yσ ϕ̃a = ∇ · (σa∇ϕ̃n) − k2

yσa ϕ̃n on � (12)

∂ϕ̃a

∂n
+ α ϕ̃a = 0 on ∂�, (13)

where σa = σ − σn, α = 0 on �0, and

α = ky
K1(ky

√
(x − xs)2 + (z − zs)2)

K0(ky

√
(x − xs)2 + (z − zs)2)

cos θ on �1. (14)

K 0 and K 1 are the modified Bessel functions of order 0 and 1. θ de-
notes the angle between the outward normal direction on the bound-
ary and the vector from the source position (xs, zs) to the boundary
point. The normal conductivity σn is chosen such that the normal
potential ϕ̃n can be computed analytically and that σn = σ in the
neighbourhood of the source point. For a surface source placed on
the node of a rectangular, 2-D finite difference grid, the normal
potential is given by

ϕ̃n = I

2πσ̄
K0(ky

√
(x − xs)2 + (z − zs)2), (15)

where I denotes current and σ̄ = (σ1 + σ2)/2 with the quarter
space normal conductivities σ1, σ2 to the left and right of the source,
respectively. This choice of background conductivity guarantees that
the singular behaviour of the anomalous potential at the source is
exactly removed: The potential is split into a singular part with

respect to the source location, lim(x,z)→(xs ,zs ) ϕ̃n = ∞, and a non-
singular part, lim(x,z)→(xs ,zs ) ϕ̃a < ∞. Thus, the numerical effort
to discretize large potential gradients at the source is reduced. As
the anomalous potential defined this way is more regular than the
total potential, it is better suited to numerical approximation. Apart
from this, numerical errors are reduced since they are constrained
to the anomalous potential, which is usually significantly smaller in
magnitude than the normal potential.

Various finite difference discretizations have been applied to the
2-D and 3-D resistivity problems (for example Dey & Morrison
1979; Mundry 1984; Spitzer & Wurmstich 1999). We adapted the
area discretization approach of Dey & Morrison (1979) to the prob-
lem (12), (13) stated in terms of the split potential. The resulting
system of linear equations can be written as

Cσ ϕ̃a = Cσa ϕ̃n + b, (16)

where ϕ̃a and ϕ̃n are vectors of anomalous and normal potentials,
respectively. The matrices Cσ and Cσa contain the coupling co-
efficients in terms of conductivities σ and σa . Vector b contains
contributions of the non-vanishing normal derivative of the normal
potential at the subsurface boundary giving rise to additional terms
at the boundary nodes. Eq. (16) is solved for the anomalous potential
by exploiting sparsity, symmetry and positive definiteness of matrix
Cσ .

4.2 Inverse Fourier transform

The inverse Fourier transform eq. (11) is applied to the anomalous
potential only. The analytically computed normal potential is added
at the last step. Thus, integration errors for the normal potential are
avoided. Further, we consider only the most common case of mea-
surements along a profile perpendicular to the strike direction. In
this case, y = 0 can be chosen such that the cosine term in eq. (11)
reduces to one and only a simple integration needs to be carried
out. Similarly to LaBrecque et al. (1996), this integration is split
into two parts. For small wavenumbers 0 ≤ ky ≤ 1/(2�min), where
�min denotes the smallest cell size, the anomalous potential ϕ̃a as a
function of wavenumber ky shows steep gradients and oscillations.
This part is approximately integrated by Gauss–Legendre quadra-
ture. For 1/(2�min) ≤ ky ≤ ∞, ϕ̃a decreases exponentially and is
integrated by Gauss–Laguerre quadrature.

