
Math. Appl. 5 (2016), 105–122
DOI: 10.13164/ma.2016.08

TWO-DIMENSIONAL JUMPING FINITE AUTOMATA

S. JAMES IMMANUEL and D.G. THOMAS

Abstract. In this paper, we extend a newly introduced concept called the jumping

finite automata for accepting string languages to two-dimensional jumping finite
automata for accepting two-dimensional languages. We discuss some of the basic

properties of these automata and compare the family of languages accepted by these

automata with the family of Siromoney matrix languages and also recognizable
picture languages (REC). We also discuss some of the closure properties of these

automata along with some of their decidability properties.

1. Introduction

Two-dimensional languages are sets of pictures or two-dimensional arrays of sym-
bols chosen from a finite alphabet. They play important roles in image processing,
pattern recognition, character recognition and also in studies concerning cellular
automata and other models of computing. A number of rectangular picture gener-
ating and recognizing mechanisms such as grammars and automata have been pro-
posed in the literature [10–13,16,17,19]. Motivated by certain floor designs called
“Kolam” patterns, Siromoney et al. [15] introduced Siromoney Matrix Grammars
(SMG), a simple and elegant grammar model for generating rectangular arrays.
This is one of the earliest picture models and has been widely investigated for
its theoretical properties and applications. Several variations of Siromoney ma-
trix grammars have been made in the literature [18, 20]. A particular case is the
Siromoney Array Grammars (AG) where array rewriting rules are deployed in the
derivation of pictures. Derivations are restricted by the conditions for row and
column catenation.

The isometric array grammars, introduced by A. Rosenfeld [11], impose the
constraint that the left and right parts of a rewriting rule must be of same size;
this condition overcomes the inherent problem of “shearing” which pops up while
substituting a sub-array in a host array. In [20], Wang presents a new system for
generating two-dimensional patterns using matrix grammars and array grammars.
This model corresponds to a sequential/parallel system. In [21], Wang introduces
parallel context-free array languages and studies the relationship between parallel
isometric array languages and sequential isometric array languages. Tiling system
[4, 5] is a notion of recognizability of a set of pictures belonging to the family
REC of recognizable picture languages. In this system, recognizability is defined

MSC (2010): primary 68Q45.
Keywords: picture languages, jumping automata, rectangular arrays.

105

106 S. JAMES IMMANUEL and D.G. THOMAS

by “projection of local properties”. The class REC is regarded as the generaliza-
tion of the class of regular (one-dimensional) languages because it unifies several
approaches to define the two-dimensional analogue of regular languages via finite
automata, grammars, logic and regular expressions.

An important role in the theory of picture recognizability is played by automata.
The generalization of a finite state automaton to two-dimensional languages can be
attributed to M.Blum and C. Hewitt [3]. They have introduced the notion of 4-way
automata. Array automata acting on scenes (two-dimensional tapes) are defined in
[8]. An interesting model of automaton to recognize REC class of picture languages
is the two-dimensional online tessellation acceptor [6]. Recently, in [9], Wang
automaton, a model of automaton for rectangular picture language recognition, has
been introduced, which combines the features of both online tessellation acceptors
and 4-way automata but differs in the aspect of having many scanning strategies
to visit the input picture.

The motivation for this paper is based on Jumping Finite Automata [1] for
string languages. Most of the classical computer science methods developed in
the previous century is for continuous information processing and hence their for-
mal models, such as finite automata work strictly continuously from left to right in
a symbol-by-symbol way. But lately we have been able to see computational meth-
ods frequently processing information in a discontinuous way. Within a particular
running process, a typical computational step may be performed somewhere in the
middle of information while the very next computational step is executed far away
from it; therefore, before the next step is carried out, the process has to jump
over a large portion of the information to the desired position of execution. This
gives rise to the idea of adapting classical formal models in a discontinuous way.
In this way, the study in [1] introduces new versions of finite automata, referred
to as jumping finite automata which have always had a central role in computer
science as a whole presenting a new, attractive, significant and up-to-date topic of
modern automata theory.

This paper is a major improvement to and development of [7] that has recently
been introduced in the literature. Here the concept of Jumping Finite Automata
[1] is extended to two-dimensional languages. New computational models based
on two-dimensional languages are always of great interest. The jumping finite
automata work like classical finite automata except that they read input words
discontinuously – that is, after reading a symbol, they can jump over some sym-
bols with the words and continue their computation from there. A two-dimensional
jumping finite automaton works on an input array row by row and every row com-
putation is similar to that of a jumping finite automaton working on strings except
that the symbols that are read are replaced by dummy symbols. Here we also in-
troduce another jump called row jump performed by the automaton after every
symbol in that row is replaced by a dummy symbol. The paper also establishes
some results concerning two-dimensional row jumping finite automata in terms of
commonly investigated areas of automata theory, such as closure properties and
decidability properties. We also compare the class of languages accepted by these
automata with the class of Siromoney matrix languages [15] and also the class of
recognizable picture languages [4, 5]. We conclude the paper with a brief remark.

TWO-DIMENSIONAL JUMPING FINITE AUTOMATA 107

2. Preliminaries

In this section we recall some notions related to formal language theory and ar-
ray grammars (refer to [2, 14]). Let Σ be a finite alphabet, card(Σ) denotes the
cardinality of Σ. Σ∗ is the set of words over Σ including the empty word λ.
Σ+ = Σ∗ − {λ}. An array consists of finitely many symbols from Σ that are ar-
ranged as rows and columns in some particular order. A rectangular m× n array

A is written in the form, A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

or in short A = [aij]m×n , for all

aij ∈ Σ, i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The set of all arrays over Σ is de-
noted by Σ∗∗, which also includes the empty array ∧(zero rows and zero columns).
Σ++ = Σ∗∗ − {∧}. For A ∈ Σ∗∗, alph(A) denotes the set of symbols occurring in
the arrayA. For a ∈ Σ, |A|a denotes the number of occurrences of a in A. |A|c is
the number of columns in picture A and |A|r is the number of rows in picture A.

Given a picture A ∈ Σ∗∗ of size (m,n), we define Â as the picture of size (m,n+2)
obtained by adjoining a special symbol $/∈ Σ at the left end and # /∈ Σ at the right

end of each row. The transpose of A is AT =

a11 · · · am1

...
. . .

...
a1n · · · amn

. The quarter turn

of A is AQT =

am1 · · · a11
...

. . .
...

amn · · · a1n

. The half turn of A is AHT =

amn · · · am1

...
. . .

...
a1n · · · a11

.

The reflection on base of A is ARB =

am1 · · · amn

...
. . .

