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metals. This observation is very important as it suggests that 
the same simplifying assumptions made to correlate descrip-
tors with reaction rates in transition metal catalysts are also 
valid for the studied two-dimensional materials. By means 
of these scaling relations, for each reaction we also identify 
several promising candidates that are predicted to exhibit a 
comparable activity to the state-of-the-art catalysts.

Graphical Abstract Scaling relationship for the chemi-
sorption energies of OH* and OOH* on various 2D materials.

Abstract Although large efforts have been dedicated to 
studying two-dimensional materials for catalysis, a rational-
ization of the associated trends in their intrinsic activity has 
so far been elusive. In the present work we employ density 
functional theory to examine a variety of two-dimensional 
materials, including, carbon based materials, hexagonal 
boron nitride (h-BN), transition metal dichalcogenides (e.g. 
MoS2, MoSe2) and layered oxides, to give an overview of 
the trends in adsorption energies. By examining key reaction 
intermediates relevant to the oxygen reduction, and oxygen 
evolution reactions we find that binding energies largely 
follow the linear scaling relationships observed for pure 

Inspired by the success of graphene in a broad range of elec-
tronic and energy applications [1–7], novel classes of lay-
ered two-dimensional (2D) materials have been intensively 
studied in the past few years [8–14]. Structurally modified 
graphene, hexagonal boron nitride (h-BN), transition metal 
dichalcogenides (e.g. MoS2, MoSe2) and layered transition 
metal oxides, are some of the 2D materials that have found 
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We find that the linear scaling relations between the adsorp-
tion energies of key intermediates of the ORR and OER reac-
tions, i.e., OH* and OOH* [54], can be used to rapidly assess 
the catalytic activity of a material for ORR and OER. Our 
results also show that 2D materials represent an especially 
interesting class of catalysts offering a promising alternative 
to the commercial ones based on precious metals.

We employ density functional theory (DFT) calculations 
to study the chemisorption energies of OH* and OOH* on the 
selected 2D materials (SI). Calculations for the carbon based 
and chalcogenides were performed using the QUANTUM 
ESPRESSO program package [55] and the atomic simula-
tion environment (ASE) [56]. The Bayesian Error Estimation 
Functional with van-der-Waals correction (BEEF-vdW) [57] 
was used, and the electronic wave functions were expanded 
in plane waves up to a cutoff energy of 500 eV, while the 
electron density was represented on a grid with an energy 
cutoff of 5000 eV. Core electrons were approximated with 
ultrasoft pseudopotentials. Calculations on the layered nickel 
oxide supported on gold (NiOx/Au(111)) were performed 
using the Perdew–Burke–Ernzenhof (PBE) exchange cor-
relation functional, as implemented in the VASP [58, 59]. 
For a better description of the Co(3d), Ni(3d) and Ce(4f) 
electrons, the Hubbard effective terms Ueff(Co) = 3.32 eV, 
Ueff(Ni) = 6.45 eV and Ueff(Ce) = 4.5 eV were added to the 
PBE functional through the rotationally invariant approach 
proposed by Dudarev et al. [60]. All periodic slab calcula-
tions were carried out using a plane wave kinetic energy cut-
off of 500 eV and a vacuum spacing of at least 15 Å. Further 
details on the slab setups and the k-point sampling used in 
calculations can be found in the references.

Although all materials studied herein present a 2D struc-
ture, their relevant active sites differ significantly. For gra-
phene and h-BN, these sites are carbon and boron atoms, 
respectively. For MoS2 and MoSe2, the basal plane has been 
shown to be inert, and adsorbates bind to under-coordinated 
chalcogen atoms on the edges. On the other hand, for nickel 
and cobalt oxide films supported on gold (NiOx/Au(111)), 
both edge and basal plane sites contribute to the OER activ-
ity [61].

Figure 1 displays the scaling relationship for the adsorp-
tion energies of the OH* and OOH* on the different studied 
2D structures. The Pt(111) surface is depicted for compari-
son and the optimal ORR catalyst should have an OH* bind-
ing energy approximately 0.2 eV weaker than Pt(111) [53]. 
As can be seen in Fig. 1, all the computed adsorption ener-
gies follow the same scaling relation with.

