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ABSTRACT: Two new mechanical models for the description of mechanical properties 

of two-component polymer blends are proposed. On the basis of these models the de

pendence of the dynamic complex moduli on the blend content is theoretically calculated. 
Results obtained theoretically are compared with experimental data for polyethylene 

and polypropylene blends. 
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Both the phase structure of polymer blends 

and their properties have aroused the interest of 

a number of investigators. Particular attention 

has been paid to the mechanical properties of 

polyblends, in view of their technological sign

ificance. Polymer blends, usually two-com

ponent and heterogenous systems, cannot, be 

described in a simple way by the viscoelastic 

theory of homogenous materials. This in the 

description of viscoelastic properties of blends 

a model approach is employed. 1- 3 The me

chanical models that are usually used, which 

differ among themselves with respect to the 

mode of stress transmission, are one-dimensional 

and as such do not cover all the aspects of the 

interactions among the components of the blends. 

In the study reported here an attempt has been 

made to describe the viscoelastic properties of 

polyblends by means of a two-dimensional 

model. The mathematical description of the 

models introduced here is the same as the one 

demonstrated by Sobotka4 for diffferent types 

of mechanical two-dimensional models. 

Theoretical results have been used to interpret 

the composition dependence of the experimental 

properties of viscoelastic polypropylene (PP) and 

polyethylene (PE) blends. PP and PE blends 

were the object of our earlier studies, in which 

the partial miscibility of the two polymers, con

ditioned by diffusion processes taking place on 

the border between the two phases, was demon-
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strated. 5- 7 Another aim of our study was to 

establish the effect of diffusion of components 

on the mechanical properties of the blend. 

THEORETICAL CONSIDERATIONS 

The simplest representation of a two-component 

system is provided by the mechanical models 

shown in Figure l, which represent two different 

mechanisms of stress transmission between the 

components A and B. The left side of Figure 1 

shows a series connection between the com

ponents and the right side represents a parallel 

connection. However, both these models are 

much too simplified to be suitable for represent

ing a system in which particles of one of the 

components are dispersed in the other as the 

medium (Figure 2a). Considering the fact that 

in the case when such a two-component sample 

A 
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Figure 1. Mechanical model of series (a) and 

parallel (b) connection of components. 
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Figure 2. Models of two-phase structure of blends: 

(a), Structural model; (b), Mechanical model. 

is subjected to tension, some of the lines of 

force pass only through the component A and 

some pass through both the components A and 

B, then it can be represent with some 

simplification, by the system presented in Figure 

2b. Here, a full cohesion of the components 

A and B is assumed. The values J and <p are 

regarded as parameters representing the mixing 

state and composition of the sample. 

Two simple mechanical models were used in 

the calculations of the complex modulus of the 

system shown in Figure 2b. These models are 

presented in Figure 3. 
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Figure 3. One-dimensional complex mechanical 

models of two-component system. 

Complex moduli of the strain Ea* for the model 

(a) and Eb* for the model (b) were calculated in 

the following way1 •2 : 

E*-[ <p l-<pJ-1 1) 
a - (1-J)EA*+JEB* + EB* ( 

Eb*={l*+~~fJ
1 

+(1-J)EA* (2) 

where EA* and EB* are complex dynamic moduli 
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of the components A and B respectively. The 

value A is a measure of the parallel connection of 

the component B with the whole system, and <p 

is a measure of the series connection of the com

ponent B. The product A<p is equal to the 

volume content of the component B in the 

blend. However, the condition of full cohesion 

is not satisfied in this model, nor are allowances 

made for the interactions between the com

ponents in the direction perpendicular to the 

stress applied. Such conditions can be satisfied 

in a two-dimensional model corresponding to 

the system in Figure 2b. If such a two-di

mensional model is to represent the properties 

of blends it must be an isotropic system in the 

directions x and y defined by the edges of the 

model element. This requires an assumption of 

equality of the values J and <p, which are denoted 

by a, in which case the content of the component 

B in the blend has the value a 2 • 

In the case of a two-dimensional dynamic de

formation of an isotropic viscoelastic body the 

strain components may be expressed in the fol

lowing way8: 

Oz *=C1 *az * +c2 *au* 

oy *=C2 *ax* +C1 *au* 

(3a) 

(3b) 

where oz* and oy * are complex values of the 

relative strains, az * and ay * are complex values 

of the stresses. 

