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Summary

The hydrodynamic impact due to a two-dimensional (2D) liquid column or a 2D liquid droplet
hitting on a solid wedge is analysed. The problem is solved using the complex velocity potential
together with the boundary element method. A stretched coordinate system is used, which
is defined through the ratio of the normal Cartesian coordinate system to an appropriately
chosen time-varying length scale. Numerical simulations are first made for impact by a liquid
wedge. The results from the time-domain method are found to be in a good agreement with
the similarity solution. Simulations are also made for impact by an elliptic droplet. A condition
for bisection of the droplet is introduced, which is found to provide stable and converged results.

1. Introduction

Fluid–structure collision at high speed can be found in many engineering applications. Well-known
examples include green water on a ship deck, slamming, wave impact on offshore platforms and the
coastline, as well as impact of super-cooled large droplets and ice lumps in the aeronautical setting,
and applications in sports. An extreme example is the impact caused by a tsunami, which can create
large-scale devastation.

A solid wedge is often used in mathematical and numerical modelling for impact, especially in
the context of water entry. Typical examples include a rigid wedge entering water at constant speed.
This problem was solved by Dobrovol’skaya (1) based on the self-similar method and by Zhao and
Faltinsen (2) based on the time-domain method. Luet al. (3) considered a similar case with an
elastic wedge. The fully nonlinear coupling between the fluid flow and the wedge deflection was
tackled through a semi-implicit scheme for the Bernoulli equation. Wuet al. (4) considered the
water entry problem of a rigid wedge in free fall motion. The mutual dependence between the body
acceleration and the fluid flow was decoupled through the use of an auxiliary function (5). More
recently, Wu (6) considered the water entry problem of rigid twin wedges at constant speed through
a three-stage approach. A closely related problem is the impact by a liquid wedge on a solid wall,
which was solved based on the self-similar method by Cumberbatch (7).

A common feature in the above problems is that the liquid has a flat surface. In many other cases,
however, such as impact by a steep water wave or by a liquid droplet on a structure, the liquid surface
has curvature. A problem of this kind was solved by Wu (8) when he considered liquid column with
curved surface hitting on a flat rigid surface. A significant point noticed by him was that the choice of
the length scale used for the stretched coordinate system was crucial in the numerical solution.
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498 G. X. WU

A similar problem was solved analytically by Howisonet al. (9) and Purvis and Smith (10) when
they used the small time expansion method and considered impact of a liquid droplet on a flat
surface covered by a thin layer of fluid.

In this work, we shall consider the problem of impact by a liquid with a curved surface on a
rigid wedge. As it has been pointed out (4, 6, 8), a unique feature of this fluid–structure impact
problem is that the collision usually starts from a single contact point. At the initial stage of the
impact, the significant effect of the impact on the fluid flow will be confined in a small region near
the contact point. Within this region, the physical parameters, including velocity and pressure, can
change rapidly. An ideal approach for this kind of problem is to use a stretched coordinate system
(ξ, η), defined through the ratio of the Cartesian system(x, y) over a time-dependent length scale
s(t), or (ξ, η) = (x/s, y/s). This method was used in (4, 6, 8), and it was one of the major reasons
for the success of those analyses. A common feature ofs(t) in these applications is that it is a
monotonic function oft , and it has to be suitably chosen for each problem. Here, we will also
choose a monotonic function for the length scale but with an upper limits0 based ons0/d � 0,
whered is the typical length scale of the problem, such as the size of the droplet. This means if
s(t) > s0 when t > t0, we will simply takes(t) = s0. One reason for this choice is that when
the length scale is not a small quantity, the distinction between(ξ, η) and(x, y) diminishes and a
time-independent length scale will make the analysis simpler. Another reason is that when a droplet
hits a wedge, one can expect that it will be bisected eventually. When that happens, the advantage
of a time-dependent stretched system disappears.

In the following sections, we will first outline the mathematical equations and the numerical
method. This is followed by the numerical results. The first example considered is the collision
between a solid wedge and a liquid wedge. The flow in this case is self-similar. This allows us to
compare the numerical results from the similarity solution and the time-domain solution. We then
consider the impact of a liquid droplet of elliptical shape on the wedge. The numerical simulation
is made over a sufficiently long period that covers the bisection of the droplet.

