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SUMMARY

This paper presents a mortar-based formulation for the solution of two dimensional frictional contact
problems involving finite deformation and large sliding. As is widely recognized, traditional node-to-
surface contact formulations have several drawbacks in solution of deformable-to-deformable contact
problems, including lack of general patch test passage, degradation of spatial convergence rates, and
robustness issues associated with the faceted representation of contacting surfaces. The mortar finite
element method, initially proposed as a technique to join dissimilarly meshed domains, has been
shown to preserve optimal convergence rates in tied contact problems (see (Discretization Methods
and Iterative Solvers Based on Domain Decomposition, Springer-Verlag, Heidelberg, 2001) for a
recent review), and is examined here as an alternative spatial discretization method for large sliding
contact. In particular, a novel description for frictional sliding conditions in large deformation mortar
formulations is proposed in this work.

In recent years, the mortar element method has already been successfully implemented to solve
frictional contact problems with linearized kinematics (see (Int. J. Numer. Meth. Engng 1993; 36:
3451)). However, in the presence of large deformations and finite sliding, one must face difficulties
associated with the definition and linearization of contact virtual work in the case where the mortar
projection has a direct dependence on the tangential relative motion along the interface. In this paper,
such a formulation is presented, with particular emphasis on key aspects of the linearization procedure
and on the robust description of the friction kinematics. Some novel techniques are proposed to treat
the non-smoothness in the contact geometry and the searching required to define mortar segments.
A number of numerical examples illustrate the performance and accuracy of the proposed formulation.
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1. INTRODUCTION

This article deals with the mortar finite element formulation of large deformation frictional
sliding contact problems, which are found in many important applications in engineering and
the sciences. Numerical solution of these problems is quite challenging, with robustness issues
in particular arising from extreme non-linearity and non-smoothness of the contact operators,
which must be handled in the presence of large deformation and significant relative sliding of
the contacting bodies. In recent years, there have been significant advances in this field, with
many formulations becoming available in the research literature and in commercial finite element
codes. However, the robustness of these formulations is still a limitation in many problems of
interest. The aim of this research is to provide a formulation which can solve general large
deformation frictional contact problem in a robust, accurate and stable manner. The technique
we propose for this purpose, a mortar formulation of the contact conditions, employs an integral
projection of contact variables on the contact surface to provide a consistent representation of all
contact variables over a single discretization. The approach presented here represents a penalty
regularization of the classical mortar approaches to be found (for example) in Reference [1] or
Reference [2], although it should be emphasized also that there is nothing from an algorithmic
point of view which precludes use of Lagrange multiplier or augmented Lagrangian strategies
for enforcement of the contact constraints formulated herein. The procedures needed to set
up the mortar formulation of the problem, to linearize the mortar contact virtual work, and
assemble the contact stiffness are discussed in detail in this paper. In particular, the description
of large sliding frictional mortar contact formulations, given in this paper in a two dimensional
context, is to our knowledge unprecedented.

The most prevalent finite element formulations dealing with large deformation contact prob-
lems are based on the so called master/slave contact strategies [3–5], in which the nodes of one
deformable surface (the slave surface) are prohibited from penetrating the element boundaries
of the opposing surface (the master surface). This approach represents a collocation method
with the physical requirement of impenetrability being enforced at these points (usually taken
to be the nodes). However, as indicated by Papadopoulous and Taylor [6], the master/slave
contact strategies are not guaranteed to pass contact patch tests, wherein a flat contact surface
should be able to transmit a spatially constant contact pressure from one body to the other. The
issue of patch test passage (or lack thereof) could be expected to relate directly to the numer-
ical convergence performance of contact formulations [7]; the degraded convergence of such
node-to-surface formulations has in fact been demonstrated in a kinematically linear context by
Hild [8]. Another shortcoming of the node-to-surface formulation is the non-smoothness of the
discretized contact surfaces. To monitor the motion of material points with respect to the master
surface, slave points need to be projected onto the discretized master surface. Such projections
are frequently problematic where element boundaries meet to form edges and corners, because
there the surface normal is discontinuous and convergence difficulties (as well as non-physical
oscillations) tend to result.

The mortar element method (see, e.g., References [1, 2, 9, 10]) was originally introduced as
a domain decomposition method, used to couple possibly nonconforming discretizations across
subdomain boundaries. For example, early implementations of the mortar element method were
used in conjunction with spectral methods (see Reference [11]). The mortar method introduces
the continuity condition at interfaces in integral (global) form, rather than as nodal (local)
constraints. One of the significant advantages of the mortar finite element method is that
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it preserves optimal convergence rates from the finite element methods (see Reference [1])
provided suitable mortar spaces are chosen. Since such suitable spaces can be shown to satisfy
appropriate inf–sup conditions for the method, we have the significant advantage that the mortar
method satisfies Babuska–Brezzi stability conditions as well.

These advantages make the mortar element method a very promising candidate for application
to contact problems. Contact constraints can be readily expressed in integral form by introducing
a mortar space on one or both of the contact surfaces. In this way, mortar element methods
have been successfully applied to contact problems with infinitesimal deformation. Belgacem
et al. [12, 13] first analysed unilateral frictional contact problems with a mortar finite element
method. McDevitt and Laursen [14] incorporated Coulomb frictional behaviour in their mortar
contact formulation and introduced an intermediate contact surface to facilitate the evaluation
of the contact integrals. Penalty regularization was used to apply the normal and tangential
contact constraints in their formulation. Krause and Wohlmuth [15] implemented a Dirichlet–
Neumann type of algorithm to solve frictional contact problems, using a mortar element method
based on a dual basis Lagrange multiplier space. They used monotone multigrid methods to
solve the global equations. Hild [8] compared the mortar element method and node-to-surface
strategy for frictionless contact problems, and numerically demonstrated optimality of the mortar
formulation (and lack of optimality for its node-to-surface counterpart).

Although large deformation formulation of contact problems based on node-to-surface strate-
gies has been commonplace for quite some time (see, e.g., References [16, 17] and the recent
monograph [7]), efforts in the literature to generally treat large deformation contact problems
using mortar element methods have not appeared until very recently [18]. As is discussed in
detail for the three dimensional frictionless case in Reference [18], mortar element formulation
of large deformation/sliding contact problems is difficult because the mortar integrals and as-
sociated surface-to-surface projections are strongly dependent on the deformation of the contact
bodies. This requires that the terms in the contact virtual work related to the deformation of the
contact bodies are properly linearized; the stiffness emanating from those terms arising from
the (changing) mortar projection is particularly intricate (and crucial) to obtain. Furthermore,
the faceted nature of the contact surfaces introduces difficulties associated with ‘corners’ when
conducting mortar searching, which if handled inappropriately will result in poor convergence
performance of the method.

In this paper, a mortar formulation for large deformation frictional contact problems is
implemented, working in the context of two dimensional problems in solid mechanics. For the
first time, frictional response is included in a large deformation, finite sliding mortar contact
method. The formulation includes a novel technique for defining a continuous normal field on
the discretized contact surface, which is used for searching and definition of the mortar segments
that are used to compute the requisite mortar projections. A detailed procedure of linearization
of the contact virtual work is given, such that a Newton–Raphson iterative solver can be
applied. Several numerical benchmarks examples are computed to demonstrate the robustness
and accuracy of the method, and to emphasize its advantages over existing approaches.

2. PROBLEM DESCRIPTION

A two dimensional contact problem, with large deformation and large sliding, is shown in
Figure 1. As shown in the figure, the reference configurations of two contacting bodies are
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Figure 1. Notation for the two body large deformation contact problem.

represented by the open sets !(1) and !(2). The deformation mappings of the two bodies are
denoted by !(1) and !(2), respectively. The closure of !(i), i = 1, 2 will be denoted as !̄

(i)
,

and is the union of the open set with its boundary !!(i).
The surfaces !!(i) are divided into "(i)

u , where displacements are prescribed; "(i)
! , where

tractions are prescribed; and "(i)
c , where the contact constraints will be defined. In keeping

with a common nomenclature, we will denote "(1)
c and "(2)

c as the slave and master surfaces,
respectively, although these terminologies will not retain their same meanings as in traditional
strategies. The spatial counterparts of these three portions are denoted by "(i)

u , "(i)
! and "(i)

c ,
respectively. We assume "(i)

u , "(i)
! and "(i)

c satisfy

"(i)
u ∪ "(i)

! ∪ "(i)
c = !!(i) (1)

and

"(i)
! ∩ "(i)

u = "(i)
! ∩ "(i)

c = "(i)
u ∩ "(i)

c = ∅ (2)

for each of the bodies (i). Traction and motion boundary conditions are stated in the standard
manner (with respect to the reference configuration) as

P
(i)
jJ N

(i)
J = T̄

(i)
j in "(i)

!

#(i)
j = #̄(i)

j in "(i)
u

(3)
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where T̄
(i)
i and ū

(i)
i denote the prescribed tractions and displacements associated with body (i),

N
(i)
J is the component of the outward normal to !"(i)

! in the reference configuration, and P
(i)
jJ

denotes the components of the first Piola–Kirchhoff stress tensor in body (i).
To define the virtual work, we first define solution and weighting spaces C(i) and V(i),

consisting of solutions !(i) and their variations ∗!
(i)

according to

C(i) =
{
!(i) : !̄

(i) → R2|!(i) ∈ H 1(!(i)), !(i) = !̄(i) in "(i)
u

}
(4)

and

V(i) =
{ ∗!