4.3 Implementation—speed and accuracy

Gauss quadrature formulae provide both quadrature weights and ab-
scissas, that is, weights and the values of wavenumbers ky. The total
number of wavenumbers as well as partitioning wavenumbers be-
tween Gauss–Legendre and Gauss–Laguerre quadrature control ac-
curacy of integration and speed of the algorithm. Sixteen wavenum-
bers, eight Gauss–Legendre abscissas and eight Gauss–Laguerre
abscissas proved to be an acceptable trade-off between accuracy
and speed. An efficient arrangement of wavenumber loop, source
location loop and solver for the system of linear equations is es-
sential for optimum speed for multiple sources. If the loop over all
source locations is placed within the wavenumber loop, the matrix
of coupling coefficients Cσ needs to be pre-conditioned or factored
only once per wavenumber. However, using the mixed boundary
condition as given by eqs (13) and (14) the coupling coefficients
depend on the particular source location. We relaxed this boundary
condition and replaced the source location (xs, zs) in α by a source-
independent, common reference point to exploit the effort of the
matrix factorization.
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Figure 4. Subdivision of the subsurface into 120 blocks as used for the inversion. The 21 electrodes are indicated by ‘∨’.

The most widely used solver for the symmetric positive defi-
nite system of linear equations is the SSOR- (Spitzer 1995) or IC-
(Zhang et al. 1995) pre-conditioned conjugate gradient method (see
also Spitzer & Wurmstich 1999). Although not suitable for larger
systems of linear equations arising in 3-D problems, for our 2-D
problem, a direct solver consisting of in-place Cholesky decompo-
sition and backward-/forward substitution proved to be superior to
pre-conditioned conjugate gradients in case of multiple sources, that
is, a number of right-hand sides.

5 A P P L I C AT I O N

In this section, we present inversion results obtained by the genetic
inversion algorithm that was applied to two synthetic data sets and
one field data set. All data sets consist of a complete set of 114
dipole–dipole measurements using the first eight dipole separations
on a linear 21-electrodes array of 40 m length.

For inversion, a finite area of the subsurface was parameterized
by 120 blocks (Fig. 4). Each block was assigned a single value of
constant resistivity which was to be found by the inverse process.
To improve accuracy of the forward calculation, the grid given by
the block parameterization was refined, and cells with increasing
size were added at the subsurface boundaries. Therewith, a grid of
110 × 12 cells was used for calculating the synthetic data. Within the
genetic algorithm, each block’s resistivity was encoded by an 8-bit
sequence of the binary string such that the 28 representable values
were equidistantly spaced between 10 and 10 000 �m on a logarith-
mic scale. Thus, block resistivity is discretized such that adjoining
values differ by about 1 per cent. This provides a discretization which
approximately fits the resolutional power of data and is fine enough
not to suppress important details of the objective function. At the
same time, search is restricted to a reasonable number of points in
model space. The resulting total string length is 120 × 8 bits =
960 bits.

With one exception, the genetic algorithm was run with a total
population size of 8192 individuals in all cases. The initial popu-
lation was generated at random and evolved for 2048 generations.
Thus, at most 8192 individuals × 2048 generations = 224 points
were tested by the genetic algorithm, that is, a fraction of ca. 1.7 ×
10−282 of all 2960 different conductivity distributions that a binary
string of length 960 can encode. One inversion required a total of
1580–1740 hr CPU time and 490–690 MBytes memory on an SGI®

AltixTM 3700 (32 Intel®-ItaniumTM-2 processors at 1.3 GHz, 128 GB
shared memory). By using 24 or 16 processors, the processing time
could be reduced to 66–100 hr. In the one exceptional case a twice
as large population was evolved for 1024 generations. Even though
this resulted in about the same number of tested points, CPU time
was increased to 2880 hr.

Two special choices of objective functions have been considered.
First, the familiar �2-measures of data misfit, eq. (1) with p = 2, and
model restriction, eq. (2), have been used. To illustrate the variety of
possible solutions to the inverse problem, we further present results
obtained by �1-measures of data misfit, eq. (1) with p = 1, and
model restriction, eq. (4). Both measures required roughly the same

numerical effort demonstrating the potential of the genetic algorithm
as a non-linear optimizer.