In the case of a sinusoidally variable strain of 

a viscoelastic body, the complex values o* and 

a* may be given as: 

o*=oo exp (iwt) ( 4) 

and 
a*=ao exp (iwt+io) ( 5) 

where w is the angular frequency of deformation, 

and a is the strain-stress-phase-shift angle. 

The values C1 * and C2 * are complex com

pliance constants which for an isotropic body are 

related to the tensile complex modulus in along 

the x- or y-direction following manner: 

and ( 6) 

v being a real number corresponding to the 

Poisson's number for an elastic body. 

For simplicity's sake we shall from now on 

leave out the asterisks denoting complex values, 
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though the numbers will still be regarded as such. 

The properties of the components A and B of the 

two-dimensional mechanical model presented in 

Figure 2b are represented by complex moduli EA 

and EB or by complex compliances constants 

c/, c/ and C/, C/ respectively. The as

sumption of full cohesion between components 

A and B requires equality of strains in the 

neighbouring parts of the model. The total 

strain e,. of the model element consists of the 

strain ea,1 of the component B and the strain e,.2 

of the component A (Figure 4) in accordance 

with the equation: 

( 7) 

And in the same way the strain perpendicular 

to it 

( 8) 

As it is shown in Figure 4 the total stresses o-,. 

and o-11 acting on the model element are given 

tion of stress, the stress-strain equations may 

be expressed as4 : 

e,.2=C/[(l-a)o-11 +ao-112] (12) 

e112=C/o-11 +C/ao-,.2 (13) 

The equality of strain in adjacent elements of 

the components A and B entails the following 

relations: 

e,.1 =C/o-,.2+C2 AO"y=C/0-,.1 +c/o-yl (14) 

e111=C/o-112=C/o-111 +c/o-,.1 (15) 

From eq 10 and 11 we have: 

1-a 
O':i:1==---0':i:2; 

I}{ 

o- -(1-a)o- 2 n y y vyl 
I}{ 

(16) 

Substituting the above equation into eq 14 and 

15 we can determine the stress components o-,.2 

and o-112 in the following form: 

(17) 

in components as: where 

o-,.=ao-,.1 + (l-a)o-,.2 

o-11 =ao-111 +(l-a)o-112 

A 

X 

( 9) 

(10) 

Figure 4. Schematic representation of stress di
stribution in a simple two-dimensional model. 

In our case it is assumed that the model element 

is subjected to an uniaxial deformation which 

entails the condition o-,.=0. The eq 9 then, 

assumes the form: 

(11) 

Internally generated stresses o-,.1 and o-,.2 as well 

as o-111 o-112 are the result of unequal values of 

the moduli EA and EB and are also the results 

of a condition for full cohesion of the two com

ponents. Considering such an internal distribu-
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P1=[aC/+(l-a)C1B]2-(l-a)2(C/)2 (18a) 

P2=[aC1 A +(l-a)C1 B](C2 B -aC2 A) 

-(1-a)C/C/ (18 b) 

Pa=[aC1A+(l-a)C/]C1B 

-(l-a)(C/-aC2 A)C/ (18c) 

Introducing eq 12-15 into eq 7 and 8, and 

taking eq 17 into account, we obtain: 

e11 =P1- 1[aC1A P 3+(1-a)C1 A P1 

+a(l-a)C2 A P 2]o-11 

e,.=P1- 1[aC1 A P 2+(l-a+a2)C2 A P1 

+a(l-a)C2 A P3 ]o-11 

(19) 

Hence it can be said that the complex compliances 

for a model element are 

cl =P1-1[aC1 A Pa+(l-a)C1A P1 + 

a(l-a)C2 A P2 ] (20) 

C2=P1- 1[aC1 A P2+(l-a+a2)C2 A P 1 

+(l-a)C/P3] (21) 

where P 1 , P2 , and P 3 are given by eq 18. 