(i) : !̄
(i) → R2| ∗!

(i) ∈ H 1(!(i)),
∗!

(i) = 0 in "(i)
u

}
(5)

where H 1(!(i)) represents the Sobolev space of functions which have square integrable
derivatives.

Given these ideas, the virtual work principle for the two body contact problem in large
deformations can be written as

G(!,
∗!) :=

2∑
i=1

G(i)(!(i),
∗!

(i)
)

=
2∑

i=1

{∫

!(i)

[
$(i)

0
∗!

(i) · A(i) + Grad ∗
! : P(i)

]
d!

−
∫

!(i)

∗!
(i) · F(i) d! −

∫

"(i)
!

∗!
(i) · T̄(i) d"

}

−
2∑

i=1

∫

"(i)
c

∗!
(i) · t(i) d" = 0

= Gint,ext(!,
∗!) + Gc(!,

∗!) = 0 (6)

In (6), Gint,ext(!,
∗!) is the sum of the virtual work arising from the internal and external forces,

while the notation Gc(!,
∗!) denotes the virtual work associated with the contact tractions. The

notation A(i) has been employed to denote the material acceleration field in body (i) (in the
event that inertial effects are present), $(i)

0 denotes the reference density, and F(i) denotes
the body force in body (i).

In our mortar contact implementation, we represent the contact virtual work in the current
configuration as

Gc(!,
∗!) = −

2∑
i=1

∫

"(i)
c

∗!
(i) · t(i) d"

= −
2∑

i=1

∫

"(i)
c

∗!
(i) · "(i) d" (7)
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where "(i)
c is the current configuration of the contact surface on body (i), and the mortar

multiplier "(i) denotes the Cauchy contact traction. Once the balance of linear momentum
across the contact interface is considered, we have

"(1) d"(1)
c = −"(2) d"(2)

c (8)

which implies that the contact virtual work in (7) can be replaced by

Gc(!,
∗!) := −

∫

"(1)
c

"(1)(X) · (
∗!

(1)
(X) − ∗!

(2)
(Ȳ)) d" (9)

where !(2)(Ȳ) is the current position of the contact point for X. It is important to note that
while in a node to surface method, Ȳ would be determined for each (nodal) point X via closest
point projection, here we employ a spatial integration procedure which will indirectly identify
pairings between points X and Ȳ. To draw the correspondence with the mortar literature, the
slave surface "(1)

c is referred to as the non-mortar surface, as it is the one where the Lagrange
multipliers will be interpolated, while the master surface "(2)

c is called the mortar surface.

3. CONTACT KINEMATICS AND CONSTRAINTS

3.1. Normal contact conditions

The normal contact constraints enforce the physical requirements of impenetrability and com-
pressive interaction between contact bodies. We define the gap function g(X, t) as

g(X, t) = n ·
[
!(1)(X, t) − !(2)(Ȳ, t)

]
(10)

where Ȳ denotes the (material) contact point for X at time t , and n denotes the outward unit
normal to "(1)

c at x = !(1)(X, t). The condition of impenetrability for the material point X
relative to the master surface can be represented as

g(X, t)! 0 (11)

The gap function and contact pressure (normal component of the contact traction) are interrelated
through the remainder of the classical Kuhn–Tucker conditions:

%N(X, t)" 0 (12)

and

%N(X, t)g(X, t) = 0 (13)

where %N(X, t) = −" · n is the Cauchy contact pressure at material point X on the slave
surface. Equation (12) implies that only compressive interaction is allowed, while (13) allows
the contact pressure to be non-zero only when g(X, t) = 0.

Copyright ! 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:1183–1225



TWO DIMENSIONAL MORTAR CONTACT METHOD 1189

3.2. Frictional contact conditions

To characterize the frictional response, we define the relative velocity as the summation of
normal and tangential components as

v = !̇(2)
(
Ȳ, t

)
− !̇(1) (X, t)

= vN + vT = vNn + vT # (14)

where # is the unit tangential vector defined in the current configuration of the slave surface
as

# = e3 × n (15)

where e3 is the unit basis vector pointing out of the paper. As has been widely recognized for
some time (see, e.g. Reference [7]), use of the above vT in finite deformation formulations of
frictional response is only frame indifferent in the event that g = 0 at the point where vT is
being evaluated; otherwise, an algorithmic modification of this slip rate is necessary. We shall
discuss an appropriate adaptation of that modification for the mortar formulation of friction in
the next section.

The contact traction " = "(1) = −"(2) can also be resolved into normal and tangential
components as:

" = "N + "T

= −%Nn + %T # (16)

With these notions in hand, the conditions for Coulomb friction can be written as

vT − "̇
"T

‖"T ‖ = 0 (17)

# := ‖"T ‖ − &‖"N‖ ! 0 (18)

"̇ " 0 (19)

#"̇ = 0 (20)

where, as can be seen, the frictional traction is forced to oppose the tangential velocity (note
the sign change inherent to the definition of tangential velocity in Equation (14)).

4. DISCRETIZATION OF FRICTIONAL CONTACT WITH THE
MORTAR ELEMENT METHOD

As mentioned in the introduction, the mortar element method is used in general to weakly
couple fields between potentially mismatched surfaces. Application of this method in the current
context has been shown to preserve optimal convergence rates in tied contact problems [2] and
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is examined here as an alternative spatial discretization method for large sliding frictional
contact problems.

In this paper, we use two dimensional bilinear finite elements to spatially discretize the
contacting bodies, and consider the mortar approximations that should be used on the interface
to describe the contact of these bodies—the approach can be extended for use with quadratic
and higher order elements without conceptual difficulty. Consider the spatial discretization of
bodies !(i) using the finite set of elements E(i)h :

!(i)h = ⋃

∀e∈E(i)h

!(i)
e (21)

The discretization of contact surfaces "(i)h

c occurs over subsets of !!(i)h .
Finite dimensional subspaces of solution and weighting spaces in (4) and (5) are denoted

C(i)h and V(i)h , and may be defined via

C(i)h =
{
!(i)h : !̄

(i)h → R2|!(i)h ∈ C0(!(i)h)

∀e ∈ E(i)h , !(i)h(!(i)h

e ) ∈ PN(!(i)h

e ); !(i)h = !̄(i) in "(i)h

u

}
(22)

and

V(i)h =
{

∗!
(i)h : !̄

(i)h → R2| ∗!
(i)h ∈ C0(!(i)h)

∀e ∈ E(i)h ,
∗!

(i)h

(!(i)h

e ) ∈ PN(!(i)h

e ); ∗!
(i)h = 0 in "(i)h

u

}
(23)

where PN(!(i)h

e ) is the set of all polynomials on !(i)h

e of order !N . The mortar and non-

mortar fields, !(i)h("(i)h

c ) ⊂ X(i)h , and the variations of these fields, ∗!
(i)h

("(i)h

c ) ⊂ W(i)h , are
subsets of C(i)h and V(i)h and are obtained by restriction of (22) and (23) to contact surfaces

"(i)h

c . The discretized mortar multiplier space, which is physically interpreted as the space
containing contact tractions, is defined on the non-mortar side (i.e. slave surface) as

Mh =
{
"h|"h ∈ C0("(1)h

c ); ∀e ∈ Ph, "h("(1)h

ce
) ∈ PN("(1)h

ce
)
}

(24)

where Ph is the set of non-mortar element edges making up the slave surface.
With these definitions in hand, we may now define the discretized version of contact virtual

work by developing shape function expansions for the above contact surface fields and substi-
tuting into (9). The discretized multipliers, the deformation fields and their variations on the
contact surface may be interpolated as

"h(X) =
ns∑

A=1
N

(1)
A ('(1)(X))"A (25)
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!(1)h(X) =
ns∑

D=1
N

(1)
D ('(1)(X))!(1)

D (26)

!(2)h(Ȳ) =
nm∑

E=1
N

(2)
E ('(2)(Ȳ))!(2)

E (27)

∗!
(1)h

(X) =
ns∑

B=1
N

(1)
B ('(1)(X))

∗!
(1)
B (28)

∗!
(2)h

(Ȳ) =
nm∑

C=1
N

(2)
C ('(2)(Ȳ))

∗!
(2)
C (29)

where A, B and D are indices associated with slave (non-mortar) nodes, and C and E are
indices associated with master (mortar) nodes. All shape functions N

(i)
• denote the restriction

of the finite element shape functions associated with either body (1) or (2) to the appropriate
contact boundary. Other notations in (25)–(29) include "A for the nodal values of contact

tractions at slave nodes; ∗!
(1)
B and ∗!

(2)
C for nodal values of ∗!

(1)h
and ∗!

(2)h
; and !(1)

D and !(2)
E

for nodal values of !(1)h and !(2)h . The limits on the sums, ns and nm, are numbers of nodes
on the slave and master surfaces, respectively.