...
a11 · · · a1n

. The reflection on the

rightmost vertical of A is ARR =

a1n · · · a11
...

. . .
...

amn · · · am1

.

Definition 2.1. Let A =

a11 · · · a1p
...

. . .
...

am1 · · · amp

,B =

b11 · · · b1q
...

. . .
...

bn1 · · · bnq

. The column

catenation A 	B =

a11 · · · a1p b11 · · · b1q
...

. . .
...

...
. . .

...
am1 · · · amp bn1 · · · bnq

is defined only when m = n.

Similarly, the row catenation A	B =

a11 · · · a1p
...

. . .
...

am1 · · · amp

b11 · · · b1q
...

. . .
...

bn1 · · · bnq

is defined only when p = q.

108 S. JAMES IMMANUEL and D.G. THOMAS

Definition 2.2. The column shuffle operation on arrays denoted by ttc, is
defined recursively by, PttcQ = (A 	 XttcB 	 Y) = A(XttcB 	 Y) ∪ B(A 	

XttcY), where P = A 	X and Q = B 	 Y, P,Q ∈ Σ∗∗, A is the first column of the
array P and B is the first column of array Q. The operation is defined only when
the number of rows in P and the number of rows in Q are equal. If A is empty,
then X = P . Likewise, if B is empty, then Y = Q. Also Pttc∧ = ∧ttcP = P .

Similarly, we can define a row shuffle operation.

Definition 2.3. A Context-sensitive matrix grammar (CSMG) (Context-free
matrix grammar (CFMG), Right-linear matrix grammar(RLMG)) is defined by
a 7-tuple G = (Vh, Vv,ΣI ,Σ, S,Rh, Rv), where: Vh is a finite set of horizontal
non-terminals; Vv is a finite set of vertical non-terminals; ΣI ⊆ Vv is a finite set
of intermediates; Σ is a finite set of terminals; S ∈ Vh is a starting symbol ; Rh

is a finite set of horizontal context-sensitive(context-free, right-linear) rules; Rv is
a finite set of vertical right-linear rules.

There are two phases of the derivation of the Siromoney Matrix Grammars. In
the first phase, a horizontal string of intermediate symbols is generated by means
of any type of Chomsky grammar rules in Rh. During the second phase, regarding
each intermediate as a start symbol, vertical generation of the actual picture is
done parallely, by applying Rv. Parallel application ensures that the terminating
rules are all applied simultaneously in every column and that the column grows
only in the downward direction. The language generated by a CSMG(CFMG,
RLG) is called a CSML(CFML, RML). For more information, we can refer to
[15]. We denote the family of Siromoney matrix languages by L(X), where X ∈
{CSML,CFML,RML}.

Definition 2.4. A two-dimensional language is “Tiling Recognizable” (REC)
if it can be obtained as a projection of a local picture language.

We can refer to [4] and [5] for further details about REC languages.

Definition 2.5. Let A =

A1

...
Am

, where Ai = ai1ai2 . . . ain, aij ∈ Σ for all

i = 1, 2, . . . ,m and j = 1, 2, . . . , n, for some m,n ≥ 0. The set of all row-
wise column permutations of A, rwcolperm(A), is defined as rwcolperm(A) ={B1

...
Bm

∣∣∣∣∣Bi = (bi1bi2 . . . bin) ∈ {alph(Ai)}∗ ∀ i = 1, 2, . . . ,m, and (bi1, bi2, . . . , bin)

is a permutation of (ai1, ai2, . . . , ain)

}
. For L ⊆ Σ∗∗, we define rwcolperm(L) =

∪A∈Lrwcolperm(A). The set of all row permutations of A, rowperm(A) is defined

as rowperm(A) =

{B1

...
Bm

∣∣∣∣∣Bi ∈ {alph(A)}∗ ∀ i = 1, 2, . . . ,m, and

TWO-DIMENSIONAL JUMPING FINITE AUTOMATA 109

(B1, B2, . . . , Bm) is a permutation of (A1, A2, . . . , Am)

}
. For L ⊆ Σ∗∗, we define

rowperm(L) = ∪A∈Lrowperm(A).

3. Two-dimensional jumping finite automaton

In this section we introduce a two-dimensional general row jumping finite automa-
ton and explain its working with an example.

Definition 3.1. A two-dimensional general row jumping finite automaton,
a 2-GRJFA for short, is an octuple M = (Q,Q′,Σ, R1, R2, R3, s, F), where,

— Q is the finite set of states;
— Q′ ⊂ Q is a finite set of check and row jump states;
— Σ is an input alphabet;
— R1 ⊆ (Q× Σ∗ ×Q);
— R2 ⊆ (Q× $×Q′) ∪ {r ×�× r|r ∈ Q′}, $,� /∈ Σ;
— R3 ⊆ Q′ ×#×Q,# /∈ Σ;
— s ∈ Q is the initial state;
— F ⊆ Q is the set of final states.
The elements of R = R1∪R2∪R3 are the rules of M and, instead of (p, y, q) ∈ R,

we write py → q ∈ R. The rules in R1 perform normal jumping operation, denoted
by y, the rules in R2 perform normal transitions from left to right, denoted by
→ and the rules in R3 perform row jumping operation, denoted by

y

. The normal
jumping operator is defined as follows: Let Am×n ∈ Σ∗∗ be an input array of

M . Then, Â is considered in the two-dimensional tape and each of its rows is
regarded as a string. Initially, let xyz with x, y, z ∈ Σ∗ be any row of A. Let
py → q ∈ R1 with y ∈ Σ∗, y′ ∈ Σ∗, x, z, x′, z′, x′1, x

′
2, z
′
1, z
′
2 ∈ (Σ ∪ {�})∗ with

| � |c = 1, such that either xz = x′1x
′
2y
′z′ with x′ = x′1 �

|y|c x′2 or xz = x′y′z′1z
′
2

with z′ = z′1 �
|y|c z′2 and |xyz|c = |x′y′z′|c > 0. For all y′, M makes a jump

either left or right from xpyz to x′qy′z′ using the rule py → q ∈ R1, written as
xpyz y x′qy′z′, where y is replaced by �|y|c and is either in x′ or z′. Here � helps
to maintain the length of the row, so that the initial rectangular form of the array
A is maintained. If there is some y′ to which no rule in R1 can be applied, M halts
without accepting the input array A. The normal jumping operator is continually
applied until all the symbols in the current row are completely read and replaced
with �s. When there is no y′ implying that |x|c = |x|�, |z|c = |z|� and M is
in state p reading the symbol y, M moves to state q replacing the symbol y with
�|y|c and jumps to $ at the left end of the row. Now a rule q$→ r ∈ R2 is applied
which allows M to enter check and row jump state r ∈ Q′ on reading $. Now a rule
r�→ r ∈ R2 is continually applied to check whether every symbol in the current
row has been read and replaced with �. After the check, M reads the symbol
#. Now M performs another jump

y

called the row jump. The row jumping
operator

y

is defined as follows: Let X,Z,X ′, Z ′ ∈ Σ∗∗, u′, v′ ∈ Σ∗, u ∈ {�}∗,
r# → p ∈ R, for some p ∈ Q; M makes a row jump either up or down from
X̂

