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The Schwinger model is considered in the LandaJl-gauge formalism of quantum electro
dynamics. This model can be solved exactly on the assumption of no radiative corrections 
to the anomaly. It is found that the photon obtains a non-zero mass through the Higgs 
mechanism. In this case, the would-be Nambu-Goldstone boson is an associated boson 

which is constructed from a pair of two-component massless fermions. This would-be 
Nambu-Goldstone boson appears as a result of the spontaneous breaking of the gauge 
invariance of the first kind, and it becomes unphysical through the Higgs mechanism. 

However, as all the fermions themselves decouple from photons, they cannot appear as real 
particles in our world. 

§ 1 .. Introduction 

Recently several ideas are proposed to explain why the constituent part.icles 

do not appear as real particles. The most fantastic idea is infrared shielding, 

i.e.; if there were an extremely long range force, it would bind the constituents 

and they could appear not as free particles but only as' bound states. In this 

case, we can hope that the Yang-Mills fields play a role of a long-:range force 

and also that the symmetry breaking occurs because such a dynami<;al system 

is very unstable owing to the existence of long range correlations. Then we 

expect that the· gauge fields get· a mass through the Higgs mechanism and the 

constituent particles cannot app.ear since the Nambu-Goldstone boson becomes 

unphysical through the Higgs mechanism. 

In order to analyze the conjecture, we consider the two-dimensional massless 

QED (the Schwinger model). We can solve this model exactly and show explic

itly that the gauge invariance of the first kind is broken spontaneously, and the 

Nambu-Goldstone boson appears as a bound state of the massless free fermions. 

This paper is organized as follows: In § 2, we· consider the Schwinger 

model in the Landau gauge. In § 3, we solve the Dirac equation for the electron 

iri the gauge field. In § 4, we reconstruct the electromagnetic current from the 

fermion wave functions obtained in § 3. .This technique is due to Lowenstein. 

In § 5, we construct the associated boson from the massless free fermions. This 

is just the Nambu-Goldstone boson and appears as a bound state of the fermions. 

In § 6, we discuss the construction of the Hilbert space and the representation 
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818 K. R. Ito 

of the field operators. , We prove that the charge Q cannot annihilate the vacu
um, that is, spontaneous symmetry breaking occurs. Conclusions are given in § 7. 

§ 2. Two-dimensional QED 

In this section, we deal with the two-dimensional quantum electrodynamics 
(QED) in the Landau gauge. The Lagrangian is 

(2·1) 

where 7J! is a massless fermion field operator, A" the photon field operator and 
B the Lagrange multiplier field operator.1l The canonical variables are obtained 
in the usual manner, and we see B is a zero norm field operator. We must 
consider the theory in the indefinite-metric Hilbert space. The S-matrix has the 
usual properties when restricted to the physical subspace Hphys, which is defin
ed as follows: 

I phys) IS in Hphys if and only if B<+l (x) I phys) = 0 . (2·2) 

This is always possible because B satisfies a free field equation. 
The commutation relations which we will use are as follows: (These rela

tions can be derived from the canonical commutation relations. Details are 
shown in Ref. 1).) 

[A"(x), B(y)] = -ia/D(x-y), (2·3) 

[B(x), B(y)] =0, (2·4) 

[B(x), J"(y)] =0, (2·5) 

where D(x) IS formally given by 

D(x) = -i Jd 2p o(P2)e(P0)exp(-ipx) 
. (2n) 

= :_ _!_ e (x0) e (x2). 
2 

The equations of motion are 

DxA"(x) -8/B(x) =eJ"(x), 

(iy"a"- er" A}' (x)) 7J!(x) = 0. 

(2·6) 

(2·7) 

(2·8) 

The vanat10n with respect to B leads to the following equation which ensures 
the Landau gauge for the photon; 

a"A"=O. (2·9) 

We also have the conservation of the current from the gauge invariance 

a"J"=O' (2·10) 
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Two-Dimensional Massless Quantum Electrodynamics 

then, (2 · 7) together with (2 · 9) and (2 -10) implies 

DxB(x) =0. 

819 

(2-11) 

Now, the reason why the two-dimensional massless QED can be solved ex
actly is that there are no radiative corrections to the vertex part. This fact is 
easily confirmed since 

rl' (product of the ,odd number of r matrices) r I'= 0. 

Then the one-particle-irreducible part of the photon self-energy nl', (q) IS given 
by the only one-fermion-loop diagram. As a result, we obtain 

(2 -12) 

' This contribution is just that of the massless boson. This massless spectrum is 
to give the gauge field a mass. As we will prove later, the gauge invariance 
of the first kind is broken spontaneously; therefore this contribution is to be 
considered as that of the Nambu-Goldstone boson. 