5.1 Synthetic data examples

Two synthetic data sets were generated using the same modelling
code and parameters as for the inversion. The first model is a half-
space of 100 �m containing a resistive and a conductive block of
200 �m and 50 �m, respectively, which have an extension of one
model cell length and two cells height (Fig. 5a). The second model
consists of two quarterspaces of 100 �m and 200 �m, respectively,
with an overburden of 50 �m (Fig. 6a). In the following, these mod-
els will be referred to by the term synthetic models. The synthetic
data—apparent resistivity ρa—generated from the synthetic mod-
els were disturbed by Gaussian noise of zero mean and standard
deviation �ρa according to Friedel (2003),

�ρa = µρa + k
Umin

I
, (17)

where µ = 1 per cent is a constant noise level, k the configuration
factor, Umin = 0.1 mV the voltage noise level, and I = 100 mA the
driving current.

Inversion using the �2-norm objective functions was performed
with the global population split into eight subpopulations with 1024
individuals each. Migration took place every sixteenth generation.
For the quarterspace model, each subpopulation was set to search
only for a part of the Pareto set (focussing search, cf. Section 3) dur-
ing the first 1024 generations. No focussing was accomplished for
the other 1024 generations as well as for the block model. The other
option in each case and, additionally, trying one large population
without subdivision produced slightly inferior results. In contrast to
that, best results were obtained for the �1-norm inversion of the block
model data set using one single population of 8192 individuals. For
the quarterspace model and the �1-norm, we present results from a
population of size 16 384 at generation 1024. In spite of the doubled
population size, these results represent suboptimal solutions as will
be discussed later on.

All non-dominated solutions from the final generation—the last
local Pareto set—are taken as an approximation to the unknown
global Pareto set. Fig. 5(b) plots the objective function values—data
misfit f 1 versus model restriction f 2—of the approximated Pareto
set obtained from the block model data �2-norm inversion, Fig. 5(c)
correspondingly for the �1-norm inversion. A star further indicates
those objective function values which are obtained evaluating
the respective objective functions with the synthetic model from
Fig. 5(a) as used to generate the synthetic data. In the �2-norm
case, data misfit f �2

1 evaluated for the synthetic model m∗ reduces
to the sample standard deviation of the pseudo-random sequence
{ν 1, . . . , ν n} of Gaussian distributed numbers which has been used
to disturb the data. This can be seen substituting the noisy data
di = Fi(m∗) + ν i si (i = 1, . . . , n) into eq. (1). With f �2

1 = 0.599,
the sample standard deviation [ f �2

1 ]2 = 0.359 clearly deviates from
the expectation value of 1. This fact is attributed to the statistically
small number of samples (114 data points). The gaps within the
Pareto sets of Figs 5(b) and (c) (similarly for Figs 6c and 7c) might be
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Figure 5. ‘Block model’ synthetic data inversion example. (a) Model to generate the data. Electrode positions are indicated by ‘∨’. (b), (c) Objective function
values of the Pareto sets obtained from the genetic inversion algorithm using �2- and �1-norm measures of data misfit f1 and model restriction f2. The star ‘�’
marks the value obtained by evaluting the objective function with model (a) and the noisy data. (d), (e) Selected inversion results corresponding to the three
asterisks ‘∗’ in (b), (c). Same colourscale as in (a).
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(c) Pareto set (�1-norm)
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Figure 6. ‘Quarterspace model’ synthetic data inversion example. (a) Model to generate the data. Electrode positions are indicated by ‘∨’. (b), (c) Objective
function values of the Pareto sets obtained from the genetic inversion algorithm using �2- and �1-norm measures of data misfit f1 and model restriction f2. The
star ‘�’ marks the value obtained by evaluting the objective function with model (a) and the noisy data. (d), (e) Selected inversion results corresponding to the
three asterisks ‘∗’ in (b), (c). Same colourscale as in (a).
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caused by the discrete sampling of model space. More probably, it
indicates that evolution has not reached its equilibrium state, yet,
since auxiliary fitness (cf. Section 3) measuring distances between
neigbouring points in objective function space should have produced
more or less evenly spaced points.