$ur#

Ẑ

to
X̂ ′

$u′pv′#

Ẑ ′
denoted by,

X̂
$ur#

Ẑ

y X̂ ′

$u′pv′#

Ẑ ′
with X	Z = X ′	uv	Z ′,

110 S. JAMES IMMANUEL and D.G. THOMAS

|X|c = |Z|c = |X ′|c = |u′v′|c = |Z ′|c, u = �|X|c . |X|r + |Z|r = |X ′|r + |Z ′|r + 1,
u′v′ is any row of either X or Z. The row u = �|X|c is removed and Z shifts one
row up after the row jump is performed.

A successful computation on an array A by a 2-GRJFA is as follows:
The automaton can start its computation from any symbol on any row of the

input array A of size m × n depending on the symbol that the start state reads
from the given rule R1. Based on R1, the automaton starts its computation on
a row using the binary jumping relation y and it is continually applied until all
the symbols in the entire row have been read and replaced with �. Using the rules
in R2, the automaton checks whether every symbol in the current row is replaced
with �. After the check, the automaton reads # and uses a rule in R3 to performs
the row jump

y

deleting the current row and shifting the remaining array below
it one row up. Now for further computation, the array of size (m − 1) × n is
considered and the binary jumping relation y is applied as before on some other
row of the input array A. The above process is repeated recursively row by row
until all the elements of the array are replaced by �s and the machine enters the
final state. In this case, A is accepted.
Combining the normal jumping operator y, the normal transition→ and the row
jumping operator

y

, we define a complete row jump operator as follows:

Definition 3.2. Let M = (Q,Q′,Σ, R1, R2, R3, s, F) be a 2-GRJFA. Let U ∈

Σ∗∗, with U =

u1
...
um

and each ui = ui1ui2 . . . uin where uif ∈ Σ, ∀ i = 1, 2, . . . ,m

and f = 1, 2, . . . , n. Let us consider some uj = uj1uj2 . . . uj(r−1)ujr . . . ujn and
uk = uk1uk2 . . . uk(t−1)ukt . . . ukn with j 6= k and j, k = 1, 2, . . . ,m along with
some rules sjgujr . . . ujh → sjl ∈ R1, sj(n+1)$ → sj(n+2), sj(n+2)� → sj(n+2) ∈
R2, sj(n+2)# → skg ∈ R3 where sjg, sj(n+1), skg ∈ Q, sj(n+2) ∈ Q′ ∀ g, r, h, l =
1, 2, . . . , n, g 6= l and r ≤ h. We define as,
$uj1uj2 . . . uj(r−1)sjgujr . . . ujn# $uk1uk2 . . . uk(t−1)skgukt . . . ukn# =
$uj1uj2 . . . uj(r−1)sjgujr . . . ujn# y∗ sj(n+1)$�� . . .�# → $sj(n+2)�� . . .�#
→∗ $�� . . .� sj(n+2)#

y

uk1uk2 . . . uk(t−1)skgukt . . . ukn#.

Let
∗

denote the transitive-reflexive closure of . The language accepted by
M , denoted by L(M) is,

L(M) =


U =

u1
u2
...
um

∈ Σ∗∗

∣∣∣∣∣
u1
...
usv

...
um

∗
f, f ∈ F, for some uk = uv, k = 1, 2, . . . ,m


.

Definition 3.3. A transition graph for M = (Q,Q′,Σ, R1, R2, R3, s, F), a 2-
GRJFA denoted as ∆(M) is defined as a labeled directed multi-graph (Q,R =
R1∪R2∪R3), where py → q ∈ R with p, q ∈ Q, y ∈ Σ∗∪{�,#} implies that there
is an edge from p to q labeled by y. If there is a path from s to q in ∆(M), then state
q is reachable; q is terminating if there is a path from q to f ∈ F . We write pY q,
if there is a path from p to q, where for all i = 1, 2, . . . ,m, j = 1, 2, . . . , n, qij ∈ Q,

TWO-DIMENSIONAL JUMPING FINITE AUTOMATA 111

with p = q11, q = q(m+1)n, Y =

Y1
...
Ym

, with Yi = yi1yi2 . . . yin and qijyij → qi(j+1) ∈

R1, qi(n+1)$→ qi(n+2), qi(n+2)�→ qi(n+2) ∈ R2, qi(n+2)#→ q(i+1)1 ∈ R3.

Example 3.4. Let us consider an example for a 2-GRJFA,
M = ({s, p}, {p}, {0, 1}, {s01→ s}, {s$→ p, p�→ p}, {p#→ s}, s, {s})
L(M) = {(01)mn |m,n ≥ 1}.

Working: Consider the array, A =

0 1 0 1 0 1
0 1 0 1 0 1
0 1 0 1 0 1
0 1 0 1 0 1

. The automaton can

start its computation from any symbol on any row depending on the symbol that
the start state reads from the given rule. Say that the automaton starts its com-
putation from the third symbol of the second row, the successive computations
carried out by the automaton to reach a successful computation are as follows:

$ 0 1 0 1 0 1 #
$ 0 1 s0 1 0 1 #
$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #

y

$ 0 1 0 1 0 1 #
$ 0 1 � � s0 1 #
$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #

y

$ 0 1 0 1 0 1 #
$ s0 1 � � � � #
$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #

y

$ 0 1 0 1 0 1 #
s$ � � � � � � #
$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #

→

$ 0 1 0 1 0 1 #
$ p� � � � � � #
$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #

→∗

$ 0 1 0 1 0 1 #
$ � � � � � � p#
$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #

y

$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #
$ 0 1 0 1 s0 1 #

y

$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #
$ s0 1 0 1 � � #

y

$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #
$ � � s0 1 � � #

y

112 S. JAMES IMMANUEL and D.G. THOMAS

$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #
s$ � � � � � � #

→

$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #
$ p� � � � � � #

→∗

$ 0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #
$ � � � � � � p#

y

$ s0 1 0 1 0 1 #
$ 0 1 0 1 0 1 #

y

$ � � 0 1 s0 1 #
$ 0 1 0 1 0 1 #

y

$ � � s0 1 � � #
$ 0 1 0 1 0 1 #

y

s$ � � � � � � #
$ 0 1 0 1 0 1 #

→

$ p� � � � � � #
$ 0 1 0 1 0 1 #

→∗

$ � � � � � � p#
$ 0 1 0 1 0 1 #

y

$ 0 1 s0 1 0 1 #

y

$ s0 1 � � 0 1 #

y

$ � � � � s0 1 #

y

s$ � � � � � � #

→

$ p� � � � � � #

→∗

$ � � � � � � p#

y

s

Here, we observe from the working of M that it can start its computation from
any row of the given input array A, but once it starts computing on a row, it has
to completely read and replace every symbol in that row with � which is followed
by a check that every symbol in that row is replaced with � and only then it is
allowed to perform the row jumping operation to any other row.