One may substitute Equations (25), (28) and (29) into (9) to obtain an expression for the
mortar approximation the contact virtual work, denoted in the sequel as Gcm:

Gcm(!h,
∗!

h
) = −∑

A

∑
B

∑
C

"A ·
[
n

(1)
AB

∗!
(1)
B − n

(2)
AC

∗!
(2)
C

]
(30)

where the expressions for the n
(1)
AB and n

(2)
AC are:

n
(1)
AB =

∫

"(1)h
N

(1)
A ('(1)(X))N

(1)
B ('(1)(X)) d" (31)

n
(2)
AC =

∫

"(1)h
N

(1)
A ('(1)(X))N

(2)
C ('(2)(Ȳ(X))) d" (32)

In the sequel, we will reference n
(1)
AB and n

(2)
AC as the mortar integrals.

The normal and tangential portions of the contact operator are now exposed by splitting "A

into normal and frictional parts:

"A = "NA + "TA (33)

The key to our algorithm lies in defining "NA and "TA in terms of the kinematics of the
problem.

4.1. Definition of the normal contact constraints

As was demonstrated previously in Reference [18], the normal part of the contact traction may
be represented as

"NA = −%NAnA (no sum) (34)
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where %NA represents the contact pressure at node A. It is subject to Kuhn–Tucker conditions
via

%NA " 0

gA ! 0

%NAgA = 0

(35)

where the mortar projected gap gA at slave node A is defined as

gA = nA · gA

gA := (A

[∑
B

n
(1)
AB!(1)

B − ∑
C

n
(2)
AC!(2)

C

] (36)

where (A is a scale factor defined as

(A = 1
∑

D n
(1,ref)
AD

n
(1,ref)
AD =

∫

"(1)h
N

(1)
A

(
'(1)(X)

)
N

(1)
D

(
'(1)(X)

)
d"

(37)

with "(1)h being the original configuration of the discretized slave surface. This scaling, while
not by any means unique, is performed to cause the gap function gA to have the proper units
of length, which is of crucial importance when implementing penalty methods in particular.
Equation (36) is written in terms of a nodal normal nA, based at the slave node. Definition of
this normal is a crucial aspect of our algorithm and is integrally tied to the way we do the
mortar searching; accordingly, further discussion of it is deferred to the next section.

Although other choices are possible, we consider here the use of penalty regularization to
enforce the normal contact conditions given in (35). In this case, the normal traction at node
A assumes the following form:

"NA = −)N 〈gA〉nA (38)

where )N is the normal penalty parameter, and 〈•〉 is the Macauley bracket, representing the
positive part of the operand. Augmented Lagrangian treatment of the constraint, using the above
penalization as a kernel, is readily done; the interested reader is referred to [7] for extensive
discussion of such algorithms.

4.2. Definition of the frictional contact conditions

The first step in defining the treatment of the frictional operator is to specify a penalty
regularization of conditions (17)–(20). This may be done via

Lv"T = )T

[
vT − "̇

"T

‖"T ‖

]

# := ‖"T ‖ − &‖"N‖ ! 0

"̇ " 0

#"̇ = 0

(39)
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where )T is the frictional penalty parameter. The frictional conditions (17)–(20) are recovered
in the limit as )T → ∞. Lv"T is the Lie derivative of the frictional traction, and may be
defined in the current context via

Lv"T = %̇T # (40)

where # is the unit tangential base vector. Equation (40) contains material time derivatives
of the components of "T only (i.e. no terms containing time derivatives of base vectors are
present). It is fact that makes it a frame indifferent object.

We now wish to assure that the remainder of the frictional constitutive relation in (39)
is frame indifferent. As was stated earlier, in the continuum mechanical case, the tangential
component of the relative velocity is not frame indifferent when the gap g differs from zero. In
that instance, however, frame indifference can be restored by adding in a dilatant portion to the
tangential velocity measure (see Reference [7]). In the current (mortar projected) instance, we
must perform a similar operation to assure frame indifference. Working in the time continuous
case first, one may readily show that the tangential component of the mortar projected tangential
velocity is not frame indifferent:

vnonobj
TA

:= −(A

[∑
B

n
(1)
AB !̇(1)

B − ∑
C

n
(2)
AC!̇(2)

C

]
· #A ⊗ #A (41)

where #A = e3 × nA.
Frame indifference is assessed by viewing the motion from another reference frame, denotes

in the following by superscripts ∗, which can be related to the original spatial frame via:

!∗ = c(t) + Q(t)! (42)

In (42), c(t) is a relative rigid body translation between the original spatial frame and
observer ∗, while a relative rotation is produced by the proper orthogonal tensor Q(t). The
frame indifferent relative tangential velocity should satisfy

v∗
TA

= Q(t)vTA (43)

However, by considering the effect of the transformation (42) on (41), it is readily seen that

vnonobj∗
TA

= Q(t)vnonobj
TA

− Q̇(t)(A

[∑
B

n
(1)
AB!(1)

B − ∑
C

n
(2)
AC!(2)

C

]
· [Q#A] ⊗[ Q#A] (44)

Because the bracketed term [∑B n
(1)
AB!(1)

B − ∑
C n

(2)
AC!(2)

C ] 0= 0 in general, vnonobj∗
TA

does not
satisfy Equation (43), and thus some modification is required to this relative velocity measure
to assure material frame indifference.

It turns out that this objectivity is restored by inclusion of the rate of a mortar projected
distance between the two bodies, denoted as gA in (36)). Namely, if we consider

vTA := −
[
(A

(∑
B

n
(1)
AB !̇(1)

B − ∑
C

n
(2)
AC!̇(2)

C

)
− ġA

]
· #A ⊗ #A (45)

we obtain an expression which retains the interpretation of the tangential relative velocity in
the case where perfect sliding occurs (i.e. when ġA = 0), but which contains the modification
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necessary to make the velocity measure objective under all conditions of contact. This is readily
seen by using direct calculation to exactly reexpress (45) as

vTA = −(A

[∑
C

ṅ
(2)
AC!(2)

C − ∑
B

ṅ
(1)
AB!(1)

B

]
· #A ⊗ #A (46)

where ṅ
(2)
AC and ṅ

(1)
AB are time derivatives of the mortar integrals (holding node A constant).

Since these mortar integral time derivatives are the same in frame ∗ as they are in the original
spatial frame, it is a straightforward matter to prove that vTA satisfies (43) and is therefore
frame indifferent.

Accordingly, a trial state-return map strategy is employed to determine the Coulomb frictional
tractions in an algorithmic, time stepping procedure. As in Reference [7], we first compute a
trial state, assuming no slip during the increment:

%trial
TAn+1

= %TAn
− )T (A#A ·

[∑
C

(
n

(2)
ACn+1

− n
(2)
ACn

)
!(2)

C − ∑
B

(
n

(1)
ABn+1

− n
(1)
ABn

)
!(1)

B

]
(47)

and we define a trial value for the slip function via

#trial
n+1 = ‖"trial

T ‖ − &‖"N‖ (48)

Then the return map used to define the final frictional traction is given as:

"TAn+1
=






"trial
TAn+1

= %trial
TAn+1

#A if (#trial
n+1) ! 0, stick

&‖"NA‖#A otherwise, slip
(49)

In these expressions, the subscript n + 1 means a state associated with the current iteration of
the n + 1st load (or time) step, and n is to be associated with the nth converged load step.

5. NUMERICAL INTEGRATION OF THE MORTAR INTEGRAL

Both of integrals (31) and (32) are performed on the slave surface; however, the expression in
(32) has an integrand with terms defined on two different surfaces. Thus, the mortar integral
n

(2)
AC must be carefully subdivided such that each subdomain of integration (termed a mortar

segment in this work) contains smooth contributions from both "(1)h and "(2)h . In the formulation
proposed in this paper, each mortar segment contains contributions from only one element
from each contacting surface. The notation of the mortar segment is directly analogous to the
contact segment proposed by Simo et al. [19]. Here, a new method is proposed to define the
mortar segment and it is based on the definition of the continuous normal fields on the slave
surface ("(1)h).

5.1. Definition of nodal normal and tangential directions, nA and #A

As mentioned previously, the discretization process induces a faceted contact geometry, which
gives sudden changes of surface normal and tangent vectors at contact nodes (see Figure 2).
The discontinuity of these basis vectors can adversely affect the robustness of the algorithm,
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AA − 1

A + 1

nA 1 nA 2

Figure 2. Discontinuous normal vectors on a discretized contact surface.

A
A − 1 A + 1

nA 1
nA 2

nA

Figure 3. Notation for definition of continuous normal fields on a discretized contact surface.

especially where the searching for mortar segments is concerned. Furthermore, in definition of
the nodal gap in (36), we need some notion of unique normal vector to resolve the normal
and tangential directions associated with the interface response. Here, we propose a simple
averaging method to determine these nodal basis vectors, which are used both in our mortar
segmentation algorithm and to resolve our contact constraints.

In this paper, a continuous normal field is defined on the slave surface, based on a uniquely
defined normal vector at each slave node. As illustrated in Figure 3, a unique normal vector is
defined at node A, which is the weighted average of the outward normal vectors on the two
adjacent elements which share the node A. The definition of the normal vector nA at node A is

nA = n̂A

‖n̂A‖ (50)

where

n̂A = l2nA1 + l1nA2 (51)

with nA1 and nA2 being the normal vectors defined on the two elements intersecting at node A.
The quantities l1 and l2 are the lengths of the two adjacent edges.
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Figure 4. Traditional technique for mortar segment searching, depending on closest point projection.