There are, however, no other contributions to the photon spectral function 
m this model, whence we can obtain the complete Green's function of the photon 
as follows: 

<T (AI' (x) A, (y)) )o 

-. sd2p ( . ( )) ( + pl'p, ) 1 -z (2 )2 exp -zp x-y -gl'' -2--- 2 2 . ' 
n p +zs p -m +zs 

(2 -13) 

where 

m=e/..J7i. (2-14) 

Constructing the theory on the Landau gauge, we obtain the Green's function as 
that of the R-gauge massive vector particle.2l The most important assumption 
is that AI' is a free field operator because the two-point Green's function is that 
of free field operator. In general, this is not necessarily true since the indefinite 
metric is used.3l If there is no indefinite metric, we can easily prove that such
a field operator must be free, using the Federbush-Johnson theorem. In order to 
check the assumption, we must investigate all the photon Green's functions, and we 
will see the following probable counterexample (Fig. 1). 

There may be other diagrams to cancel this contribu- A. 

tion. Actually a very formal calculation shows' that AI' 
and Jl' satisfy the free field equations 

Dx(Dx+m2)AI'(x) =0, 

(2-15) 

Fig. 1. The Feynman diagram which represents the probable counterex
ample in the four-point Green's function of the photon field operators. AA A, 
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820 K. R. Ito 

Indeed if there are no radiative corrections to the Adler anomaly,4l we have the 
following equation between the Heisenberg operators A, and J,: 

(2·16) 

which together with (2 · 7), (2 · 9), (2 ·10) and (2 ·11) leads to Eq. (2 ·15). Even 
if A, is not free, the conclusions are still valid when we restrict ourselves 'to 
the Fock space of the massive gauge field. Actually if we define the asymptotic 
field A,in(out) =weak-lim A,, the commutation relations between the A,'s and B 
are equal to those between the A,in(outl's and B. Following the discussion of 
Strocchi, we see that the difference between A, and A,in(out) is zero at least in 
the char:ge zero sector. In the following, we assume A, is free, and A, and 
J, satisfies (2 ·15). 

In this case, on introducing another auxiliary field x, we can write the fol
lowing equations for A,.2l 

(D.,+m 2)A,(x) -o)(x) =0, 

o"A,(x) =0, 

Dxx(x) =0, 

where the commutation relations are 

[x(x), x(y)] = -~m2D(x-y), 

[A,(x), x(y)] = -io,XD(x-y). 

(2·17) 

(2·18) 

(2·19) 

(2·20) 

(2. 21) 

A, can be divided into the Proca field U, and the .massless ghost field t 6l· 7l 

A,(x)=_!_a,xx(x) + U,(x), m2 (2·22) 

where the commutation relation of the Proca field is given by 

[U,(x), U. (y)] = -i(g,.- ?~~·) .d (X:'"- y; m2). (2·23) 

§ 3. Fermion wave function 

We consider the Dirac equation (2 · 8) in this section. We first introduce 
the following notations: 

and r-matrices are 

(0 1) 
/=ro=\Io' (3·1) 
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Two-Dimensional Massless Quantum Electrodynamics 821 

However, we must remark that there is an ambiguity in the definition of 

the massless vector field in two dimensions. Indeed on introducing the pseudo

scalar field q;, we can rewrite A" as follows: 

where q; 1s defined by the requirement 

then the commutation relations are 

where 

[(jJ(x), (jJ(y)] = -im2D(x-y), 

[q;(x), x(y)] =im2D(x-y), 

(3·2) 

(3·3) 

(3·4) 

(3·5) 

Of course, this ambiguity does not have influence on the representation of the 

operators A,, B and f, where f is a free fermion field operator. 

Now, since the Dirac equatioq (2·8) becomes 

( 0 2ia,.-eA+(u, v))(1J!1(u, v))=o, 

2ia.,-eA_ (u, v) 0 1J!2(u, v) 
(3·6) 

these equations can be easily solved on introducing the following new field 

operators: 

¢-= -~[,~~;x--(L--,~~;)q;]- Ju_(u, v')dv'. 
mz 

(3·7) 

We define 

Ju+c-ldu'(v')=U+H. (3·8) 

Because the Proca field obeys the equations 

(4~. +m2)U =0 
auav p ' 

a a -U_+-U+=O, 
au' av 

(3·9) 

we see*l 

*> This solution was pointed out by N. Nakanishi: 
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822 K. R. Ito 

(3 ·10) 

and 

[cp(x), cp(y)]=im2 J(x-y; m2). (3 ·11) 
Thus 7Jf is now parametrized by JC and given by 

(3 ·12) 

The parameter JC should de determined by the canonical anti-commutation re
lations and the canonical commutation relations, i.e., we require for the space
like two points x and y 

{7Jf(x), 7Jf*(y)}+=0, 

[7Jf(x), B(y)]=O, 

[7J!(x), A"(y)] =0. 