Fig. 5(d) shows three selected solutions of the �2-norm inversion
for the block model data set. These solutions are marked in Fig. 5(b)
by asterisks. They comprise the two extreme points of the Pareto
set as well as an intermediate one which was chosen such that data
misfit f 1 equals 1 (expectation of [ f 1]2). The three inversion results
are arranged in such a way that, from top to bottom, data misfit in-
creases and model restriction norm decreases. Note the decreasing
range of resistivity values with increasing model restriction norm
as revealed by the common colourscale shown in Fig. 5(a). We em-
phasize that only the trough-shaped region of inner cells of Fig. 4
should be taken into account for interpretation. The boundary cells
not only lie in the less sensitive area of our electrode layout but
may additionally be subject to artifacts that arise when truncating
the infinite subsurface region for inversion and modelling purposes.
Nevertheless, these cells are shown for completeness as they were
inversion parameters as well. Similarly to Fig. 5(d), Fig. 5(e) dis-
plays three inversion results corresponding to Fig. 5(c), that is to
the block model data set inverted using �1-norm measures. In both
cases, inversion results do not reconstruct the absolute values of the
blocks. While the position and horizontal extension of the blocks is
detected, their vertical extension is poorly resolved. If terms of the
model restriction objective function f 2 with respect to vertical and
horizontal discontinuities were weighted according to the finer verti-
cal model discretization, this problem might be overcome. Remark-
ably, the inverse process found models that fit the data better than the
synthetic model does. This is attributed to the effects of data noise
in connection with the small-scale structure of the synthetic model.

In contrast to that, inversion of the quarterspace model data set
failed to even reach the synthetic model with respect to data fit as
can be seen from Figs 6(b) and (c). Inspecting Figs 6(d) and (e),
which depict selected inversions results for the quarterspace model
data set, we connect the failure to overestimating the thickness of
the overburden by one cell layer in the �2-norm case and two cell
layers in the �1-norm case. Therefore, the degree of failure is more
pronounced in Fig. 6(c) than in Fig. 6(b) as the synthetic model even
dominates part of the approximated Pareto set in the �1-norm case.
We suspect the influence of a suboptimal region in objective function
space the genetic algorithm was trapped in and unable to escape. The
topmost inversion results in Figs 6(d) and (e) (best data fit) further
exhibit a partial overshooting of resistivity values of 40–50 per cent
in the resistive quarterspace to the right. Apart from that, the other
features of the synthetic model are reconstructed fairly well.

Comparing the inversion results with regard to the �2- and �1-
norm type model restriction functions in general, we observe besides
a strong similarity of general features some well-known, character-
istical differences (Farquharson & Oldenburg 1998): The �2-norm
seems to promote a ‘smoothed’ appearance of structural features,
staircase-like transitions between regions of different resistivity, and
the �1-norm a ‘blocky’ appearance with sharp transitions and a flat
distribution within regions of similar resistivity. Since both synthetic
models are of the sharp contrast type, the �1-norm model restriction
is expected to be more suitable for successful reconstruction than
its �2-norm counterpart. This is indeed reflected in Figs 5(b), (c),
6(b) and (c): In the �2-case, the synthetic model seems to repre-
sent an extreme value of the model restriction norm f 2 that was not
reached by the inversion. In the �1-case, inversion produced results
with greater as well as smaller values of model restriction norm f 2.

5.2 The Rothschönberg drainage gallery

The field data example is taken from a survey which was carried
out to detect the course of the Rothschönberg drainage gallery. The
gallery was built about 150 years ago to drain the Freiberg/Saxony
(Germany) mining field. Measurements were made on a profile per-
pendicularly to the gallery’s strike near the gallery mouth at Roth-
schönberg. There, the gallery is supposed to have a width of 2.5 m, a
height of 2.3 m, and the top to be situated about 2 m below the earth’s
surface. The data are displayed in Fig. 7(a) as a pseudosection of
the apparent resistivity. Data noise was estimated using eq. (17) and
the parameters described in the synthetic data examples section.