With this definition of normal vectors, the unit tangential vector is defined as

#A = e3 × nA (52)

Furthermore, with these definitions in hand, we can define continuous normal fields on the
entire surface by using linear interpolation. The continuous normal vector at position ' of a
slave element is represented as

ne(') = ∑
A

N
(1)
A (')nA (53)

where nA, defined in (50), is the normal vector at node A, and N
(1)
A is the shape function

associated with node A (restricted to the element boundary, as before). The continuous normal
vector will be seen to be useful in searching for mortar segments.

5.2. Searching for mortar segments

5.2.1. Traditional method based on closest point projection. There are at least two different
ways to construct mortar segments. The first method, employed in Reference [14], is similar to
the construction of contact segments given in Reference [6]. In Reference [14], the outer nodes
of each element comprising each of the two contacting surfaces are projected onto the surfaces
opposing them, as illustrated in Figure 4. These nodes and their projections then define the
extremities of the contact segments. Although techniques exist to make this algorithm robust,
there are some obvious cases in which extra heuristics are required to make the procedure
perform adequately. For example, the discontinuity at each corner can cause troubles for the
projections (as would be true also for a node-to-surface contact treatment). As shown in
Figure 5, when the closest point projection of the slave point onto the master element is
a corner (because of the discontinuity), the direction associated with the projection is no
longer coincident with the master side normals, and the linearization of this operator varies
discontinuously as the slave node moves through the region of the corner. A second problem
is also shown in Figure 5, and occurs when the normals associated with adjacent projections
actually cross each other; if one uses this searching procedure, one must actually tolerance out
such crossings when defining the segments.
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Figure 5. Potential non-robustnesses in traditional mortar segment searching algorithm.

Figure 6. The new mortar segmentation method. A typical segment is shown.

5.2.2. A new two dimensional segmentation method. In this paper, a new method is employed to
construct mortar segments, which is consistent with the definition of continuous normal fields in
the last section. Figure 6 illustrates a typical result obtained from this algorithm. In this strategy,
a continuous normal field on the slave surface is used to accomplish both sets of projections
(i.e. slave to master and master to slave). The projection of a slave node onto the master surface
is quite straightforward, and only requires finding the intersection of the master surface with
a line emanating from the slave node along nA. Projection of a master node onto the slave
surface involves finding that point on the slave surface where the continuously defined normal
points toward the master node; this calculation necessitates solution of a quadratic equation for
linear elements (cubic for quadratic elements).
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Specifically, if we wish to find the projection of a slave node !(1)
s , having normal vector

n(1)
s , onto a master element with nodes !(2)

1 and !(2)
2 , we can accomplish this via solution of

[
N1('(2))!(2)

1 + N2('(2))!(2)
2 − !(1)

s

]
× n(1)

s = 0 (54)

where '(2) is the parent co-ordinate of the projection of the slave node onto the master element.
In (54), which is a linear equation having only one solution, N1 and N2 are two shape functions
associated with the two master nodes. On the other hand, the equation to find the projection
of a master node !(2)

m onto a slave element with nodes !(1)
1 and !(1)

2 is

[
N1('(1))!(1)

1 + N2('(1))!(1)
2 − !(2)

m

]
×
[
N1('(1))n1 + N2('(1))n2

]
= 0 (55)

where '(1) denotes the projection of the master node onto the slave element. In (55), which is
a quadratic equation for a linear element, N1 and N2 are the shape functions associated with
the two slave nodes, and n1 and n2 are the two normal vectors defined on the two slave nodes.

With these ideas, the procedure to find the node-segment pairs over which these calculations
are performed can be outlined as follows:

1. As part of the initialization procedure, a global searching procedure is performed to find
the closest master element to each slave node and the closest slave element to each master
node. To find the closest master element to a slave node, we find the intersection of all
master elements with the line pointing from the slave node along the direction of the
normal vector at the slave node. The master element having the intersection closest to
the slave node is the one selected.

To find the closest slave element to a master node, we first find the closest slave node
to the master node. There will be two slave elements connected with this node, and a
slave normal as well. The closest slave element is then determined by the side of the
normal on which the master node falls.

2. In every subsequent equilibrium iteration, we perform a local search only to find the
closest elements to each slave and master node. The local search is only performed in
the neighborhood of the closest element in the last iteration. Of course, this local search
must be replaced by a more sophisticated algorithm in the instance of self-contact (see
Reference [4]).

In each iteration, we loop over all pairs of slave and master elements to find all possible
mortar segments. Those elements which are far from each other are sorted out in this
procedure, so that the mortar projection is only performed over segments defined by valid
projections and whose opposing surfaces are within some user-specified tolerance of each
other.

5.3. Adding the segment contributions

The integrations indicated in (31) and (32) are performed by subdivision of the elements into
mortar segments. The integrals are then computed by summing over all such segments on the
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entire surface, via

n
(1)
AB =∑

seg
n

(1)
AB

seg

n
(1)
AB

seg =
∫

"seg
c

N
(1)
A ('(1)(X))N

(1)
B ('(1)(X)) d"

(56)

n
(2)
AC =∑

seg
n

(2)
AC

seg

n
(2)
AC

seg =
∫

"seg
c

N
(1)
A ('(1)(X))N

(2)
C ('(2)(Ȳ(X))) d"

(57)

where seg denotes the mortar segments and "seg
c denotes a segment surface. A typical mortar

segment is shown in Figure 6.

5.4. Mapping from segment co-ordinates to element co-ordinates

To perform numerical quadrature of (56) and (57), a parameterization * of a typical mortar
segment is introduced. This variable ranges between −1 and 1 over each mortar segment.

Defining the element co-ordinates of the four ends of a mortar segment (two slave and two
master) as '(1)

a , '(1)
b , '(2)

a and '(2)
b (see Figure 6), a mapping from the * to '(i), i = 1, 2, is

given by

'(i) = 1
2 (1 − *)'(i)

a + 1
2 (1 + *) '(i)

b (58)

With these definitions and notations, the segment contributions in (56) and (57) are rewritten
as integrals on * as

n
(1)
AB

seg =
∫ 1

−1
N

(1)
A

(
'(1) (*)

)
N

(1)
B

(
'(1) (*)

) ∥∥∥∥∥
!!(1)h

e

!'(1)

∥∥∥∥∥
!'(1)

!*
d* (59)

n
(2)
AC

seg =
∫ 1

−1
N

(1)
A

(
'(1) (*)

)
N

(2)
C

(
'(2) (*)

) ∥∥∥∥∥
!!(1)h

e

!'(1)

∥∥∥∥∥
!'(1)

!*
d* (60)

By employing a numerical quadrature rule, we may write the approximation for n
(1)
AB

seg
and

n
(2)
AC

seg
via

n
(1)
AB

seg ≈
ng∑

g=1
wgN

(1)
A

(
'(1)(*g)

)
N

(1)
B

(
'(1)(*g)

)
Jseg (61)

n
(2)
AC

seg ≈
ng∑

g=1
wgN

(1)
A

(
'(1)(*g)

)
N

(2)
C

(
'(2)(*g)

)
Jseg (62)

where *g are the segment co-ordinates of quadrature points, ng is the number of segment
quadrature points, wg is the weight of the quadrature point, and Jseg is the jacobian at the
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quadrature point, given as

Jseg =
∥∥∥∥∥
!!(1)h

e

!*

∥∥∥∥∥ =
∥∥∥∥∥
!!(1)h

e

!'(1)

∥∥∥∥∥

∣∣∣∣∣
!'(1)

!*

∣∣∣∣∣ (63)

In the investigations reported in this paper, five point Gauss rules are used to evaluate the
segment mortar integrals in (61) and (62).

6. LINEAR AND ANGULAR MOMENTUM CONSERVATION

As discussed more extensively in Reference [18], the linear and angular momentum conservation
properties are intricate for mortar methods. Here we summarize briefly the results for the
proposed two dimensional formulation.

6.1. Linear momentum conservation

The algorithm proposed exactly conserves linear momentum; i.e. it ensures that the total forces
on slave and master surfaces are in equilibrium. When we formulate contact virtual work, we
suppose that:

"(1) d"(1) = "(2) d"(2) (64)

So, on a contact segment, we have

f (1)
seg − f (1)

seg =
∫

"(1)
seg

"(1) d"(1) −
∫

"(2)
"(2) d"(2)

=
∫

"(1)
seg

(∑
A

"ANA − ∑
A

"ANA

)
d"(1) = 0 (65)

so that linear momentum is conserved.

6.2. Angular momentum conservation

Angular momentum may not be conserved. The net value of moment on slave and master
surfaces can be computed as

M =
∫

"(1)
c

" ×
(
!(1) − !(2)

)
d"(1)

=∑
seg

∫

"(1)
seg

∑
A

"ANA ×
(∑

B

NB!(1)
B − ∑

C

NC!(2)
C

)
d"(1)

=∑
A

"A ×
[∑

B

n
(1)
AB!(1)

B − ∑
C

n
(2)
AC!(2)

C

]
(66)

This is zero only when "A is in the same direction as
[∑

B n
(1)
AB!(1)

B − ∑
C n

(2)
AC!(2)

C

]
or when

[∑
B n

(1)
AB!(1)

B −∑
C n

(2)
AC!(2)

C

]
=0. For frictional contact problems,

[∑
B n

(1)
AB!(1)

B −∑
C n

(2)
AC!(2)

C

]
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will not in general be parallel to "A. On the other hand,
[∑

B n
(1)
AB!(1)

B − ∑
C n

(2)
AC!(2)

C

]
is also

not in general zero, particularly since we are employing penalty methods. In most cases we can
expect that

[∑
B n

(1)
AB!(1)

B − ∑
C n

(2)
AC!(2)

C

]
will be near zero; in cases where it is not, or where

exact angular momentum conservation is important, intricate (but expensive) modifications to
the algorithm are possible.