Definition 3.5. Let M = (Q,Q′,Σ, R1, R2, R3, s, F) be a 2-GRJFA. M is an
ε-free 2-GRJFA if py → q ∈ R1 implies that |y| ≥ 1. M is of degree n, where
n ≥ 0, if py → q ∈ R1 implies that |y| ≤ n. M is a two-dimensional row jumping
finite automaton, a 2-RJFA for short, if its degree is 1.

Example 3.6. Example for 2-RJFA
M = ({s, p}, {p}, {0, 1}, {s0→ s, s1→ s}, {s$→ p, p�→ p}, {p#→ s}, s, {s})
L(M) = {0, 1}∗∗

TWO-DIMENSIONAL JUMPING FINITE AUTOMATA 113

Working: Consider the input array, A =

1 1 0
0 1 0
0 1 0
1 0 1

. The automaton can start its

computation from any symbol of any row depending on the symbol that the start
state reads from the given rule. If it starts from the first symbol of the first row,
the successive computations are as follows:

$ s1 1 0 #
$ 0 1 0 #
$ 0 1 0 #
$ 1 0 1 #

y

$ � 1 s0 #
$ 0 1 0 #
$ 0 1 0 #
$ 1 0 1 #

y

$ � s1 � #
$ 0 1 0 #
$ 0 1 0 #
$ 1 0 1 #

y

s$ � � � #
$ 0 1 0 #
$ 0 1 0 #
$ 1 0 1 #

→

$ p� � � #
$ 0 1 0 #
$ 0 1 0 #
$ 1 0 1 #

→∗

$ � � � p#
$ 0 1 0 #
$ 0 1 0 #
$ 1 0 1 #

y

$ 0 1 0 #
$ 0 1 0 #
$ 1 s0 1 #

y

$ 0 1 0 #
$ 0 1 0 #
$ 1 � s1 #

y

$ 0 1 0 #
$ 0 1 0 #
$ s1 � � #

y

$ 0 1 0 #
$ 0 1 0 #
s$ � � � #

→

$ 0 1 0 #
$ 0 1 0 #
$ p� � � #

→∗

$ 0 1 0 #
$ 0 1 0 #
$ � � � p#

y

$ 0 s1 0 #
$ 0 1 0 #

y

$ s0 � 0 #
$ 0 1 0 #

y

$ � � s0 #
$ 0 1 0 #

y

s$ � � � #
$ 0 1 0 #

→

$ p� � � #
$ 0 1 0 #

→∗

$ � � � p#
$ 0 1 0 #

y

$ s0 1 0 #

y

$ � s1 0 #

y

$ � � s0 #

y

s$ � � � #

→

$ p� � � #

→∗

$ � � � p#

y

s

114 S. JAMES IMMANUEL and D.G. THOMAS

Example 3.7. An example of a language not accepted by any 2-GRJFA is

L =

X .
X X

,
X .
X .
X X

,
X . .
X X X

,
X . .
X . .
X X X

, . . .


i.e., the token L of all sizes and of all proportions.

4. Some basic properties

In this section we give some basic properties of two-dimensional general row jump-
ing finite automata.

Theorem 4.1. L(2-RJFA) ⊂ L(2-GRJFA).

Proof. L(2-RJFA)⊆ L(2-GRJFA) follows directly from the definition of 2-RJFA.
Also L(2-GRJFA) − L(2-RJFA) 6= ∅, because the language accepted by the
2-GRJFA in example 3.4 is not accepted by any 2-RJFA. �

Theorem 4.2. Let M = (Q,Q′,Σ, R1, R2, R3, s, F) be a 2-GRJFA such that
card(Σ) = 1. Then L(M) is RML.

Proof. The proof is straightforward. �

Theorem 4.3. Let L be an arbitrary array language. Then, L ∈2-RJFA only
if L = rowperm(L) and L = rwcolperm(L).

Proof. Let M = (Q,Q′,Σ, R1, R2, R3, s, F) be a 2-RJFA. Let A ∈ L(M). We
prove that rwcolperm(A) ⊆ L(M). If A = ∧, then rwcolperm(∧) = ∧ ∈ L(M).

We assume that A 6= ∧. Let A =

A1

...
Am

, where Ai = ai1ai2 . . . ain, aij ∈ Σ for

all i = 1, 2, . . . ,m and j = 1, 2, . . . , n, for some m,n ≥ 0. Since A ∈ L(M),

we consider Â and we have, saij1 → sij1 , sij1aij2 → sij2 , . . . , sijn−1
aijn → sijn ∈

R1, sijn$ → sijn+1 , sijn+1� → sijn+1 ∈ R2, sijn+1# → s(i+1)j1 ∈ R3 for all i =
1, 2, . . . ,m where, sl ∈ Q, for all l ∈ {ij1, ij2, . . . , ijn, ijn+1} ∪ {(m+ 1)n1}. Here
(ij1, ij2, . . . , ijn) is a permutation of (i1, i2, . . . , in) and s(m+1)n1

∈ F . However,

this implies that

A1k

...
Amk

∈ L(M), withAik = aik1aik2 . . . aikn where (ik1, ik2, . . . , ikn)

is a permutation of (i1, i2, . . . , in) for all i = 1, 2, . . . ,m. Hence, rwcolperm(A) ⊆
L(M).

Now to prove that rowperm(A) ⊆ L(M), we consider the row jump rules,

s1jn+1#→ s2j1 , s2jn+1#→ s3j1 , . . . , smjn+1#→ s(m+1)j1 ∈ R3.

Here (1jn+1, 2jn+1, . . . ,mjn+1) is a permutation of (1, 2, . . . ,m) and s(m+1)n1
∈ F .