For inversion in the �2-norm case, the population was split into
eight subpopulations of 1024 individuals each, which searched for
the whole Pareto set and exchanged individuals every 16 genera-
tions. In the �1-norm case, one large population of 8192 individuals
produced better results than splitting it into eight smaller ones.

Figs 7(b) and (c) plot objective function values of all non-
dominated solutions of the final generation. We can assess the quality
of results in the �2-case by observing that a data misfit of 1 corre-
sponds to the expectation of [ f 1]2. Inversion slightly failed to reach
this level. This indicates that explicit and implicit model restrictions
prevent overfitting the data. Implicit model restriction summarizes
effects of the relatively coarse model parameterization and of map-
ping arbitrarily placed, sized, and shaped underground features to
a fixed, rectangular grid with piecewise constant resistivity values.
Further, the noise level may be estimated inaccurately and, as noted
earlier, the assumption of Gaussian distributed noise is not valid for
logarithmized data. The correspondence between data misfit 1 and
expectation of f 1 cannot be established for the �1-case. Neverthe-
less, applying the equivalence relations of norms in R

n , data misfit
measures are related by f (�2)

1 ≤ f (�1)
1 ≤ √

n f (�2)
1 where n denotes

the number of data points. Considering the best fit models we clearly
see that data fit in the �1-case is not as good as in the �2-case since
f (�1)
1 = 15.7 > 13.5 = √

n f (�2)
1 .

Figs 7(d) and (e) display the inversion results using the �2- and
�1-norm objective functions, respectively. All models exhibit es-
sentially a lower resistive background of increasing resistivity with
depth and two higher resistive features. The first feature extends
from x = 18 to 22 m and z = 1.44 to 2.88 m. Note that in the top-
most plots of Figs 7(d) and (e), the values of cell x = 18–20 m,
z = 1.44–1.92 m are clipped by the colourscale from remarkably
large values of 1968 �m in the �2-case and 6140 �m in the �1-case.
The second resistive feature covers the area x > 26 m, z > 0.96 m.
The first feature is identified as the Rothschönberg drainage gallery,
the second one is supposed to be a basement feature. Both are con-
firmed by results of further, extensive investigation (Günther 2004).

6 C O N C L U S I O N S

We have shown that 2-D direct current resistivity inversion using a
genetic algorithm is possible at the current state of computer per-
formance. This premised a fast and accurate forward operator, par-
allelization and an efficient treatment of regularizing the inverse
problem. Regularization was cast into the formulation of a multi-
objective minimization task. Even though plausible results have
been obtained, we note that the solutions may be further improved
if still larger population sizes are used and evolution is run till equi-
librium state is reached. Population size and stopping criterion were
restricted by computing times, which were already extremely long
for the cases considered.

The advantage of our approach is, however, that an ensemble of
different solutions to the inverse problem is obtained. Currently,
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Figure 7. Field data inversion example. (a) Dipole-dipole pseudosection of apparent resistivity across the Rothschönberg drainage gallery. Electrode positions
are indicated by ‘∨’. (b), (c) Objective function values of the Pareto sets obtained from the genetic inversion algorithm using �2- and �1-norm measures of data
misfit f1 and model restriction f2. (d), (e) Selected inversion results corresponding to the three asterisks ‘∗’ in (b), (c). Same colourscale in (d) and (e).
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this set of inverse models is undergone an optical inspection. Even
though this gives an instructive picture of the range of possible
inverse models—compared to taking only one solution into account
as it is usually done with classical approaches—a more sophisticated
appraisal procedure would be desirable. Nevertheless, as Sambridge
& Mosegaard (2002) point out, it is not advisable to use results
calculated by a genetic algorithm for a statistical characterization
of the set of inverse models since solutions may be biased and are
distributed with unknown probability density.

Another advantage of our genetic inversion algorithm is the direct
approach to the non-linear and multi-objective minimization task,
which avoids linearizations and the choice of appropriate starting
models as necessary for classical minimization methods. This opens
the possibility to apply unorthodox objective functions and to study
the inverse problem in a wider context.
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