(3 ·13) 

(3 ·14) 

(3 ·15) 
Using the commutation relations cited above and ( 4 · 5), ( 4 · 6) and (6 · 2) which 
will be proved later, we see that (3 ·13) implies JC = 0 or 1, and (3 ·14) and 
(3 ·15) imply JC= 0 uniquely. Therefore we obtain 

7jf = exp { ,--- i ~n r5 [9-- cp-]} f exp {- i ~1!75 [9+ - cp+]}' . (3 ·16) 

where the indices (- ), ( +) denote the creation and annihilation parts of the 
operators respectively.*> 

§ 4. Construction of the electromagnetic current 

In this section, we construct the electromagnetic current using the solution 
obtained in the previous section. As we have mentioned there, we assume A" 
is a free field. Then we can construct the current J" following the method of 
Lowenstein.6>· 9> (At this point, we must remark that f and rfi± commute with 
each other. This is possible because [B(x), f(y)] and [x(x), f(y)] have the 
opposite signs to each other.) . 

We define J" (x) = N (iJf r"7Jf) (x ). Then, as will be shown in the Appendix, 
we obtain 

(4·1) 

*> This solution is consistent with the solution of Schwinger and Casher, Kogut and Susskind.•> 
Then as was pointed out by them, the mass singularity of fermion is absent from the vacuum 
expectation value of the time ordered scalar currents. In § 4, we will prove that the ghost field is 
a linear combination of the would-be Nambu-Goldstone boson x and B. Then we can say that 
since the Nambu-Goldstone boson becomes unphysical through the Higgs mechanism, the resultant 
ghost field cancels out the mass singularity of fermion. 
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Two-Dimensional Massless Quantum Electrodynamics 

On the other hand, from (2 · 6) and (2 ·13), we have 

eJP(x) = -(JPB(x) -m2 UP(x). 

Therefore we must conclude 

x(x) =x(x) +B(x), 

823 

(4·2) 

(4·3) 

e:.frPf;(x) =OPX(X). (4·4) 

The commutation relations (2 · 3), (2 · 4), (2 · 5) and ( 4 · 4) lead to the following 
relation: 

[x(x), x(y)] = +im2D(x-y), 

[x(x), B(y)] = -im2D(x-y). 

(4·5) 

(4·6) 

These relations are of course consistent with (2 · 20). ( 4 · 6) implies that X becomes 
an unphysical operator,6),r) and (4·4) implies that x is essentially the associated 
boson, then we see that the associated boson becomes unphysical through the 
Higgs mechanism. 

Finally we consider the ek_ctromagnetic current ( 4 · 2). We see the follow
ing relations using (2 · 4), ( 4 · 5) and ( 4 · 6): 

[eJo(x), eJl(y)Jetc= +im28/'&(x1 -y1), (4·7) 

[AP(x), Jv(Y)]etc=O. (4·8) 

The first equation is just the Schwinger term and equal to the result obtained 
by him. The second equation shows a more delicate problem. If the canonical 
quantization is done in QED, this commutation relation must be zero because 
JP does not explicitly include AP and its derivatives. Therefore this relation 
means that the canonical quantization is done successfully in the model. 

§ 5. The associated boson and the Nambu-Goldstone boson 

In order to analyze the Higgs mechanism, we construct the associated boson. 
Let f be the free fermion field. As is easily seen, 

Ji:ee(x) =:lrPf:(x), Jtr";;(x) =:/'r5rPf:(x) =ePvJfree(x), 

aPJfree(x) =aPJt.";;(x) =0, 

then we see OJ free= 0. 
, These relations suggest that there is a scalar field operator J(x) which sat

isfies Jfree(x) =()PJ(x)/·lii. We call J the associated boson. In fact as Kleiber 
pointed out/1) we can construct J from f and .f. This fact is essentially due 
to the special properties of the two-dimensional massless fermion. 