However, this implies that

Ak1

...
Akm

∈ L(M), where (k1, k2, . . . , km) is permutation of

(1, 2, . . . ,m), so rowperm(A) ⊆ L(M). �

TWO-DIMENSIONAL JUMPING FINITE AUTOMATA 115

5. Comparison with Siromoney Matrix Languages

In this section we give a comparison of the family of languages accepted by
2-GRJFA with Siromoney matrix languages. Here we consider the derivation of
a Siromoney matrix grammar, G = (Vh, Vv,ΣI ,Σ, S,Rh, Rv) in a modified form.
Here in the first phase, a vertical string of intermediate symbols is generated by
means of any type of Chomsky grammar rules in Rh. During the second phase,
treating each intermediate as a start symbol, horizontal generation of the actual
picture is done parallely by applying Rv. So, we get the transpositions of original
Siromoney Matrix Languages.

Theorem 5.1. L(RMLT) and L(2-GRJFA) are incomparable.

Proof. To prove: L(2-GRJFA) − L(RMLT) 6= ∅
consider the language,

L =

X ∈ {0, 1}∗∗
∣∣∣∣∣X =

X1

...
Xk

,
where each Xi’s are of size 1× n and
|Xi|0 = |Xi|1,∀ i = 1, 2, . . . , k


This language can be generated by a 2-GRJFA,

M = ({s, r, p}, {p}, {0, 1}, {s0→ r, r1→ s}, {s$→ p, p�→ p}, {p#→ s}, s, {s})
But clearly L(M) /∈ L(RMLT). Hence, L(2-GRJFA) − L(RMLT) 6= ∅
To prove: L(RMLT) − L(2-GRJFA) 6= ∅

consider the language, L =

{
Xn+1

((.)nX)m

∣∣∣∣n,m ≥ 1

}
. L ∈ L(RMLT) because

the language

{
(X(.)n)m
Xn+1

∣∣∣∣n,m ≥ 1

}
is an RML, as can be seen in [15]. However,

this language cannot be generated by any 2-GRJFA. By theorem 4.3, if there
is a 2-GRJFA, M = (Q,Q′,Σ, R1, R2, R3, s, F) such that L(M) = L, and, if

A =
X X X
. . X
. . X

with A ∈ L, then M also accepts 3× 3 arrays like,

. X .
X X X
X . .

,
X X X
. X .
. X .

,
. X .
X . .
X X X

, . . .

But these arrays do not belong to the language L. Hence, there is no 2-GRJFA
that accepts the language L.

Hence, L(RMLT) − L(2-GRJFA) 6= ∅. �

Theorem 5.2. L(CFMLT) and L(2-GRJFA) are incomparable.

Proof. To Prove: L(2-GRJFA) − L(CFMLT) 6= ∅ consider the language

L =

X ∈ {0, 1, 2}∗∗
∣∣∣∣∣X =

X1

...
Xk

,
where each Xi’s are of size 1× n and
|Xi|0 = |Xi|1 = |Xi|2,∀ i = 1, 2, . . . , k

 .

This language can be generated by a 2-GRJFA, M = ({s, r, t, p}, {p}, {0, 1, 2},
{s0→ r, r1→ t, t2→ s}, {s$→ p, s�→ p}, {p#→ s}, s, {s}).

But L(M) /∈ L(CFMLT). Hence, L(2-GRJFA) − L(CFMLT) 6= ∅.

116 S. JAMES IMMANUEL and D.G. THOMAS

To prove: L(CFMLT) − L(2-GRJFA) 6= ∅

consider the language, L =

(X(.)nX)m
Xn+2

(X(.)nX)m

∣∣∣∣n,m ≥ 1

. L ∈ L(CFMLT) because

the language

 X2n+1

((.)nX(.)n)m
X2n+1

∣∣∣∣n,m ≥ 1

 is a CFML, as can be seen in [15]. How-

ever, this language cannot be generated by any 2-GRJFA. By theorem 4.3, if
there is a 2-GRJFA, M = (Q,Q′,Σ, R1, R2, R3, s, F) such that L(M) = L, and

if A =

X . . . X
X . . . X
X X X X X
X . . . X
X . . . X

with A ∈ L, then M also accepts 5 × 5 arrays like,

. X . . X
X . . X .
. X X . .
X . . . X
X X X X X

,

X . X . .
X X X X X
. . X . X
. X . X .
. . X X .

,

X X X X X
. X . . .
. X X . .
X . . X .
. X . X .

, But

these arrays do not belong to the language L. Hence, there is no 2-GRJFA that
accepts the language L.

Hence, L(CFMLT) − L(2-GRJFA) 6= ∅. �

Theorem 5.3. L(CSMLT) and L(2-GRJFA) are incomparable.

Proof. The proof uses the same argument as the proofs of Theorems 5.1 and
5.2 and is, hence, omitted. �

6. Comparison with recognizable picture languages

In this section we give the comparison of the family of languages accepted by
2-GRJFA with recognizable picture languages.

Theorem 6.1. REC and L(2-GRJFA) are incomparable.

Proof. To prove L(2-GRJFA) −REC 6= ∅, consider the language,

L =

X ∈ {0, 1, 2}∗∗
∣∣∣∣∣X =

X1

...
Xk

,
where each Xi’s are of size 1× n and
|Xi|0 = |Xi|1 = |Xi|2,∀ i = 1, 2, . . . , k


This language can be generated by a 2-GRJFA, M = ({s, r, t, p}, {p}, {0, 1, 2},
{s0→ r, r1→ t, t2→ s}, {s$→ p, s�→ p}, {p#→ s}, s, {s}).

Clearly L(M) /∈ REC, we can refer to [4]. Hence, L(2-GRJFA) −REC 6= ∅.
To Prove REC − L(2-GRJFA)6= ∅, let Σ = {a} be a one-letter alphabet and

let L be the language of squares over Σ, that is, L = {(an)m|n = m}. This
language is in REC, as can be seen in [4]. However, this language cannot be
generated by 2-GRJFA. We prove this by contradiction. Assume that there is
a 2-GRJFA, M = (Q,Q′,Σ, R1, R2, R3, s, F) such that L(M) = L. Let A =

TWO-DIMENSIONAL JUMPING FINITE AUTOMATA 117

a a a
a a a
a a a

. Since A ∈ L, when accepting the 3 × 3 array A, using the rules

{sa → s} ∈ R1, {s$ → p, p� → p} ∈ R2, {p# → s} ∈ R3, M also accepts non-

square arrays like
a a a
a a a

,
a a
a a
a a

, . . . which do not belong to the language

L. Hence, we arrive at a contradiction with the assumption that L(M) = L.
Therefore, there is no 2-GRJFA that accepts the language L.