The value of the complex dynamic modulus 

for such a model is given by the expression 

(22) 

Polymer J., Vol. 6, No. 2, 1974 
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Figure 5. Dependence of modulus on component weight ratio calculated basing on a simple 

two-dimensional model: (I) EA=4x104 Ncm-2, EB=6.75x104 Ncm-2; (II) EA=6.75x104N 

cm-2 , EB=4x104 Ncm-2 • In both cases it is assumed that 1,1A=1,1B=l/2. 

A B 

Figure 6. Schematic representation of a complex two-dimensional mechanical model 

including phase inversion. 

The values of E* for definite properties of the 

components A and B have been quantitatively 

calculated and these results are presented in 

Figure 5. 

The values of the moduli assumed for calcu

lations approximate those obtained experimentally 

for polyethylene and polypropylene. Curve I 

in Figure 5 corresponds to a model in which 

the material of higher modulus value is the phase 

dispersed in the material of lower modulus value. 

The curve II describes the inverse case. 

The mechanical models of two-component 

systems presented so far do not reflect the phase 

inversion phenomon which takes place in blends 

with comparable contents of both components. 

This effect can be described by a more com

plicated model, which is presented in Figure 6, 

for different content ratios of both components 

in the blend. The dispersed component is given 

here by two regions, while the component serv

ing as medium is a continuous element. For 

equal content of both components their role in 

the blend is reversed. A mathematical descrip

tion of the mechanical properties of such a 

model may be given in the following way. 

The whole model element may be divided into 
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Figure 7. The mode of dividing for a complex 

two-dimensional model. 

four parts, just as in Figure 7, all parts being 

mutually fully coherent. Parts I and III and 

parts II and IV have the same mechanical 

properties, which are, dependent on blend 

composition. In Figure 7, for example, the 

properties of parts I and III correspond to the 

properties of the component A while the pro

perties of parts II and IV may be described by 

means of the previously presented two-di

mensional model depending on the properties 

of the components A and B. Schematically, 

the dependence of the moduli of particular parts 

on blend composition is given in Figure 8. 

Now, the values a in the two-component parts 

correspond to 
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Figure 8. Schematic representation of the changes 
in moduli of particular parts of the model in 
Figure 7 vs. composition (weight ratio of com
ponents). 

(23) 

where V is the content of the dispersed com

ponent in the blend. 

Let C11 and C21 stand for the complex com

pliances of parts I and III of the model and 

let C/1 and C/1 represent parts II and IV; we 

can now calculate the compliances of the whole 

model. Adopting the notations used in our 

earlier discussion and taking into consideration 

the symmetry of the model we can formulate 

the following relations: 

_ay1+ay2 
ay---2-- (24) 

llx1 = -Uz2 (25) 

Cz==C:1:1 (26) 

ey=ey1 (27) 

From the condition of uniform deformation of 

the adjacent parts we have 

e,,1 =C/a,,2+C/ay2=C1 IIa,,1 +c/1ay1 (28) 

ey1=C/1ay1+c/1a,,2=C/ay2+C/a,,2 (29) 

Formal transformations, similar to the previous 

ones, yield: 

2{C1 r[(C1 II)2 -(C2 n)2] + C1 n[( C11)2-(C21)2]} 

ey (C/+c/I)2-(C/+c/r)2 
y 

(30) 

Hence the value of the complex modulus for 

this model may be given as: 