7. LINEARIZATION OF CONTACT VIRTUAL WORK

In applying a Newton–Raphson method to the discretized version of the contact problem (6), we
employ consistent algorithmic linearization to iteratively solve the non-linear problem through
a series of linear ones. Since the details involved in this linearization are quite involved, the
discussion of this topic is deferred here to Appendix A. That appendix presents highlights of the
procedure necessary to calculate the mortar contact stiffness, beginning with the approximation
summarized in (30).

8. NUMERICAL EXAMPLES

In this section, the robustness and accuracy of the mortar element method for large deformation
contact problems is demonstrated by several numerical examples.

8.1. A contact patch test

If a contact surface between two bodies is subjected to a spatially constant stress field, it
should be able to exactly transmit this stress field from one body to another. If it can do so
for arbitrary non-conforming contact surfaces, the contact formulation passes the patch test [7].
Here we use the test method originally designed by Simo et al. [19] as a benchmark problem
for the finite element treatment of contact problems.

The configuration of the problem is shown in Figure 7, and corresponds to an elastic punch
being pressed onto an elastic foundation. To make the problem more generally representative,
the punch is offset from the centre of the foundation. A uniform pressure of p = 100.0
is applied to the upper surface of both the punch and the foundation. The punch and the
foundation are taken as linear isotropic elastic media with the same material properties, and
plane stress conditions are assumed.

We assume that E = 1000.0 and + = 0.4; the finite element discretization of the problem is
shown in Figure 8. Figure 9 shows the deformed and undeformed configurations. The dotted
line is the deformed configuration. One may note also the non-conforming and non-uniform
meshes along the contact interface. The results shown correspond to a penalty of 107; the patch
test is passed to machine precision.

8.2. Hertzian contact

A cylinder on cylinder Hertzian contact problem is presented next, to investigate the accuracy
of the proposed formulation. Because the analytical solution is for infinitesimal deformation,
we need to apply a very small load for this problem. As a result, the contact region is relatively
small. The cylinders are modelled as isotropic linear elastic materials (E = 200.0, + = 0.3),
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5

510

6
3

p = 100.0 p = 100.0

p = 100.0

Figure 7. Contact patch test problem definition.

Figure 8. Contact patch test mesh.

and the penalty parameters are )N = 5.0 × 105, )T = 5.0 × 105. The coefficient of friction is
0.2 (Figure 10).

Two parallel half cylinders are pressed by a distributed pressure p, which will induce
a normal contact force P at the point of contact. Subsequently, a second distributed load q is
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Time = 1.00E+00Time = 1.00E+00

Figure 9. Deformed and undeformed meshes for the contact patch test.

applied in the tangential direction of the plane. This load induces a frictional contact force Q
at the contact point. The load histories for p and q are given in Figure 11 where pmax = 0.625
and qmax = 0.05851 with respect to Pmax = 10 and Qmax = 0.93622, where Pmax and Qmax
are the total reaction forces over the slave surface, in the vertical and horizontal directions.

The finite element meshes are shown in Figure 12; while the comparison of the numerical
result and the analytical solution [20] for the surface tractions is given in Figure 13. There are
some small differences between the solutions because we use a large deformation formulation;
furthermore, some spatial oscillations in the numerical solution for the frictional traction are
present, seemingly due to the nonsmoothness of the frictional traction field at the stick slip
boundary. Notably, these oscillations disappear for fine meshes (see Figure 14).

8.3. Hyperelastic frictional beam contact problem

This problem is intended to test the robustness of the formulation in the context of a truly
large deformation frictional contact problem. A neo-Hookean hyperelastic constitutive model is
considered for this problem, with material parameters K = G = 1000.0 for the curved and
K = 3000.0, G = 1000.0 for the straight beam. As shown in Figure 15, a curved beam is
fixed on one end in the y direction and subjected to a vertical displacement dy = 1.2t at the
other end. Simultaneously, a horizontal displacement dx = 2.0t is applied at both beam ends.
In this problem, we set tmax = 8, so that dymax = 9.6 and dxmax = 16. The straight beam in the
figure is simply supported.
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R = 8

R = 8

p
q

Figure 10. The schematic of cylinder on cylinder Hertzian contact problem.
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1 t
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Figure 11. Load histories of the cylinder on cylinder Hertzian contact problem.
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Figure 12. The mesh for the Hertzian contact problem.

At the beginning, the two beams are in grazing contact. With the deformation of the curved
beam, it applies contact pressure and frictional traction to the straight beam. We consider
Coulomb friction in this problem and the coefficient of friction is & = 0.5.

Figure 16 depicts the discretization of the problem. The penalty parameters are )N = )T = 5.0×
103. The simulation was run over the time interval [0, 8.0] with time increments $t = 0.025.

The evolution of the deformation of the two beams is shown in Figure 17, depicting the
deformed mesh at the times t = 2.0, 4.0, 6.0 and 8.0. The large deformation and large
sliding of the problem are apparent in this figure. The reaction forces in the y direction at the
left support of the straight beam are shown in Figures 18 and 19. Results are shown both
for the mortar method proposed in this paper, as well as for the traditional node to surface
contact formulation. Results are also shown with both choices of master/slave pairings, for
both formulations. Although at first glance the results are relatively insensitive to the method
chosen (see Figure 18), the zoom shown in Figure 19 reveals the oscillations inherent to a
node to surface method for both choices of master–slave pairings, and significant reduction of
these oscillations for the mortar method. Also, the amount of variation in the results with the
two choices of master–slave pairings is significantly smaller for the mortar method than it is
for the traditional method.

8.4. A finite deformation frictional plastic contact problem

The next example is another with large deformations and large sliding. It demonstrates
the applicability of proposed method to problems involving material as well as geometric
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Figure 13. Computed nodal contact traction for frictional cylinder on cylinder
contact problem; coarse mesh.
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Figure 14. Computed nodal contact traction for frictional cylinder on cylinder
contact problem; finer mesh.
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Figure 15. Schematic of the hyperelastic beam contact problem.

Figure 16. The discretization of the hyperelastic beam contact problem.

non-linearities. We consider two contacting curved beams as shown in Figure 20. One beam is
fixed and another is given a horizontal displacement d = t with dmax = 31.2, i.e. tmax = 31.2.
Both beams are modelled using a finite deformation isotropic hardening elasto-plastic mate-
rial, with material properties taken as K = 0.6384 GPa, G = 0.2612 GPa, !y = 31 MPa and
H = 0.2612 GPa, where K and G are the bulk and shear moduli, respectively, !y is the yield
stress and H is the plastic modulus.

The two curved beams were discretized as shown in Figure 21. The penalty parameters are
)T = )N = 3.5 × 108. The coefficient of friction is & = 0.3. Over the time interval [0,31.0],
the time increments were taken as $t = 0.5. There is one time step from 31.0 to 31.2.

The evolution of deformation and plastic regions is depicted in Figure 22, which shows the
contour of the effective plastic strain. As expected, the plastic region originates near the contact
area, and grows, ultimately producing some permanent deformation which is apparent in the
figure. The sequence of convergence of the energy norm is shown in Table I for representative
time steps from this simulation. From the table, we can see this method converges quite
quickly even for time steps including large deformation and sliding. For a node-to-segment
formulation, the computation fails at some early time step even with much smaller time steps.
Table II presents the comparison of CPU time for the two approaches with t = 0.0 to 22.5. It
gives the comparisons with same time steps where approaches converge and larger time steps
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(a) (b)

(c) (d)

Figure 17. Deformed configurations for hyperelastic beam contact problem:
(a) t = 2.0; (b) t = 4.0; (c) t = 6.0; and (d) t = 8.0.
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Figure 18. Reaction force at the left support of the straight beam; hyperelastic beam problem.

for the mortar method. From Table II, we can see the node-to-surface method takes more time
because it takes more iterations to converge. In each iteration, it is a little cheaper than the
mortar method. In an overall sense, the mortar method is still much cheaper.
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Figure 19. Reaction force at the left support of the straight beam; hyperelastic beam
problem. Zoom of region for t ∈ [1, 1.5].
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Figure 20. Schematic of the large deformation plastic contact problem.

To further illustrate the performance of this method, a larger time increment $t = 2.5 was
applied at t = 5.0 and it still can get convergence. This is shown in Figure 23 with the
deformed mesh at t = 5.0 and 7.5 (bold). The convergence sequence of this time step is shown
in Table III. The struggle from 2nd to 7th iterations is because the time step is large and line
search ultimately facilitates convergence. The largest time step that can be used in this problem
with the node-to-segment formulation is only t = 0.56.
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Figure 21. Discretization of the large deformation plastic contact problem.