2. Governing equations and numerical procedure

We consider the hydrodynamic problem of a liquid column or a liquid droplet moving towards a
solid wedge with speed−U . This is dynamically equivalent to the problem of a wedge moving with
speedU towards the stationary liquid, as shown in Fig.1. A Cartesian coordinate system(O, x, y)
is defined in whichx is in the direction of motion and the origin is located at the initial contact point

Fig. 1 Sketch of collision between a solid wedge and a two-dimensional liquid column
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LIQUID COLUMN AND LIQUID DROPLET IMPACT 499

during the impact. The fluid is assumed to be incompressible and inviscid, and the flow is assumed
to be irrotational. A velocity potentialφ can then be introduced, which satisfies

∇2φ = 0 (2.1)

in the fluid domainR. On the body surfaceS0, we have

∂φ

∂n
= Unx,

wheren = (nx, ny) is the normal vector of the body surface pointing out of the fluid domain. The
Lagrangian form of the kinematic and dynamic conditions on the free surfaceSF or y = ζ can be
written as

dx

dt
=
∂φ

∂x
,

dy

dt
=
∂φ

∂y
, (2.2)

dφ

dt
=
∂φ

∂t
+ ∇φ ∙ ∇φ =

1

2
∇φ ∙ ∇φ. (2.3)

Without loss of generality (see, for example, (8, Conclusions)), we can assume that both the solid
surface and the liquid is symmetric abouty = 0. Thus, we have∂φ/∂y = 0 on y = 0. Furthermore
at the moment of contactt = 0, the shape of the liquid is assumed asy = f1(x), x > 0, and that
of the solid face is

y = f2(x) = −
x

tanβ
, x 6 0,

where f1(x) is single valued andβ is the deadrise angle as shown in Fig.1.
When a time-dependent length scales is chosen, we can write

φ(x, y, t) = Usϕ(ξ, η, t),

whereξ = x/s andη = y/s. Equation (2.1) obviously has the same form in the stretched system,
while (2.2) and (2.3) become

d(sξ)

dt
= U

∂ϕ

∂ξ
,

d(sη)

dt
= U

∂ϕ

∂η
, (2.4)

d(sϕ)

dt
=

U

2
(ϕ2
ξ + ϕ2

η). (2.5)

Similarly, the undisturbed liquid surface and the body surface become

η1 =
1

s
f1(sξ), η2 =

1

s
f2(sξ − Ut).

To solve the above velocity potential problem, it is convenient to adopt the complex potential
w = ϕ + iψ , whereψ is the stream function. The method has been previously used in many
free-surface-related problems (4 to 6, 8, 11 to 13). It is based on Cauchy’s theorem which gives

∮
w

z − z0
dz = 0, (2.6)
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500 G. X. WU

wherez = ξ + iη andz0 is a point outside the fluid domainR. The integration in (2.6) is along
the fluid boundary. On the fluid boundary, we divide the surface into segments withn nodes. The
complex function can be written in terms of the interpolation function

w =
n∑

j =1

w j Nj (z), (2.7)

wherew j is the value of the complex potential on nodej . When linear interpolation is used, we
have

Nj (z) =






(z − zj +))/(zj − zj +1), z ∈ (zj , zj +1),

(z − zj −1)/(zj − zj −1), z ∈ (zj −1, zj ),

0, z /∈ (zj −1, zj +1).

(2.8)

Substituting (2.7) and (2.8) into (2.6), lettingz0 approach nodezk and using the boundary condi-
tions, we have

n∑

j =1

Akjϕ j | j ∈S0+SC + i
n∑

j =1

Akjϕ j | j ∈SF = −
n∑

j =1

Akjϕ j | j ∈SF − i
n∑

j =1

Akjϕ j | j ∈S0+SC, (2.9)

where

Akj =
zk − zj −1

zj − zj −1
ln

zj − zk

zj −1 − zk
+

zk − zj +1

zj − zj +1
ln

zj +1 − zk

zj − zk
,

in which the two singularities whenk = j on the right-hand side cancel each other.
In (2.9), the terms on the right-hand side are known from the boundary conditions, while the terms

on the left are unknown. At the intersection of the free surface and the body surface in particular,
both the stream function and the potential are known, and they are both moved to the right-hand
side of the equation. In the equationSC is a control surface far away from the solid boundary.