The free massless fermion field at time zero is expanded as follows: 
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824 K. R. Ito 

where 

and the commutation relations are 

{a (pl), a*(p'l)} + = (J (pl-p'l), 

{b (pl), b* (p'l)} + = (J (pl-p'l)' 

(5·1) 

others=O. (5·2) 

The boson creation and annihilation operators d- (p1) and d+ (P1) are now 
constructed by 

where 

d+(pl) = r dq1 {ecpl):?Jf1*(ql)?JflcPl+ql)= 
J2nP0 VIP1 + Q1 llq1 l 

+ {) ( _ pl): ?Jfz* (ql) 1Jf2 (ql+ pl) :} , 

d- (pl) = d+(pl)*' 

(5·3) 

(5·4) 

d- (p1) and d+ (p1) satisfy the usual commutation relations between the boson 
creation and annihilation operators 

[d- (p1), d- (p11)] = 0' 

[d+ (P1), d-1:: (p'1)] = 0' 

[d+(pl), d-(p'l)J =iJ(pl-p'l). 

The associated boson J is expanded by using d- and d+ as follows: 

(5·5) 

J(x) = -i ( f'!--_~- (exp(ipx)d-(p1) -exp( -ipx)d+(p1)) (5·6) 
Jv2np0 

with P= (p0, p 1) = CIP1 I, p 1). On the other hand, the unphysical boson x is given 
by 

x(x) = S~t!io cexp(ipx)f3-cP1) +exp(-i;P.x)f3+(p1)), (5·7) 

with P= (P0,P1) = CIP1I,P1). Then mJ(x) =x(x) implies 

(5·8) 

Since the symmetry is broken as will be proved in § 6, x must be regarded 
as the Nambu-Goldstone boson. Then we can see explicitly that the associated 
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Two-Dimensional Massless Quantum Electrodynamics 825 

boson becomes the Nambu-Goldstone boson and the unphysical particle through 
the Higgs . mechanism. 

·· The important comment is the mean'i?g of the Wick product. Strictly 
speaking, we cannot define the Wick product without defining the vacuum. The 
Wick product :.fr"f: is defined only on the fermion Fock space. Our analysis 
implies that the Fock space of the associated boson which can be embedded in 
the fermion Fock space becomes the subspace included in Hunphys· The details 
are shown in the following section. 

We consider the associated boson as a bound state of the fermion, and the 
Nambu-Goldstone boson. Th~ above relations show the detailed structure of the 
Higgs mechanism. 

§ 6. Construction of the Hilbert space and the representation 
of the field operator 

The fermion field operator 1J'" must be defined on the Hilbert space 
H = HphysEBHunphys· Then we. consider the free fermion field f which appears in 
1J'" as the operator on H, not on the fermion Fock space. As we have shown, the 
assoc1ated boson can be constructed from f and .f, and does not commute with 
B. Then f is an unphysical operator on H. We can explicitly show the fol
lowing relations: 

[~ x(x), f(y)] = + IiC {D(x_:y) +r5D(x-y)}f(y), 

[~ x(x), .f(y) J =- .Jn](y) {D(x-y) -r5D(x-y)}. (6·1) 

In addition to these relations, using (2 ·11), ( 4 · 6) and the fact that f is a free 
massless fermion field, we see that the following relations must hold: 

[~ B(x), f(y)] =- .Jn{D(x-y) +r5D(x-y)}f(y), 

[~ B(x), .f(y) J= + .Jn .f(y) {D(x-y) -r5D(x-y)}. 
' 

(6·2) 

Then we can confirm that [x(x) +B(x), f(y)] =0, while f is an unphysical 
operator. 

·In the following, we discuss the Hilbert space H. As we assume A is 
free, A can be represented on the Fock-type space. In other words, Hphys is 
constructed only by the Fock space of the Proca field and the B field opera
tors;3J,l1J On the ~ther hand, the unphysical subspace is more complicated; for 
example this contains the fermion Fock space but we cannot consider it as the 
Fock space in the usual sense. Actually,· f does not commute with B. B and 
f can be represented on H, but the explicit form cannot be determined at this 
step. (See for example, Ref. 11) .) 
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826 K. R. Ito 

If the symmetry breaking does not occur, the charge Q can be represented 
on the Hilbert space which can be decomposed into the charge sectors Hq; 

(6·3) 

On Hq, Q is only the scalar multiplication operator. The vacuum must be con
tained in Ho, in other words, the charge must annihilate the vacuum. In our 
case, this is impossible. The charge is formally given by 

Q = l~~ s:L (DAo- 8oB) dx\ (6·4) 

The electromagnetic current has the zero mass spectrum, then Q cannot be well 
defined in general. Actually we can prove the following equation from ( 4 · 6): 

(6·5) 

This implies that the gauge invariance of the first kind is spontaneously broken; 
thus we can regard X as the Nambu-Goldstone boson. In this case, the Nambu
Goldstone boson appears as the associated boson. 