 EFF. PLS. STRN.
Min =  0.00E+00
Max =  1.54E-01

 2.21E-02
 4.41E-02
 6.62E-02
 8.83E-02
 1.10E-01
 1.32E-01

Current View
Min =  0.00E+00
X = 1.80E+01
Y = 0.00E+00

Max =  5.17E-02
X = 1.22E+01
Y =-1.00E+01

Time = 8.00E+00Time = 8.00E+00

 EFF. PLS. STRN.
Min =  0.00E+00
Max =  1.54E-01

 2.21E-02
 4.41E-02
 6.62E-02
 8.83E-02
 1.10E-01
 1.32E-01

Current View
Min =  0.00E+00
X = 2.50E+01
Y = 0.00E+00

Max =  1.34E-01
X = 2.43E+01
Y =-1.62E+01

Time = 1.60E+01Time = 1.60E+01

(a) (b)

 EFF. PLS. STRN.
Min =  0.00E+00
Max =  1.54E-01

 2.21E-02
 4.41E-02
 6.62E-02
 8.83E-02
 1.10E-01
 1.32E-01

Current View
Min =  0.00E+00
X = 3.30E+01
Y = 0.00E+00

Max =  1.54E-01
X = 2.43E+01
Y =-1.62E+01

Time = 2.40E+01Time = 2.40E+01

 EFF. PLS. STRN.
Min =  0.00E+00
Max =  1.54E-01

 2.21E-02
 4.41E-02
 6.62E-02
 8.83E-02
 1.10E-01
 1.32E-01

Current View
Min =  0.00E+00
X = 3.50E+01
Y = 0.00E+00

Max =  1.54E-01
X = 2.42E+01
Y =-1.63E+01

Time = 2.60E+01Time = 2.60E+01

(c) (d)

Figure 22. Deformed configurations with effective plastic strain contours for large deformation plastic
contact problem: (a) t = 8; (b) t = 16; (c) t = 24; and (d) t = 26.

8.5. An ironing problem

In this problem, a block is pressed into the slab and then slid over the surface. The material
for both the block and the slab are assumed to be Neohookean hyperelastic. The bulk and
shear modulus of the slab are K = 63.84 × 107 and G = 26.12 × 107. The block is 10 times
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Table I. Convergence behaviour, in terms of energy norm, for some representative
time steps; large deformation plastic contact problem.

Iteration No. 8 16 24 32 40 52

1 9.85E-03 8.77E-03 8.40E-03 2.75E-03 5.31E-03 2.45E-03
2 1.42E-04 4.02E-04 1.03E-03 4.51E-03 6.37E-04 5.21E-04
3 6.04E-08 8.87E-07 7.46E-04 1.33E-03 1.63E-05 2.90E-06
4 3.60E-14 1.10E-10 1.90E-05 2.07E-03 3.33E-08 1.00E-09
5 7.94E-26 1.38E-19 2.83E-08 8.41E-06 9.78E-12 7.31E-17
6 1.24E-25 3.10E-15 7.58E-09 7.49E-19 1.99E-22
7 7.45E-25 2.92E-15 8.05E-24
8 7.43E-20
9 2.94E-24

Table II. Comparison of the CPU time (in seconds) expended for
the large deformation plastic contact problem for t ∈ [0, 22.5]:

node to surface and mortar approaches.

Method Total Ave. per Ave. per iter.
time step

Node-to-Surface, $t = 0.5 86.11 0.926 0.0462
Mortar, $t = 0.5 60.06 0.652 0.0691
Mortar, $t = 2.5 34.95 0.777 0.0789

Figure 23. The deformation for one large time step, $t = 2.5, t = 5.0; large deformation
plastic contact problem.

stiffer than the slab, so the bulk and shear modulus are K = 63.84×108 and G = 26.12×108,
respectively. The geometric properties are shown in Figure 24. The bottom surface of the slab
is fixed. The block travels p = 1.8 in the vertical direction from time 0 to 1 and then q = 10
in the horizontal direction from time 1 to 2. The finite element meshes are shown in Figure
25. The deformation at t = 1.0, 1.5 and 2.0 are shown in Figures 26, 27 and 28 respectively.
Coulomb friction is considered in this problem, with the coefficient of friction being & = 0.3.
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Table III. Energy norm for the large time step depicted
in Figure 23.

Iteration no. Energy norm

1 1.32E-02
2 8.12E-03
3 1.93E-03
4 6.42E-04
5 8.48E-04
6 2.37E-05
7 1.05E-07
8 8.43E-13
9 4.78E-19
10 4.19E-24

12

4

1.2

1.2
0.2

0.2

p
q

Figure 24. The initial configuration of the ironing problem.

Figure 25. The finite element meshes of the ironing problem.
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Time = 1.00E+00

Figure 26. The deformation of the ironing problem at t = 1.0.

Time = 1.50E+00

Figure 27. The deformation of the ironing problem at t = 1.5.

Time = 2.00E+00

Figure 28. The deformation of the ironing problem at t = 2.0.

In this problem, the deformation of the slab is sufficient so that contact of the side surfaces
of the block with the slab have to be considered; this part of the contact is considered to
be frictionless. The loads applied on the top of the block are shown in Figure 29. It can be
noticed that at time between 1.0 and 1.1 we have to push harder because of the resistance
caused by the contact of the side surface with the slab. For this problem, the node-to-segment
formulation fails at time 0.66.
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Figure 29. Computed load vs time (load parameter) curves; ironing problem.

9. CONCLUSION

A mortar finite element formulation has been proposed for the solution of large deformation
frictional sliding contact problems. The implementation is demonstrated in two dimensions using
linear finite elements. Extension to high order finite elements is straightforward. The solution
scheme is based on a penalty regularization of mortar contact constraints and the linearization
of the contact virtual work was given for solving the problem using a Newton–Raphson strategy.
Several numerical examples were computed to indicate that the methodology is robust, accurate
and able to pass the patch test for non-conforming meshes along the contact surface. Several
non-linear problems with large deformations and sliding exhibit the superior robustness of the
method when compared with traditional node to surface strategies.

The numerical results also proved that the definition of continuous normal fields is effective
in overcoming difficulties in segmentation and formulation of normal contact constraints caused
by non-smooth geometry inherent to the discretized contact problem. The extension of the idea
to three dimensional problems is also possible and should make the algorithm more robust,
although the formulation is much more involved than the two dimensional case presented
here.

It is expected that future work will implement the method in three dimensional frictional
contact problems. Although the idea is similar, the three dimensional case will have more
challenges associated with the searching of contact segments and the linearization of the contact
virtual work.
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APPENDIX A: LINEARIZATION DETAILS FOR MORTAR FRICTION FORMULATION

We begin by taking the directional derivative of (30) to obtain

$Gcm(!h,
∗!

h
) = −∑

A

∑
B

∑
C

$"A ·
[
n

(1)
AB

∗!
(1)
B − n

(2)
AC

∗!
(2)
C

]

−∑
A

∑
B

∑
C

"A ·
[
$n

(1)
AB

∗!
(1)
B − $n

(2)
AC

∗!
(2)
C

]
(A1)

As indicated in (56) and (57), the mortar coefficients are ultimately defined in terms of segment
contributions. Thus, it is straightforward to express $n

(1)
AB and $n

(2)
AC in (A1) in terms of sums

of segment contributions. The result is that some portions of the mortar stiffness are most
conveniently written as assemblies of individual mortar segment contributions, while other
portions of the stiffness involve a more intricate coupling between these segment contributions.

To specify the contact linearization, we shall proceed by linearizing the following quantities
individually:

1. the normal and tangential directions defined in (51) and (52) (Section A.1);
2. the co-ordinates of the segment ends '(1)

a , '(1)
b , '(2)

a and '(2)
b (Section A.2);

3. the mortar integrals n
(1)
AB and n

(2)
AC (Section A.3); and

4. the contact traction expressions (Section A.4).

A.1. Linearization of normal and tangential vectors

Using the notation in Figure 3, we wish to linearize the normal vector at point A, which will
in turn depend also on the two nodes A − 1 and A + 1 adjacent to A. The current position of
these three points are !A−1, !A and !A+1, respectively. The components of !i are denoted
as #ix and #iy .

We define two auxiliary vectors n̄A1 and n̄A2 , which are outward normal vectors to the
elements (A − 1) − A and A − (A + 1), as

n̄A1 =




#Ay

− #A−1y

−
(
#Ax

− #A−1x

)



 =
[

n̄Ax

n̄Ay

]

(A2)

and

n̄A2 =




#A+1y

− #Ay

−
(
#A+1x

− #Ax

)



 =
[

n̄A+1x

n̄A+1y

]

(A3)

Then, l1 and l2 in (51) are represented as

l1 =
√

n̄A1 · n̄A1 (A4)

and

l2 =
√

n̄A2 · n̄A2 (A5)
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One may substitute (A4) and (A5) into (51) to obtain

n̂A =
√

n̄A2 · n̄A2

n̄A1√
n̄A1 · n̄A1

+
√

n̄A1 · n̄A1

n̄A2√
n̄A2 · n̄A2

=
(
n̄A2 · n̄A2

)
n̄A1 + (n̄A1 · n̄A1)n̄A2√

n̄A1 · n̄A1

√
n̄A2 · n̄A2

(A6)

We can redefine n̂A by scaling it, and still retain the final expression for nA in (50); this
redefinition makes the linearization easier. The new definition of n̂A is

n̂A =
[

n̂Ax

n̂Ay

]

= (n̄A2 · n̄A2)n̄A1 + (n̄A1 · n̄A1)n̄A2 (A7)