A common feature during the fluid–structure impact is the development of jet. This is a thin layer
of fluid along the body surface, within which the fluid can move very fast. To capture the flow
accurately within the jet, elements used there must be small enough, which can increase the CPU
and memory requirement dramatically. Also whenzk is on one side of the jet and is close to element
(zj , zj +1) on the other side of the jet, an ill-conditioned matrix can be created. This can increase the
number of iterations significantly when the matrix equation is solved. Thus, we use the following
procedure to deal with the jet. Assuming element(zk, zk+1) is on the free surface of the jet, we have

η = ηk +
ηk+1 − ηk

ξk+1 − ξk
(ξ − ξk)

along the free surface of this element. We take a line from(ξk, ηk), which is perpendicular to the
body surface and intersects the body surface through element(zj , zj +1). Because the jet is very
thin, we can write the potential as

ϕ = A + Bξ + Cη, (2.10)

corresponding to element(zk, zk+1). The free surface boundary condition then gives

ϕk = A + Bξk + Cηk, ϕk+1 = A + Bξk+1 + Cηk+1,
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LIQUID COLUMN AND LIQUID DROPLET IMPACT 501

and the body surface boundary condition gives

−B(η j +1 − η j )+ C(ξ j +1 − ξ j ) = −(η j +1 − η j ).

Thus, we have

B =
(ϕk+1 − ϕk)(ξ j +1 − ξ j )+ (ηk+1 − ηk)(η j +1 − η j )

(ξk+1 − ξk)(ξ j +1 − ξ j )+ (ηk+1 − ηk)(η j +1 − η j )
,

C =
(ϕk+1 − ϕk)(η j +1 − η j )− (η j +1 − η j )(ηk+1 − ηk)

(ξk+1 − ξk)(ξ j +1 − ξ j )+ (ηk+1 − ηk)(η j +1 − η j )
.

Corresponding to (2.10), we can write

ψ = D − Cξ + Bη,

in which D can be obtained from

D = ψ j + Cξ j − Bη j

on the body surface. We then obtain on the free surface

ψk = D − Cξk + Bηk.

As a result, both the potential and stream function are known on nodezk, and they can both be
moved to the right-hand side of (2.9).

We then draw a line from nodezj in the normal direction of the body surface. Assume that this
line intersects the free surface atzs, where the potentialϕs can be found through the free surface
boundary condition. Using the body surface boundary condition, we have

ϕ j = ϕs +
√
(xs − xj )2 + (ys − yj )2

∂ϕ j

∂n
. (2.11)

This means that both the potential and the stream function on nodej become known and they can
be moved to the right-hand side of (2.9). The procedure above shows that there will be no unknowns
on both sides of the jet. Thus, the existence of the jet will not increase the scale of the computation
significantly.

When the solution of (2.9) has been found, the pressure can in theory be obtained from the
Bernoulli equation

p = −ρφt −
1

2
ρ(φ2

x + φ2
y).

The difficulty is thatφt is in fact still not known directly. It nevertheless is another harmonic function
as it satisfies Laplace’s equation. On the free surface,p = 0 gives

φt = −
1

2
(φ2

x + φ2
y). (2.12)
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502 G. X. WU

On the body surface, we have (14)

∂φt

∂n
= −U

∂φx

∂n
. (2.13)

To solve the boundary-value problem forφt the stretched coordinate system can also be used. In
fact, we can writeφt = U2χ(ξ, η, t). Equations (2.12) and (2.13) then become

χ = −
1

2
(ϕ2
ξ + ϕ2

η),

∂χ

∂n
= −

∂ϕξ

∂n
, (2.14)

respectively. Similar to the procedure used forϕ, we can define a complex potentialw = χ + iω
and rewrite the boundary condition on the body surface in (2.14) as

ω = ϕη.

This complex potential can then be solved in the exactly same way as that forϕ + iψ .
To treatχ in the jet, we can use the normal derivative of the pressure on the body surface. We

have
1

ρ

∂p

∂n
= −

∂φt

∂n
− φx

∂φx

∂n
− φy

∂φy

∂n
.

Since f2x = −nx/ny, this equation becomes

1

ρ

∂p

∂n
= ny[U (− f2xφxx + φxy)− φx(−φxx f2x + φxy)− φy(−φxy f2x + φyy)]

= ny[φxx(−U f2x + φx f2x + φy)+ φxy(U − φx + φy f2x). (2.15)

The body surface boundary condition onφ can be written as

φy = (φx − U ) f2x. (2.16)

Differentiating this equation with respect tox along the body surface, we obtain

φxy(1 − f 2
2x) = (φx − U ) f2xx + 2φxx f2x. (2.17)

Substituting (2.16) and (2.17) into (2.15), we have

1

ρ

∂p

∂n
= −(φx − U )2ny f2xx.

It is important to note that this equation has been derived for general cases. Thus, it is valid even
for a solid body of curvature. For a wedge, we havef2xx = 0 and therefore∂p/∂n = 0. In a way
similar to that in (2.11) we can then write

pj = ps.
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LIQUID COLUMN AND LIQUID DROPLET IMPACT 503

Sinceps = 0 on the free surface, we obtain

∂φ j

∂t
= −

1

2
∇φ j ∙ ∇φ j .