Hence, REC − L(2-GRJFA) 6= ∅. �

7. Closure properties

In this section we discuss some of the closure properties of the family of languages
accepted by 2-GRJFA.

Theorem 7.1. Both L(2-GRJFA) and L(2-RJFA) are closed under union.

Proof. Let us consider 2-GRJFAs, M1 = (Q1, Q
′
1,Σ1, R1, R2, R3, s1, F1) and

M2 = (Q2, Q
′
2,Σ2, R

′
1, R

′
2, R

′
3, s2, F2). Let L(M1) and L(M2) be the language

generated by M1 and M2, respectively. Without loss of generality, we assume that
Q1 ∩Q2 = ∅ and s /∈ (Q1 ∪Q2).

Define the 2-GRJFA, M = (Q1 ∪ Q2 ∪ {s}, Q′1 ∪ Q′2,Σ1 ∪ Σ2, R1 ∪ R′1 ∪ {s →
s1, s→ s2}, R2 ∪R′2, R3 ∪R′3, s, F1 ∪ F2)

Clearly, we can see that, L(M) = L(M1) ∪ L(M2).
If both M1 and M2 are 2-RJFA, then M is also a 2-RJFA. �

Theorem 7.2. Neither L(2-GRJFA) nor L(2-RJFA) is closed under row cate-
nation and column catenation.

Proof. Consider the language L1 = {a}∗∗ and L2 = {b}∗∗. Clearly L1, L2 can
be generated by 2-RJFAs M1 = ({s1, p1}, {p1}, {a}, {s1a→ s1}, {s1$→ p1, p1�→
p1}, {p1# → s1}, s1, {s1}) and M2 = ({s2, p2}, {p2}, {b}, {s2b → s2}, {s2$ →
p2, p2�→ p2}, {p2#→ s2}, s2, {s2}), respectively.
Let LC = L1 	 L2 = {(aim)(bjm)|i, j,m ≥ 0}. This language cannot be generated
by any 2-RJFAs or 2-GRJFAs since the language does not satisfy the condition
LC = rwcolperm(LC) given in theorem 4.3. Therefore, LC /∈ L(2-RJFA) and
LC /∈ L(2-GRJFA).

Hence, L(2-RJFA) and L(2-GRJFA) are not closed under column catenation.

Let LR = L1 	 L2 =

{
(aim)
(bjm)

∣∣∣∣∣i, j,m ≥ 0

}
. This language cannot be generated

by any 2-RJFAs or 2-GRJFAs since the language does not satisfy the condition
LR = rowperm(LR) given in theorem 4.3. Therefore, LR /∈ L(2-RJFA) and
LR /∈ L(2-GRJFA).

Hence, L(2-RJFA) and L(2-GRJFA) are not closed under row catenation. �

Theorem 7.3. L(2-RJFA) is closed under column shuffle only if every row
computation of any 2-RJFA begins with the same start symbol of that respective
2-RJFA.

118 S. JAMES IMMANUEL and D.G. THOMAS

Proof. Let us consider two 2-RJFAs, M1 = (Q1, Q
′
1,Σ1, R1, R2, R3, s1, {s1})

and M2 = (Q2, Q
′
2,Σ2, R

′
1, R

′
2, R

′
3, s2, {s2}) accepting the language L1 and L2

respectively. Let every row computation of M1 begin with s1 i.e., q# → s1 ∈
R3,∀ q ∈ Q′1 and every row computation of M2 begin with s2 i.e., p# → s2 ∈
R′3,∀ p ∈ Q′2. Without loss of generality, we assume thatQ1∩Q2 = ∅. Define the 2-
RJFA, M = (Q1∪Q2, Q

′
2,Σ1∪Σ2, R

′′
1 , R

′′
2 , R

′′
3 , s1, {s2}) where, R′′1 = R1∪R′1∪{r →

s2|r$→ q ∈ R2}, R′′2 = R′2, R′′3 = {p#→ s1|p#→ s2 ∈ R′3}.
To prove that L(M) = L1ttcL2, we observe how M works. On an input array

A ∈ (Σ1 ∪ Σ2)∗∗, M first runs M1 on any row from A. If it ends in r, then using
the rule r → s2 in R′′1 , M runs M2 on the remaining elements of the same row
from A. After replacing every element in the row with �, M enters a check and
jump state in Q′2 after reading $. On reading #, M jumps to another row using
the rule p# → s1 ∈ R′′3 . Then again, M first runs M1 on that row followed by
M2. This procedure is repeated for all the remaining rows and, if M2 ends in the
final state after computing the last remaining row, then M accepts A. Otherwise,
M rejects A. Since, after reading any symbol in a row of an array A, the machine
M can jump anywhere in the same row and the same holds for all such rows of A,
we clearly see that, L(M) = L1ttcL2. �

Theorem 7.4. L(2-RJFA) is closed under row shuffle only if every row compu-
tation of any 2-RJFA begins with the same start symbol of that respective 2-RJFA.

Proof. Let us consider two 2-RJFAs, M1 = (Q1, Q
′
1,Σ1, R1, R2, R3, s1, {s1})

and M2 = (Q2, Q
′
2,Σ2, R

′
1, R

′
2, R

′
3, s2, {s2}) accepting the language L1 and L2,

respectively. Let every row computation of M1 begin with s1 and every row
computation of M2 begin with s2. Without loss of generality, we assume that Q1∩
Q2 = ∅. Define the 2-RJFA, M = (Q1 ∪Q2, Q

′
1 ∪Q′2,Σ1 ∪Σ2, R

′′
1 , R

′′
2 , R

′′
3 , s1 {s2})

where, R′′1 = R1 ∪R′1, R′′2 = R2 ∪R′2, R′′3 = {p#→ s2 | p#→ s1 ∈ R3} ∪ {q#→
s1 | q#→ s2 ∈ R′3}.

To prove that L(M) = L1ttrL2, we observe how M works. On an input array
A ∈ (Σ1 ∪ Σ2)∗∗, M first runs M1 on any row from A and replaces all elements
in that row with � followed by a check. Then, using the rule p#→ s2 ∈ R′′3 , M
jumps to another row and runs M2 replacing all the elements in that row with �
followed by a check. Then, using the rule q#→ s1 ∈ R′′3 , M makes a row jump to
some other row. Thus, M runs M1 on some other row followed by M2 on another
row. This procedure is repeated for all the remaining rows and, if M2 ends in the
final state after computing the last remaining row, then M accepts A. Otherwise,
M rejects A. Since, after reading any symbol in a row of an array A, the machine
M can jump anywhere in the same row and the same holds for all such rows of A,
we clearly see that, L(M) = L1ttrL2. �

Theorem 7.5. L(2-RJFA) is not closed under both row and column Kleene
star and Kleene plus.