E*- (C/+c/1)2-(c/+c/1)2 
·- 2{C/[(C1 Il)2-(C2 Il)2]+C1 II[(C11)2-(C21>8]} 

(31) 
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Figure 9 presents quantitative calculations per

formed using eq 31 with the values EA=4- 104 

Ncm-2 and EB=6.75-104 Ncm-2 and lJA=lJB= 

1/2 for different volume ratios of the blend. 

xlO' 

7 

6 

E 

5 

4 EA 

0 0,2 0,4 0,6 0,8 1 Ve 

Figure 9. Dependence of modulus vs. component 
weight ratio for a complex two-dimensional model. 

Using eq 31 the stress-strain phase-shift angle 

for the model presented may be determined. 

This can be done after the real and imaginary 

parts of the complex dynamic modulus have 

been calculated. Then 

t 0_Im(E*) 
g -R.(E*) 

EXPERIMENTAL 

Samples 

(32) 

All experiments were performed on blends of 

linear polyethylene Lupolen 6000 L manufactured 

by BASF and isotactic polypropylene Moplen 

manufactured by Montecatini. Detailed descrip

tions of both polymers are available in our previ

ous paper6 , where a possibility of interdiffusion of 

macromolecules of these two polymers in their 

blend was observed. Blends of both polymers of 

different weight ratios were made as follows: a 

granulate of both components was mixed in the 

appropriate weight ratio; the granulate mix

ture was then pressed at 190°C, fastcooled in 

water at room temperature, and granulated for 

a second time. This procedure was repeated 

several times. On completion of each cycle of 

melting and granulation thin cuttings of the 

blend were examined in an optical microscope 

in order to determine the degree of mixing of 

the components. Micrographs for a mixture 

consisting of 40 % PP and 60 % PE after 

Polymer J., Vol. 6, No. 2, 1974 
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Figure 10. The change in phase structure of PE and PP blends in consecutive stages of mixing: 

(a), after three; (b), six; (c), ten cycles of pressing and cooling. 

3, 6, and 10 cycles are presented in Figure 10. 

Samples for which the above procedure was 

repeated 10 times were found to possess mixing 

unhomogeneities not exceeding 20 µ. Blends 

obtained in this way were in the form of films 

0.5 mm thick. They were then heattreated in 

melt at a temperature of 190°C under nitrogen 

for 3.5 hr the aim being a molecular mixing of 

the two components by way of diffusion. Using 

a special punch, samples for the investigation of 

mechanical properties were cut out from both 

heattreated and unheated films. Both kinds of 

samples were then cut again, using a microtome, 

to provide cuttings 10 µ thick for optical micro

scopy examination. In order to obtain a better 

differentiation of the supermolecular structures of 

PE and PP which would make it possible to 

distinguish between the components of the blend 

examined in a microscope more precisely, we 

employed the method (described in our previous 

study6 of thermal treatment of samples. Micro

graphs showing the structure of both the un

heated as well as tb,e heat-treated samples are 

presented in Figure 11. It appears from Figure 

1 la that the process of pressing and granulating, 

repeated ten times, produces a microheterogenous 

blend over the whole range of weight ratios of 

the polymers used. This is the state of forced 

miscibility of the system which is not, however, 
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the state of thermodynamic equilibrium, as is 

evidenced by changes in the phase structure of 

the blends in the process of heat-treatment of 

the melt. Heat-treatment of molten blends gives 

rise to formation of macroheterogenous systems 

(Figure lib) by way of the merging of small, at 

first dispersed, phase inclusions (the possibility of 

such a behaviour for systems of limited miscibility 

has been suggested by several authors). 9 The inter

diffusion of macromolecules of the components 

used, which occurs simultaneously, is responsible 

for the fact that each phase of the polyblen is 

made up of two components. The presence of a 

dispersed, molecularly diffused component affects 

the supermolecular structure of the border area 

of a particular phase; this can be seen in Figure 

12, where the structure of PE crystallizing in an 

unheated blend (Figure 12a) and in a heat-treated 

one (Figure 12b) are presented for comparison. 