Its directional derivative is readily computed as

$n̂A = 2(n̄A2 · $n̄A2)n̄A1 + (n̄A2 · n̄A2)$n̄A1

+2(n̄A1 · $n̄A1)n̄A2 + (n̄A1 · n̄A1)$n̄A2 (A8)

Considering the linearization of (A2) and (A3), (A8) can finally be written in matrix form

$n̂A =
[

$n̂Ax

$n̂Ay

]

= M̂





$#A−1x

$#A−1y

$#Ax

$#Ay

$#A+1x

$#A+1y





(A9)

where M̂ is a 2 × 6 matrix given as

M̂ =





2n̄Ay n̄A+1x l2 + 2n̄Ay n̄A+1y

−l2 − 2n̄Ax n̄A+1x −2n̄Ax n̄A+1y

2n̄A+1y n̄Ax − 2n̄Ay n̄A+1x 2n̄A+1y n̄Ay
− l2 − 2n̄Ay n̄A+1y + l1

−2n̄A+1x n̄Ax + l2 + 2n̄Ax n̄A+1x − l1 −2n̄A+1x n̄Ay + 2n̄Ax n̄A+1y

−2n̄A+1y n̄Ax −2n̄A+1y n̄Ay − l1

2n̄A+1x n̄Ax + l1 2n̄A+1x n̄Ay





T

(A10)

In (A10), n̄Ax , n̄Ay , n̄A+1x and n̄A+1y are defined in (A2) and (A3), while l1 and l2 are defined
in (A4) and (A5).
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From (50), we have the directional derivative of nA as

$nA = $n̂A√
n̂A · n̂A

− (n̂A · $n̂A)n̂A√
(n̂A · n̂A)3

(A11)

One may substitute in (A8), to obtain the matrix form

$nA =
[

$nAx

$nAy

]

= M





$#A−1x

$#A−1y

$#Ax

$#Ay

$#A+1x

$#A+1y





(A12)

where M is also a 2 × 6 matrix expressed as

M = 1
√

n̂A · n̂A

M̂ − 1
√

(n̂A · n̂A)3




n̂2

Ax
n̂Ax n̂Ay

n̂Ax n̂Ay n̂2
Ay



 M̂ (A13)

Finally, the directional derivative of the unit tangential vector can be obtained from (52) as

$#A = e3 × $nA (A14)

A.2. Linearization of co-ordinates of the segment ends, '(1)
a , '(1)

b , '(2)
a and '(2)

b

A segment end co-ordinate can be either an element node or the projection point of an element
node. For an element node, the directional derivative of the surface co-ordinate is 0. For
the projection point, the directional derivative can be computed by the linearization of (54)
and (55).

Considering '(1)
a , if it is a slave element node, we have

$'(1)
a = 0 (A15)

At the same time, the projection of '(1)
a on the master surface is '(2)

a . By linearizing (54), one
obtains

$'(2)
a = − 1[

N
(2)
1,'('

(2)
a )#(2)

1x
+ N

(2)
2,'('

(2)
a )#(2)

2x

]
n1y −

[
N

(2)
1,'('

(2)
a )#(2)

1y
+ N

(2)
2,'('

(2)
a )#(2)

2y

]
n1x

×
{[

N
(2)
1 ('(2)

a )$#(2)
1x

+ N
(2)
2 ('(2)

a )$#(2)
2x

− $#(1)
1x

]
n1y

−
[
N

(2)
1 ('(2)

a )$#(2)
1y

+ N
(2)
2 ('(2)

a )$#(2)
2y

− $#(1)
1y

]
n1x
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+
[
N

(2)
1 ('(2)

a )#(2)
1x

+ N
(2)
2 ('(2)

a )#(2)
2x

− #(1)
1x

]
$n1y

−
[
N

(2)
1 ('(2)

a )#(2)
1y

+ N
(2)
2 ('(2)

a )#(2)
2y

− #(1)
1y

]
$n1x

}
(A16)

where (#(1)
1x

, #(1)
1y

) is the current position of slave node denoted by '(1)
a ; (#(2)

1x
, #(2)

1y
) and

(#(2)
2x

, #(2)
2y

) are the current positions of the two master element nodes; (n1x , n1y ) denote the unit

normal for the slave node '(1)
a ; ($n1x , $n1y ) are its directional derivatives (given by (A12));

and N
(2)
i,' , i = 1, 2, are the partial derivatives of N

(2)
i with respect to '.

On the other hand, if '(1)
a denotes a projection point of a master node, '(2)

a , onto the slave
element, we have

$'(2)
a = 0 (A17)

and by linearization of (55), we have

$'(1)
a = − num

denom
(A18)

where

num = −
[
N

(1)
1 ('(1)

a )$n1x + N
(1)
2 ('(1)

a )$n2x

] [
N

(1)
1 ('(1)

a )#(1)
1y

+ N
(1)
2 ('(1)

a )#(1)
2y

− #(2)
2y

]

+
[
N

(1)
1 ('(1)

a )$n1y + N
(1)
2 ('(1)

a )$n2y

] [
N

(1)
1 ('(1)

a )#(1)
1x

+ N
(1)
2 ('(1)

a )#(1)
2x

− #(2)
2x

]

−
[
N

(1)
1 ('(1)

a )n1x + N
(1)
2 ('(1)

a )n2x

] [
N

(1)
1 ('(1)

a )$#(1)
1y

+ N
(1)
2 ('(1)

a )$#(1)
2y

− $#(2)
2y

]

+
[
N

(1)
1 ('(1)

a )n1y + N
(1)
2 ('(1)

a )n2y

] [
N

(1)
1 ('(1)

a )$#(1)
1x

+ N
(1)
2 ('(1)

a )$#(1)
2x

− $#(2)
2x

]

(A19)

and

denom =
[
N

(1)
1,'('

(1)
a )n1x + N

(1)
2,'('

(1)
a )n2x

] [
N

(1)
1 ('(1)

a )#(1)
1y

+ N
(1)
2 ('(1)

a )#(1)
2y

− #(2)
2y

]

−
[
N

(1)
1,'('

(1)
a )n1y + N

(1)
2,'('

(1)
a )n2y

] [
N

(1)
1 ('(1)

a )#(1)
1x

+ N
(1)
2 ('(1)

a )#(1)
2x

− #(2)
2x

]

+
[
N

(1)
1 ('(1)

a )n1x + N
(1)
2 ('(1)

a )n2x

] [
N

(1)
1,'('

(1)
a )#(1)

1y
+ N

(1)
2,'('

(1)
a )#(1)

2y

]

−
[
N

(1)
1 ('(1)

a )n1y + N
(1)
2 ('(1)

a )n2y

] [
N

(1)
1,'('

(1)
a )#(1)

1x
+ N

(1)
2,'('

(1)
a )#(1)

2x

]
(A20)
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In (A20), (n1x , n1y ) and (n2x , n2y ) are unit normal vectors at the two slave nodes; (#(2)
2x

, #(2)
2y

)

define the current position of the master point denoted by '(2)
a ; and (#(1)

1x
, #(1)

1y
) and (#(1)

2x
, #(1)

2y
)

are the current positions of the two slave element nodes.
In a directly analogous manner to what is given above, we can compute $'(1)

b and $'(2)
b .

A.3. Linearization of n
(1)
AB and n

(2)
AC

Recalling that n
(1)
AB and n

(2)
AC are summations of segment contributions, we will obtain their

linearizations by linearizing segment contributions and then assembling the results.
The geometry on the slave side of a mortar segment is parameterized via

!(1) = N
(1)
1 ('(1))!(1)

1 + N
(1)
2 ('(1))!(1)

2 (A21)

where

N1 = 1
2 (1 − ')

N2 = 1
2 (1 + ')

(A22)

By recalling the parameterization given in (58), one can write Jseg in (63) as

Jseg = 1
4

√
(!(1)

2 − !(1)
1 ) · (!(1)

2 − !(1)
1 )('(1)

b − '(1)
a ) (A23)

The directional derivatives of n
(1)
AB

seg
and n

(2)
AC

seg
in (61) and (62) are:

$n
(1)
AB

seg =
ng∑

g=1

[
$JsegwgN

(1)
A ('(1)

g )N
(1)
B ('(1)

g )
]

+
ng∑

g=1

[
Jsegwg$(N

(1)
A ('(1)

g ))N
(1)
B ('(1)

g )
]

+
ng∑

g=1

[
JsegwgN

(1)
A ('(1)

g )$(N
(1)
B ('(1)

g ))
]

(A24)

and

$n(2)seg
AC =

ng∑
g=1

[
$JsegwgN

(1)
A ('(1)

g )N
(2)
C ('(2)

g )
]

+
ng∑

g=1

[
Jsegwg$(N

(1)
A ('(1)

g ))N
(2)
C ('(2)

g )
]

+
ng∑

g=1
[JsegwgN

(1)
A ('(1)

g )$(N
(2)
C ('(2)

g ))] (A25)
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We can compute $Jseg, $(N
(1)
A/B('(1)

g )) and $(N
(2)
C ('(2)

g )) via

$Jseg = 1
4

√
(!(1)

2 − !(1)
1 ) · (!(1)

2 − !(1)
1 )($'(1)

b − $'(1)
a )

+1
4
('(1)

b − '(1)
a )

(!(1)
2 − !(1)