This gives

χ j = −
1

2
∇ϕ j ∙ ∇ϕ j (2.18)

on the body surface attached to the jet. On the free surface of the jet, we use an equation similar to
(2.11) to obtain

ωs = ω j −
√
(xs − xj )2 + (ys − yj )2

∂ω j

∂n

= ω j −
√
(xs − xj )2 + (ys − yj )

∂χ j

∂s
,

where the partial derivative ofχ is taken along the body surface based on (2.18), or along the
direction obtained by rotating the normal of the surface 90 degrees clockwise.

Onceχ is found, the force F on the wedge can be found from

F = −ρ
∫

S0

(
φt + 1

2∇φ ∙ ∇φ
)

nxdS|(x,y)

= ρU2s
∫

S0

(
χ + 1

2∇ϕ ∙ ∇ϕ
)

nξdS|(ξ,η).

3. Numerical results

The boundary of the fluid domain in the stretched coordinate system is first divided into small
panels. The problem is then solved based on the procedure described in section 2. Time-stepping
method based on (2.4) and (2.5) is used to follow the variation of the wetted surface of the wedge
and the deformation of the free surface. When the neighbouring nodes become too close or too far
apart, regridding is applied and interpolation is used to obtain results on new nodes from old ones.
The sizes of panels and the time steps have been reduced systematically until the convergence of
the pressure and the free surface profile have been achieved.

3.1 Impact by a liquid wedge on a solid wedge

We first consider the case in which the solid wedge collides with a liquid wedge. The length scale for
the stretched coordinate system is chosen ass = Ut . This problem is self-similar, which means that
ϕ is not a function oft in the stretched coordinate system. The similarity solution can be obtained
through a numerical procedure in (4, 6, 8) and the results are used below for comparison with the
time-domain solution.

At the moment of impact, the liquid surface is defined as

y = f1(x) = x tanγ.
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504 G. X. WU

The time marching can be achieved throughs if we rewrite (2.4) and (2.5) as

d(sξ)

ds
=
∂ϕ

∂ξ
,

d(sη)

ds
=
∂ϕ

∂η
,

d(sϕ)

ds
=

1

2
(ϕ2
ξ + ϕ2

η).

Three cases withβ = 45◦, 30◦, 10◦ (γ = 90◦ − β), respectively, are considered. The initials
is taken as 10−3 and the time-domain solution given in Figs2 to 4 corresponding tos = 1. It can
be seen that in all these three cases, the results from the similarity solution and the time-domain
solution are in good agreement. The disturbance to the liquid surface profile is mainly confined to
an area near the body. Whenβ is small, a jet can be developed along the body surface. The pressure,
which is non-dimensionalized byρU2, increases significantly near the jet then drops sharply to the
ambient pressure. This is similar to the results when a wedge enters a flat liquid surface (4) and
when a liquid wedge hits a flat rigid surface (8).

3.2 Impact by a liquid droplet on the solid wedge

We next consider the case in which the solid wedge collides with an elliptical liquid droplet. At the
moment of impact, the liquid surface is defined as

(x − a)2

a2 +
y2

b2 = 1.

If we consider only the upper half withy > 0, this equation can be written as

y = f1(x) = λ
√

2ax − x2,

whereλ = b/a. At time t , we then usef1(xs) = f2(xs − Ut) to obtain

xs =
Ut + aλ2 tan2 β − λ tanβ

√
a2λ2 tan2 β + (2a − Ut)Ut

1 + λ2 tan2 β
,

ys =
(Ut − a)λ2 tan2 β + λ tanβ

√
a2λ2 tan2 β + (2a − Ut)Ut

tanβ(1 + λ2 tan2 β)
.

As discussed by Wu (8), the choice ofs = Ut for this problem would lead to an infinitely
large wetted surface in the stretched coordinate system. It would therefore be appropriate to choose
s = ys. If we introduce a non-dimensional parameter

r =
s

a
=
(τ − 1)λ2 tan2 β + λ tanβ

√
λ2 tan2 β + (2 − τ)τ

tanβ(1 + λ2 tan2 β)
, (3.1)

whereτ = Ut/a, the equations for the surfaces of the liquid and the wedge become

η =
λ

r

√
2r ξ − (r ξ)2,

η = −
ξ − τ/r

tanβ
.
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LIQUID COLUMN AND LIQUID DROPLET IMPACT 505

Fig. 2 (a) Pressure distribution along the wedge surface (β = π/4, γ = π/4). (b) Profile of the liquid surface
(β = π/4, γ = π/4)