RESULTS AND DISCUSSION 

Mechanical measurements were performed 

using an apparatus of our own design10 per

mitting a sinusoidally variable strain of fre

quencies ranging from 10-3 to 10 Hz to be 

applied to the sample. The measurements were 

carried out at 25°C. Changes in stress and 

strain in the sample were recorded on an 
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Figure 11, Micrographs of the phase structure in the function of weight ratio of PP and PE blends: 

(a), unheated samples; (b), heat-treated samples. 
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a b 
I 100),t 

Figure 12. Structural changes on the boundary between components after heat

treatment of sample. 
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Figure 13. Dependence of modulus on component 

weight ratio for unheated PP and PE blends. 
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Figure 14. Dependence of modulus on component 

weight ratio for heat-treated PE and PP blends. 
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Figure 15. The dependence of tg o on component 

weight ratio of PE and PP blends: O, heat-treated 

samples; •, unheated samples. 

oscilloscope or an XY recorder (depending on 

frequency) in two mutually perpendicular di

rections. 

Taking advantage of the Lissajous curves ob

tained, the values of IE*I and tg o were deter

mined by geometric measurement. The samples 

were initially stretched up to 10% of relative 

strain and variable strain with an amplitude of 

2 % of the initial length was applied periodically.* 

The dependence of the value IE*J on thecomposi

tion of the blend for unheated samples for fre

quencies of 5 x 10-3 Hz and 10-1 Hz is plotted 

in Figure 13. Both these plots hardly deviate 

from a straight line between the values of 1£*1 

* The effect of static stress relaxation was ob

served. However, the measurements were taken 

at sufficient time intervals after starfing the vibra

tions that a steady state was reached. 
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for PP and PE for given deformation frequencies. 

Thus, the effect of frequency on the character of 

the dependence of the dynamic modulus on the 

blend composition cannot be observed here. The 

dependence for heat-treated samples was found 

to be slightly different. Results obtained for the 

same frequencies are given in Figure 14. In this 

the deviations from a straight line are greater. 

Figure 15 presents the dependence of tg o on the 

blends composition for the two kinds of samples: 

heat-treated and unheated. It is seen from the 

results presented that heat-treatment of the molten 

blends has a marked effect on the dependence of 

their mechanical properties on blend composition. 

A comparison of the results shown in Figure 13 

for unheated samples with Figure 9, which shows 

the theoretical dependence of dynamic the 

modulus for a two-dimensional model in which 

phase inversion has been taken into considera

tion, leads one to the conclusion that basically, 

the two dependences do not differ very much. 

Both experimental results as well as theoretical 

dependences deviate from a straight line only 

slightly. It follows that the mechanical properties 

of a well-dispersed heterogeneous two-component 

blend may be described adequately by means 

of eq 31. 

The results of theoretical calculations for this 

model do not, however, describe directly the 

dependences observed. for heat-treated samples. 

Adopting, however, the model postulated in our 

previous stud/ of phase structure of blends in 

which limited diffusion of both components is 

taken into account it can be supposed that heat

treated blends are two-phase systems in a limited 

range of component weight ratios. In such a 

case a mechanical model of a two-component 
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blend may also be used only in a limited range 

of weight ratios. It follows from Figure 14 that 

the dependence of the modulus JE*J on com

position may be approximated for a volume ratio 

from about 20 to 70% of PE content in the 

blend by means of a straight line. This suggests 

that in such a range of weight ratios the blends 

studied are two-component systems and their 

mechanical properties may be described by means 

of the mechanical model suggested. The agree

ment obtained is an interesting result but it 

must be confirmed by a greater number of ex

periments. Interpretation of results in the way 

presented here may provide a useful criterion 

for the estimation of the miscibility of polyblend 

components. 
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