 (1)

We note that this scaling relation is identical to that found 
for transition metal surfaces exposing the (111) facet [51, 

∆ ∆G G  3 2 eV
OOH OH

≈ + .

broad applications due to their high surface area to vol-
ume ratio, and desirable electrical, mechanical and thermal 
properties [15–18]. Because of their low cost and ability 
to form a wide range of nanostructures, these 2D materials 
are also being increasingly considered for electrochemical 
energy conversion and storage [19, 20], and they represent 
a promising class of alternatives to replace the commercial 
precious-metal catalysts [5–7].

In their pristine state, most 2D materials do not exhibit 
any chemical activity. However, their properties can be tai-
lored by introducing dopants [19, 21, 22], generating defects 
[23] and by supporting them on transition metals [24–26]. 
Nitrogen doped graphene, for instance, has been shown 
to catalyze the electrochemical reduction of oxygen to 
water and the oxygen reduction reaction, (ORR) [22, 27–34]. 
Other dopants such as boron [35], sulfur and phosphorous 
[21, 36] have been also proven to be interesting. Likewise, h-
BN, an otherwise inert material, becomes a promising ORR 
catalyst when supported on transition metals such as Au [24] 
and Cu [25]. Layered transition metal dichalcogenides, such 
as molybdenum sulfides and selenides, are active catalysts 
for the hydrogen evolution reaction (HER) and CO2 reduc-
tion reaction [18, 37–40], and their activity can be further 
improved by introducing defects and transition metal dopants 
[41–43]. Layered oxides based on earth-abundant transition 
metals such as nickel, iron, or cobalt, have been reported to 
be highly active materials for the oxygen evolution reaction 
(OER), specially the multimetallic oxides based on these ele-
ments [44–46]. Some of these catalysts have shown a com-
parable (or even better) performance in alkaline media than 
that of the state-of-the-art Ir and Ru based catalysts [47, 48], 
and therefore, they are particularly promising.

Recently, it has been shown that graphene based catalysts 
are able to catalyze both ORR and OER reactions [30–32]. 
This bifunctionality is particularly remarkable as it points 
out the great potential of these materials for a wide variety 
of applications. It is, however, not yet known whether other 
related two-dimensional materials exhibit the same versatility. 
Although the reaction conditions for the ORR and OER dif-
fer substantially, both processes involve the hydroxyl (OH*) 
and hydroperoxo (OOH*) intermediates, and the correspond-
ing calculated chemisorption energies have been successfully 
employed to describe the ORR and OER reactivities [49, 50]. 
Furthermore, the energetics of these two intermediates have 
been found to be correlated through linear scaling relations 
on transition metal [51] as well as transition metal oxide sur-
faces [52], thus making it possible to establish volcano-type 
relationships for both ORR and OER [49, 53].

Herein, we seek to investigate trends in chemisorption 
energies for a wide range of different 2D materials (details 
and structures in Supplementary Information) in order to 
draw comparisons with currently known catalysts and evalu-
ate their predicted activity for the ORR and OER reactions. 
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structures and modifications, and showed that all the calcu-
lated adsorption energies follow the same scaling relations 
as established for transition metal surfaces. The existence 
of scaling relationships for these 2D materials suggests that 
the same simplifying assumptions used for predicting and 
evaluating new transition metal catalysts are also valid for 
this class of materials. Volcano-type analyses established for 
transition metals can thus be used for high-throughput screen-
ing of materials similar to those studied herein. Also impor-
tant is the fact that the adsorption energies vary significantly 
depending on the type of active site, allowing for a wide range 
of possible activities, even within the same type of materials. 
For ORR some of the 2D-materials considered herein exhibit 
structures that provide adsorption energies similar to Pt, one 
of the best ORR catalysts. However, the fact that the scaling 
relations for 2D materials are identical to those of pure met-
als, suggest that scaling limitations will also inhibit further 
improvements in their potential catalytic activity.
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