1 ) · ($!(1)
2 − $!(1)

1 )
√

(!(1)
2 − !(1)

1 ) · (!(1)
2 − !(1)

1 )

(A26)

$N
(1)
A/B('(1)

g ) = N
(1)
A/B,'$'(1)

g = 1
2 (1 − *g)N

(1)
A/B,'$'(1)

a + 1
2 (1 + *g)N

(1)
A/B,'$'(1)

b (A27)

and

$N
(2)
C ('(2)

g ) = N
(2)
C,'$'(2)

g = 1
2 (1 − *g)N

(2)
C,'$'(2)

a + 1
2 (1 + *g)N

(2)
C,'$'(2)

b (A28)

One may substitute (A26), (A27) and (A28) into (A24) and (A25) to obtain $n
(1)
AB

seg
and

$n
(2)
AC

seg
:

$n
(1)
AB

seg =
ng∑

g=1

{
1
2
wgJseg(1 − *g)

[
N

(1)
A,'('

(1)
g )N

(1)
B ('(1)

g ) + N
(1)
A ('(1)

g )N
(1)
B,'('

(1)
g )

]

− Jseg

'(1)
b − '(1)

a

wgN
(1)
A ('(1)

g )N
(1)
B ('(1)

g )

}

$'(1)
a

+
ng∑

g=1

{
1
2
wgJseg(1 + *g)

[
N

(1)
A,'('

(1)
g )N

(1)
B ('(1)

g ) + N
(1)
A ('(1)

g )N
(1)
B,'('

(1)
g )

]

+ Jseg

'(1)
b − '(1)

a

wgN
(1)
A ('(1)

g )N
(1)
B ('(1)

g )

}

$'(1)
b

+
ng∑

g=1





1
4
wgN

(1)
A ('(1)

g )N
(1)
B ('(1)

g )('(1)
b − '(1)

a )
(!(1)

2 − !(1)
1 ) · ($!(1)

2 − $!(1)
1 )

√
(!(1)

2 − !(1)
1 ) · (!(1)

2 − !(1)
1 )






(A29)

and

$n
(2)
AC

seg =
ng∑

g=1

{
1
2
wgJseg(1 − *g)N

(1)
A,'('

(1)
g )N

(2)
C ('(2)

g )

− Jseg

'(1)
b − '(1)

a

wgN
(1)
A ('(1)

g )N
(2)
C ('(2)

g )

}

$'(1)
a
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+
ng∑

g=1

{
1
2
wgJseg(1 + *g)N

(1)
A,'('

(1)
g )N

(2)
C ('(2)

g )

+ Jseg

'(1)
b − '(1)

a

wgN
(1)
A ('(1)

g )N
(2)
C ('(2)

g )

}

$'(1)
b

+
ng∑

g=1

{
1
2
wgJseg(1 − *g)N

(1)
A ('(1)

g )N
(2)
C,'('

(2)
g )

}
$'(2)

a

+
ng∑

g=1

{
1
2
wgJseg(1 + *g)N

(1)
A ('(1)

g )N
(2)
C,'('

(2)
g )

}
$'(2)

b

+
ng∑

g=1





1
4
wgN

(1)
A ('(1)

g )N
(2)
C ('(2)

g )('(1)
b − '(1)

a )

× (!(1)
2 − !(1)

1 ) · ($!(1)
2 − $!(1)

1 )
√

(!(1)
2 − !(1)

1 ) · (!(1)
2 − !(1)

1 )





(A30)

Substituting directional derivatives of '(1)
a , '(2)

a , '(1)
b and '(2)

a into (A29) and (A30) and summing
the segment contributions gives the linearization of n

(1)
AB and n

(2)
AC .

A.4. Linearization of contact traction

The final intermediate result is the specification of the contact traction linearizations. We assume
a penalty treatment of these, although similar expressions for augmented Lagrangian treatments
are readily obtained.

A.4.1. Normal traction. One may compute the directional derivative of the normal traction
defined in (38) as

$"NA = −)NH(gA)$gAnA − )N 〈gA〉$nA (A31)

Computing the directional derivative of gA in (36), and substituting into (A31) gives

$"NA = −)N(AH(gA)

{
$nA ·

[∑
B

n
(1)
AB!(1)

B − ∑
C

n
(2)
AC!(2)

C

]

+nA ·
[∑

B

(
$n

(1)
AB!(1)

B + n
(1)
AB$!(1)

B

)
− ∑

C

(
$n

(2)
AC!(2)

C + n
(2)
AC$!(2)

C

)]}
nA

−)N 〈gA〉$nA (A32)
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where the results from the preceding subsections are substituted in the appropriate loca-
tions.

A.4.2. Frictional traction. From (49), we can compute the directional derivative of frictional
traction

$"TAn+1
=






$%trial
TAn+1

#A + %trial
TAn+1

$#A if (#trial
n+1) ! 0, stick

&$‖"NA‖#A + &‖"NA‖$#A otherwise, slip
(A33)

where $%trial
TAn+1

can be computed from (47) as

$%trial
TAn+1

= −)T (A$#A ·
[∑

C

(
n

(2)
ACn+1

− n
(2)
ACn

)
!(2)

C − ∑
B

(
n

(1)
ABn+1

− n
(1)
ABn

)
!(1)

B

]

−)T (A#A ·
{∑

C

[
$n

(2)
AC!(2)

C +
(
n

(2)
ACn+1

− n
(2)
ACn

)
$!(2)

C

]

−∑
B

[
$n

(1)
AB!(1)

B + (n
(1)
ABn+1

− n
(1)
ABn

)$!(1)
B

]}
(A34)

A.5. Assembly of the contact stiffness

In summarizing this process, we assume that all nodes associated with the mortar operator are
ordered via

$ =





!(1)
1

!(1)
2

...

!(1)
ns

!(2)
1

!(2)
2

...

!(2)
nm





(A35)
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Thus, the variations and incremental motions of all nodes can be given via

,$ =





∗!(1)
1

∗!(1)
2

...

∗!(1)
ns

∗!(2)
1

∗!(2)
2

...

∗!
(2)
nm





$$ =





%!(1)
1

%!(1)
2

...

%!(1)
ns

%!(2)
1

%!(2)
2

...

%!(2)
nm





(A36)

The linearization of contact virtual work in (A1) can be written in the form of summation
of direct and geometric portions as

$Gcm(!h,
∗!h) = $Gcm,dir(!h,

∗!h) + $Gcm,geom(!h,
∗!h) = ,$TKcm$$ (A37)

where

$Gcm,dir = −∑
A

∑
B

∑
C

$"A ·
[
n

(1)
AB

∗!
(1)
B − n

(2)
AC

∗!
(2)
C

]
= ,$TKcm,dir$$ (A38)

and

$Gcm,geom = −∑
A

∑
B

∑
C

"A ·
[
$n

(1)
AB

∗!
(1)
B − $n

(2)
AC

∗!
(2)
C

]
= ,$TKcm,geom$$ (A39)

where Kcm, Kcm,dir and Kcm,geom are the contact stiffness, the direct portion of the stiffness,
and the geometric portion of the stiffness, respectively.

Considering the direct portion of the stiffness first, the directional derivative of "A can be
represented as

$"A = GA$$ (A40)

where GA is a 2 × 2 · (ns + nm) matrix. Part of GA is assembled from segment contributions
and another part of it is assembled from nodal contributions. When we assemble GA, we split
it into two parts. One is from the normal contribution and the other is from the frictional
contribution, i.e.

$"A = $"AN + $"AT = GA$$

= GAN $$ + GAT $$ (A41)

where GAN and GAT are extracted from equations (A32) and (A33). For example, considering
the normal operator for the kinematically linear case, the directional derivatives of the normal
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vectors nA and the mortar projection operators n
(i)
AB disappear from (A32), and the expression

for GAN extracted from it becomes

GAN |kin.linear = −)N(AH(gA)

[
nAxnAx nAxnAy

nAynAx nAynAy

] [
n

(1)
A1I n

(1)
A2I . . . n

(2)
A1I n

(2)
A2I . . .

]
(A42)

where nAx and nAy are the x and y components of the normal vector nA. I is the 2 × 2
identity matrix. Of course, the vast majority of the elements of GA in (A42) are zero, so that
in fact only the non-zero components are computed and then assembled as is described next.

After compute GA for each slave nodes, we combine them into a matrix G, which is defined
as

G =





G1

G2

...

Gns




(A43)

which is a 2 ·ns ×2 ·(ns +nm) matrix. Then the direct portion of the stiffness can be expressed
as

Kcm,dir =




N̂T

NT



G (A44)

where

N̂ =





n
(1)
11 I n

(1)
12 I . . .

n
(1)
21 I n

(1)
21 I . . .

...
...

...




(A45)

and

N =





n
(2)
11 I n

(2)
12 I . . .

n
(2)
21 I n

(2)
21 I . . .

...
...

...




(A46)

In the above, N̂ is a 2 · ns × 2 · ns matrix, N is a 2 · ns × 2 · nm matrix, and I is the 2 × 2
identity matrix. As shown in Equation (A44), in the implementation of the direct stiffness, G
must be assembled first, then the multiplication is done after this assembly to get the direct
stiffness Kcm,dir.

The geometric contact stiffness Kcm,geom can be assembled directly from the segment con-
tributions, according to (A39).
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