Proof. Consider the language, L = {a b , b a}, which is accepted by the
2-RJFA M = ({s, r, f, p}, {p}, {a, b}, {sa→ r, rb→ f}, {f$→ p, p�→ p}, {p#→
f}, s, {f}).

We prove by contradiction that there is no 2-RJFA that accepts L∗ 	 or L+ 	 .
Suppose that there is a 2-RJFA, M = (Q,Q′,Σ, R1, R2, R3, s, {s}) such that

TWO-DIMENSIONAL JUMPING FINITE AUTOMATA 119

L(M) = L∗ 	 . Let A = a b b a . Since A ∈ L∗ 	 , by theorem 4.3, M also

accepts arrays like a a b b , b b a a which are not in L∗ 	 , as L2 	 =

{a b b a , a b a b , b a b a , b a a b}. Therefore, we arrive at
a contradiction.

Hence, L(2-RJFA) is not closed under column Kleene star and Kleene plus.

Consider the language, L =

{
a
b
,
b
a

}
, which is accepted by the 2-RJFA M =

({s, r, t, f, p, q}, {p, q}, {a, b}, {sa → r, tb → f}, {r$ → p, p� → p, f$ → q, q� →
q}, {p#→ t, q#→ f}, s, {f})

We prove by contradiction that there is no 2-RJFA that accepts L∗	 or L+	.
Suppose that there is a 2-RJFA, M = (Q,Q′,Σ, R1, R2, R3, s, {s}) such that

L(M) = L∗	. Let A =

a
b
b
a

. Since A ∈ L∗	, by theorem 4.3, M also accepts

arrays

a
a
b
b

,

b
b
a
a

which are not in L∗	, as L2	 =


a
b
b
a

,

a
b
a
b

,

b
a
b
a

,

b
a
a
b

. Therefore, we

arrive at a contradiction.
Hence, L(2-RJFA) is not closed under row Kleene star and Kleene plus. �

Theorem 7.6. Neither L(2-GRJFA) nor L(2-RJFA) is closed under quarter
turn and transpose.

Proof. Consider the language,

L =

X ∈ {0, 1}
∗∗

∣∣∣∣∣X =

X1

X2

...
Xk

,
where each Xi is of size 1× n and
|Xi|0 = |Xi|1,∀ i = 1, 2, . . . , k

, here

Xi = ai1ai2 . . . ain with aij ∈ {0, 1}∀ j = 1, 2, . . . , n. This language can be gen-
erated by a 2-RJFA, M = ({s, r, p}, {p}, {0, 1}, {s0 → r, r1 → s}, {s$ → p, p� →
p}, {p# → s}, s, {s}). We represent the quarter turn of this language by LQT

and we have, LQT = {X ∈ {0, 1}∗∗|X = XkXk−1 . . . X2X1 , where each Xi is of

size n × 1 and |Xi|0 = |Xi|1,∀ i = 1, 2, . . . , k}, here Xi =

ai1
...
ain

with aij ∈ {0, 1},

for all j = 1, 2, . . . , n. This language cannot be generated by any 2-RJFAs or
2-GRJFAs because the language does not satisfy the conditions given in theorem
4.3. This proves that neither L(2-GRJFA) nor L(2-RJFA) is closed under quarter
turn.

We represent the transpose of the language L by LT and we have, LT = {X ∈
{0, 1}∗∗|X = X1X2 . . . Xk , where each Xi is of size n×1 and |Xi|0 = |Xi|1,∀ i =

1, 2, . . . , k}, here Xi =

ai1
...
ain

with aij ∈ {0, 1}, for all j = 1, 2, . . . , n. By the same

120 S. JAMES IMMANUEL and D.G. THOMAS

argument as before, we show that there is no 2-RJFA or 2-GRJFA to accept LT .
This proves that neither L(2-GRJFA) nor L(2-RJFA) is closed under transpose.

�

Theorem 7.7. Neither L(2-GRJFA) nor L(2-RJFA) is closed under half turn,
reflection on rightmost vertical and reflection on base.

Proof. Let L ∈ L(2-RJFA). Since rwcolperm(A) ⊆ L and rowperm(A) ⊆ L by
theorem 4.3 for all A ∈ L, we clearly see that L(2-RJFA) is closed under half turn,
reflection on rightmost vertical and reflection on base.

Let L ∈ L(2-GRJFA). Let M = (Q,Q′,Σ, R1, R2, R3, s, F) be a 2-GRJFA such
that L(M) = L. We construct a new 2-GRJFA M ′ = (Q,Q′,Σ, R′1, R2, R3, s, F)
where R′1 is defined as follows:

(1) pa→ q ∈ R′1, if pa→ q ∈ R1 where p, q ∈ Q and a ∈ Σ.
(2) panan−1 . . . a2a1 → q ∈ R′1 if pa1a2, . . . an−1an → q ∈ R1 where p, q ∈ Q

and a1, a2, . . . , an ∈ Σ.

We clearly see that L(M ′) is the same language as the reflection of L on the
rightmost vertical. This shows that L(2-GRJFA) is closed under reflection on the
rightmost vertical.

Using a construction similar to that above and by conditions given in theorem
4.3, we can easily prove that L(2-GRJFA) is closed under half turn and reflection
on base. �

8. Decidability properties

In this section, we discuss some of the decidability properties of the family of
languages accepted by 2-GRJFA.

Theorem 8.1. Both finiteness and infiniteness are decidable for L(2-GRJFA).

Proof. Let M = (Q,Q′,Σ, R1, R2, R3, s, F) be a 2-GRJFA. L(M) is infinite if
and only if pY p ∈ ∆(M), where p ∈ Q,Y ∈ Σ∗∗ such that p is both reach-
able and terminating in ∆(M). This check can be done by any graph searching
algorithm. Therefore, the theorem holds. �

Corollary 8.2. Both finiteness and infiniteness are decidable for L(2-RJFA).

Theorem 8.3. The membership problem is decidable for L(2-GRJFA).