The free surface boundary condition in (2.4) and (2.5) can now be written as

d(r ξ)

dτ
=
∂ϕ

∂ξ
,

d(r η)

dτ
=
∂ϕ

∂η
,

d(rϕ)

dτ
=

1

2
(ϕ2
ξ + ϕ2

η).
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506 G. X. WU

Fig. 3 (a) Pressure distribution along the wedge surface (β = π/6, γ = π/3). (b) Profile of the liquid surface
(β = π/6, γ = π/3)

It should be noticed thatr in (3.1) increases initially withτ . When it reachesr = λ, it will then
decrease. This corresponds toτ = λ tanβ + 1. Thus, it would be more appropriate to define

r =

{
ys/a, τ 6 λ tanβ + 1,

λ, τ > λ tanβ + 1.
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LIQUID COLUMN AND LIQUID DROPLET IMPACT 507

Fig. 4 (a) Pressure distribution along the wedge surface (β = π/18, γ = 4π/9). (b) Profile of the liquid
surface (β = π/18, γ = 4π/9)

Simulation is first made for the case withβ = π/4 andλ = 1. When the tip of the wedge
penetrates the droplet surface at the beginning of the impact, the computational domain covers
only small section of the liquid as the disturbance is confined in a small region. Whenr increases,
the computational domain then covers the whole droplet. Asr increases further, the tip of the solid
wedge becomes closer and closer to the other side of the liquid surface. An assumption is then made
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508 G. X. WU

Fig. 5 The surface of a liquid droplet at different time steps after impact (λ = 1)

Fig. 6 Pressure distribution over the wedge surface at different time steps (λ = 1)
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LIQUID COLUMN AND LIQUID DROPLET IMPACT 509

Fig. 7 Force history on the wedge

Fig. 8 Area of a liquid droplet after impact
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510 G. X. WU

that when the distance between the tip of the wedge and the surface of the liquid1d is sufficiently
small, the element node on the free surface is moved to the tip of the wedge. This node will then
slide along the wedge surface in the subsequent simulation.

Figure5 gives the shape of the liquid surface at three different time steps withλ = 1. It is assumed
when1d is one per cent of the element size, the bisection of the droplet occurs. This corresponds
to τ ≈ 3∙53. Obviously, when a different value is chosen as a condition for the bisection,τ will
be different. However, this does not have significance on the numerical results as determined from
the liquid surface profile and pressure distribution. Figure6 gives the pressure distribution non-
dimensionalized byρU2 over the wedge surface at the same time steps as those in Fig.5. This
shows that the pressure tends to zero asτ increases. This is of course expected. In fact, when the
liquid droplet moves towards a wedge, it has limited amount of momentum. When it hits the wedge,
its momentum will decline due to the pressure applied by the wedge on the droplet. If the pressure
was persistent and did not decay, the momentum in the droplet would become negative.

As τ increases, one may speculate that there could be three possibilities for the motion of the
bisected droplet:

(1) there is no motion relative to the wedge;
(2) liquid will slide along the wedge while its shape remains unchanged; and
(3) the droplet will become thinner and thinner and spread more and more widely over the wedge

surface. From the result in Fig.5, it seems that (2.3) is most likely to happen.

Figure7 gives the force history on the wedge asβ = π/4, which is non-dimensionalized by
ρU2a, due to impact by elliptic droplets withλ = 1, 0∙5, 2, respectively. It shows that in these three
cases, the force will initially increase with time. When it reaches a peak, it will then decline and tend
to zero. When the liquid is longer and thinner, the force is smaller. Otherwise the force is bigger.

To further check the accuracy of the results, Fig.8 gives area of the droplet. It should remain a
constant and equal toλπ . In the figure, curves start at the instant when the whole liquid domain
has been included in the computational domain. It can be seen that the mass conservation law is
maintained to a high degree of accuracy during the entire simulation. In fact, the largest errors
throughout the simulations are 0.78 per cent, 0.56 per cent and 0.96 per cent atλ = 1, 0∙5 and 2,
respectively.

4. Conclusions

The impact problem by a liquid column and a liquid droplet on a rigid wall has been solved based
on the velocity potential theory. When a thin jet is developed, it is treated through a local linear
approximation for the potential. As a result, both the velocity potential and the stream function are
known within the jet. Therefore, the presence of the jet does not lead to any major difficulty in
the computation or any significant increase of CPU. An equation has been derived for the normal
derivative of the pressure on the body surface, which becomes zero when the body surface has no
curvature. A condition for bisection of a droplet by the wedge has been introduced, which seems to
be rational and provides converged results.
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