§ 7. Conclusions 
/ 

As we have shown in the preceding sections, the symmetry breaking occurs 
in two-dimensional massless QED. This is because the associated boson can be 
constructed from the fermions and directly becomes the Nambu-Goldstone boson. 
The photon gets a mass through the Higgs mechanism, and the Nambu-Gold
stone boson becomes unphysical, while the free massless fermions f and .f them
selves become unphysical because the Nambu-Goldstone boson is a fusion of 
them rather than a bound state of them. 

There is an ambiguity, however, in the definition of the massless vector 
operators in two dimensions. This ambiguity is determined by the canonical 
commutation relations between the fermion field operator 1J! and the other boson 
field operators B and AI" The resultant 1J! is consistent with the solution of 
Schwinger. Thus we can confirm the result of Casher, Kogut and Susskind 
that the massless spectrum of a fermion is absent from the vacuum expectation 
value of the time ordered scalar currents. 

Finally, we would like to point out the following facts concerning the sym
metry breakings in two dimensions. As was pointed out by Coleman/8) there 
are untamable infrared singularities associated with the massless bosons in two 
dimensions. Then a sensible field theory in two dimensions cannot contain mass
less bosons. However, in the case of discrete symmetries, since the Nambu
Goldstone bosons do not appear (for example, as in the case of the two-dimen
sional Ising model) / 4) symmetry breakings can take place. In our case, the 
Nambu-Goldstone boson becomes unphysical through the Higgs mechanism, and 
the physical subspace is constructed only by the Fock space of the massive 
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Two-Dimensional Massless Quantum Electrodynamics 827 

Proca field and the B field operators. Thus our theory does not contradict 
Coleman's criterion. 
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Appendix 

-Construction of the electromagnetic current-

In this section, we construct the electromagnetic current in a gauge invari
ant way. Now we have the solution of the Dirac equation as follows: 

1Jf (x) =g) (x)f(x), 

where 

and f(x) is a free fermion field operator. This expression is very formal; we 
must consider tlie redefinition of the field operator. One way .is given by Jaffe, 
and we must consider the new field operator 1Jf (x) =: 1Jf (x):, where the Wick 
product : : is taken on the vacuum of the Hilbert space and not of the Fock 
space. However, in this paper, following Lowenstein, we define 'IJf by (3 ·16). 
This is always possible because ¢± and f are free and commutable with each 
other. 

We must construct a current which is free from the light-cone singularity 
and satisfies locality, covariance and gauge invariance. Following the method 
of Lowenstein, we can define the electromagnetic current J~'(x) =N(Wr~''IJf) (x) 
by 

N(Wr~''IJf) (x) =limN(e) {W(x+e)r~''IJf(x) 

- <W(x +e) r~''IJf (x) )o(1-iee.A" (x))},. 

where N is a normalization factor and (1-iee.A" (x)) is inserted to ensure the 
gauge invariance of the electromagnetic current. The calculation is straight
forward because ¢± do commute with f, contrary to the case of the Thirring 
model, and the result is just that of § 4. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/53/3/817/1828191 by guest on 16 August 2022



828 K. R. Ito 

References 

1) N. Nakanishi, Prog. Theor. Phys. Suppl. No. 51 (1972) 1. 
2) N. Nakanishi, Phys. Re¥. D5 (1972), 1968. 
3) F. Strocchi, Phys. Rev. D6 (1972), 1193. 
4) H. Goergi and J. M. Rawls, Phys. Rev. D3 (1971), 874. 
5) J. Schwinger, Phys. Rev. 128 (1962), 2425; 

J. H. Lowenstein and Y. A. Swieca, Ann. of Phys. 68 (1971), 172: 
6) N. Nakanishi, Prog. Theor. Phys. 50 (1973), 1388. 
7) N. Nakanishi, Prog. Theor. Phys. 49 (1973), 640. · 
8) A. Casher, J. Kogut and L. Susskind, Phys. Rev. Letters. 31 (1973), 792. 
9) J. H. Lowenstein, Comm. Math. Phys. 16 (1970), 65. 

10) B. Kleiber, in the Boulder Lecture in Theoretical Physics, Vol. X A (1967), p. 141. 
11) A. S. Wightman and F. Strocchi, Princeton University Preprint "Proof of the Charge 

Super Selection Rule in Local Relativistic Quantum Field Theory" (197 4). 
12) S. Coleman, Comm. Math. Phys. 31 (1973), 259. 
13) See, for example, F. Guerra, L. Rosen and B. Simon, Princeton University Preprint "The 

P(rp) 2 Euclidean Quantum Field Theory as Classical Statistical Mechanics" to be published 
in Ann. of Math. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/53/3/817/1828191 by guest on 16 August 2022