Proof. Let M = (Q,Q′,Σ, R1, R2, R3, s, F) be a 2-GRJFA. If A ∈ Σ∗∗, we may
assume M is ∧-free. If A = ∧, then A ∈ L(M) if and only if s ∈ F . So we assume
that A 6= ∧ and A is any m× n array. Set,

Γ =

(A1, A2, . . . , Am)

∣∣∣∣∣Ai = ai1ai2 . . . ain ∈ Σ∗∗, 1 ≤ i ≤ m,
A1

...
Am

= A,m ≥ 1

 ,

Γc =

(B1, B2, . . . , Bm)

∣∣∣∣∣(A1, A2, . . . , Am) ∈ Γ,m ≥ 1,

B1

...
Bm

∈ rwcolperm(A)



TWO-DIMENSIONAL JUMPING FINITE AUTOMATA 121

and

Γr =

(C1, C2, . . . , Cm)

∣∣∣∣∣(A1, A2, . . . , Am) ∈ Γ,m ≥ 1,

C1

...
Cm

∈ rowperm(A)

 .

Now, if there exists (B1, B2, . . . , Bm) ∈ Γc combined with (C1, C2, . . . , Cm) ∈ Γr

and qi1, qi2, . . . , qin, qi(n+1), qi(n+2), q(m+1)1 ∈ Q, for i = 1, 2, . . . ,m, 1 ≤ n ≤
|A|c such that s = q11, q(m+1)1 ∈ F and qijaij → qi(j+1) ∈ R1, for all i =
1, 2, . . . ,m, j = 1, 2, . . . , n and qi(n+1)$ → qi(n+2), qi(n+2)� → qi(n+2) ∈ R2,
qi(n+2)# → q(i+1)1 ∈ R3, then A ∈ L(M), otherwise A /∈ L(M). Since Q,Γc

and Γr are finite, this check can be done in a finite time. �

Corollary 8.4. The membership problem is decidable for L(2-RJFA).

Theorem 8.5. The emptiness problem is decidable for L(2-GRJFA).

Proof. Let M = (Q,Q′,Σ, R1, R2, R3, s, F) be a 2-GRJFA. L(M) is empty if
and only if no f ∈ F is reachable in ∆(M). This check can be done by any graph
searching algorithm. Hence the theorem holds. �

Corollary 8.6. The emptiness problem is decidable for L(2-RJFA).

9. Conclusion

In this paper we have introduced two-dimensional jumping finite automata to
accept rectangular arrays of languages and have also investigated some of their
properties. We have discussed the closure properties of the family of languages
accepted by these automata. We have compared the family of languages accepted
by these automata with the family of Siromoney matrix languages and REC lan-
guages. We have also discussed some of their decidability properties (emptiness,
membership, finiteness and infiniteness). We can exhibit more comparison results
for the family of languages accepted by these new automata and study their appli-
cations and various other properties. By restricting the movement of the jumps,
we can bring out many variants of two-dimensional jumping finite automata us-
ing only left jump, right jump, up row jump, down row jump, left and up row
jump, left and down row jump, right and up row jump, right and down row jump,
and can examine their acceptance power. We can also consider the impact on
these automata by using various row start fixed configurations for beginning the
computation in each row of the input array, that is, an automaton can start its
computation from the beginning, end or anywhere in each row of the input array.
By combining the restricted movement of jumps with the various row start con-
figurations, we can also obtain much more variants of these automata and their
power of acceptance can also be examined.

References

[1] A. Meduna and Peter Zemek, Jumping finite automata, Int. J. Found. Comput. Sci. 24

(2012), 1555–1578.

[2] A. Meduna, Automata and Languages: Theory and Applications, Springer, 2000.

122 S. JAMES IMMANUEL and D.G. THOMAS

[3] M. Blum and C. Hewitt, Automata on a 2-dimensional tape, in: SWAT 1967, 8th Annual

Symposium on Switching and Automata Theory, 1967, 155–160.
[4] D. Giammarresi and A. Restivo, Two-dimensional languages, Handbook of formal languages,

in: G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages 3, 1997, 215–267.
[5] D. Giammarresi and A. Restivo, Recognizable picture languages, Int. J. Pattern Recogn. 6

(1992), 241–256.

[6] K. Inoue and I. Takanami, A survey of two-dimensional automata theory, Inf. Sci. 55 (1991),
99–121.

[7] S. James Immanuel and D. Gnanaraj Thomas, Extension of jumping finite automata to two

dimensional languages, in: Proceedings of IWCIA 2015, Methods and applications in Image
Analysis, RPS Singapore, 2015, 1–16.

[8] K. Kamala and R. Siromoney, Array automata and operations on array languages, Int.

J. Computer Math., Sect A 4 (1974), 3–30.
[9] V. Lonati and M. Pradella, Picture recognizability with automata based on Wang tiles, in:

J. van Leeuwen at al. (eds), SOFSEM 2010: Theory and Practice of Computer Science,

Lecture Notes in Computer Science 5901, Springer, 2010, 576–587.
[10] M. Pradella, A. Cherubini and S. Crespi Reghizzi, A unifying approach to picture grammars,

Inform. Comput. 209 (2011), 1246–1267.

[11] A. Rosenfeld, Picture Languages: Formal Models for Picture Recognition, Academic Press,
1979.

[12] A. Rosenfeld and R. Siromoney, Picture languages–a survey, Languages of Design 1 (1993),
229–245.

[13] G. Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages 1–3, Springer, 1997.

[14] A. Salomaa, Computation and Automata, Cambridge University Press, 1985.
[15] G. Siromoney, R. Siromoney and K. Krithivasan, Abstract families of matrices and picture

languages, Comput. Graphics Image Process. 1 (1972), 284–307.

[16] R. Siromoney, Advances in array languages, in: Ehrig et al. (eds): Graph Grammars and
Their Applications to Computer Science, Lecture Notes in Computer Science 291, Springer,

Berlin, 1987, 549–563.

[17] G. Siromoney, R. Siromoney and K. Krithivasan, Picture languages with array rewriting
rules, Inform. and Control 22 (1973), 447–470.

[18] R. Siromoney, K. G. Subramanian and K. Rangarajan, Parallel/sequential rectangular ar-

rays with tables, Int. J. Computer Math. 6 (1977), 143–158.
[19] P. S. Wang, Array Grammars, Patterns and Recognizers, Series in Computer Science 18,

World Scientific, 1989.
[20] P. S. Wang, Sequential/parallel matrix array languages, J. Cybern. 5 (1975), 19–36.

[21] P. S. Wang, Hierarchical structures and complexities of isometric patterns, IEEE Trans.
Pattern Anal. Mach. Intell. 5 (1983), 92–99.

S. James Immanuel, Department of Mathematics, Madras Christian College, Tambaram,
Chennai – 600 059, India
e-mail : james imch@yahoo.co.in

D. G. Thomas, Department of Mathematics, Madras Christian College, Tambaram, Chennai

– 600 059, India

e-mail : dgthomasmcc@yahoo.com

