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Abstract
A large number of the strain estimation methods presented in the literature
are based on the assumption of tissue continuity that establishes a continuous
displacement field. However, in certain locations in the body such as the
arteries in vivo scanning may produce displacement fields that are discontinuous
between the two walls of the artery. Many of the displacement or strain
estimators fail when the displacement fields are discontinuous. In this paper,
we present a new 2D multi-level motion or displacement tracking method for
accurate estimation of the strain in these situations. The final high-resolution
displacement estimate is obtained using two processing steps. The first step
involves an estimation of a coarse displacement estimate utilizing B-mode
or envelope signals. To reduce computational time, the coarse displacement
estimates are obtained starting from down-sampled B-mode pre- and post-
compression image pairs using a pyramidal processing approach. The coarse
displacement estimate obtained from the B-mode data is used to guide the
final 2D cross-correlation computations on radio-frequency (RF) data. Results
from finite element simulations and in vivo experimental data demonstrate the
feasibility of this approach for imaging tissue with discontinuous displacement
fields.

Introduction

Elastography and other elasticity imaging techniques provide imaging methods that are useful
in the detection and characterization of stiffer areas such as tumours in breast, prostate, thyroid,
liver (Bamber and Bush 1996, Fatemi and Greenleaf 1999, Hall et al 2003, Insana et al 2000,
Levinson et al 1995, Nightingale et al 2002, O’Donnell et al 1994, Ophir et al 1991, Parker
et al 1990, Talhami et al 1994, Wilson and Robinson 1982), characterization of the components
of atherosclerotic plaque in both the coronary (de Korte et al 1997, 1998, 2000a, 2000b,
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2002) and carotid arteries, and in the evaluation of cardiac function (Konofagou et al 2002,
Varghese et al 2002) among other applications. In general for elasticity imaging approaches,
a mechanical stimulus is applied to the tissue being imaged, and the resulting displacement
and local strain estimated from the pre- and post-compression radio frequency (RF) data.

Many of the 2D algorithms developed for elasticity imaging assume continuity of the
displacement field due to tissue continuity (Yeung et al 1998, Zhu and Hall 2002), which is
a valid assumption in most tissue geometries. However, in certain imaging situations such
as in the imaging of elasticity in the arteries, this assumption may not be valid for certain
in vivo scanning geometries. Many researchers have applied elasticity imaging techniques for
vessel wall imaging, with many of these applications focused on catheter based intravascular
ultrasound (IVUS) elastography that utilizes the arterial pulsations as the mechanical stimuli
(de Korte et al 1997, 1998, 2000a, 2000b, 2002). IVUS elastography is an invasive method,
and the quality of the estimated local strain suffers from many artefacts such as reverberation
ring artefacts, catheter motion during data acquisition, strain projection artefacts due to catheter
position in vessel (De Korte et al 1999, Shi et al 2003, 2005). However, these methods do
provide valuable information regarding the stiffness properties of the plaque within the vessel
that is useful for the characterization of atherosclerotic plaque.

For shallower blood vessels such as the carotid artery, conventional ultrasound systems
using higher frequency transducers are generally utilized to image the vessel wall for
the evaluation of atherosclerotic plaque and need for surgical procedures such as carotid
endarterectomy. Strain imaging can also be performed in shallower large arteries in a totally
non-invasive manner utilizing the arterial pulsations as the mechanical stimuli. Since the
ultrasound scanning performed is totally non-invasive, patients are more comfortable during
the clinical scanning procedure. However, one of the issues associated with the longitudinal
imaging of the carotid artery is that the arterial wall closest to the transducer moves towards the
transducer, while the distal wall moves away from the transducer due to the arterial pulsations.
Therefore for strain imaging of the carotid artery, since the displacement field is no longer
continuous, multi-level processing as discussed in this paper is essential to provide a means
for tracking these displacements.

Many different methods have been developed to compute local strains in tissue; however,
most of these algorithms were developed for the imaging of continuous media (Alam et al
1998, Brusseau et al 2000, Chaturvedi et al 1998a, 1998b, O’Donnell et al 1994). Multiscale
methods have also been utilized for elasticity imaging (Chaturvedi et al 1998a, Pellot-Barakat
et al 2004). Zhu et al (1999) used a 2D deformable mesh method to estimate strain, which
accommodates more general forms of tissue motion. Later, Zhu and Hall (2002) introduced a
modified block matching method to obtain real-time strain images, based on the assumption
that the displacement field is continuous in tissue, and utilize displacement estimates from
shallower depths to predict the displacements at deeper depths in tissue. Maurice et al (2004)
have developed a method for noninvasive vascular elastography to characterize the mechanical
properties of superficial arteries using the Lagrangian speckle model for two-dimensional strain
estimation (Maurice et al 2005).

In this paper, we demonstrate the feasibility of utilizing a multi-level cross-correlation
based 2D strain estimation method that can be utilized to obtain strain images in situations
where the displacement fields are not continuous. In the following sections, we will
compare the performance of the multi-level approach to both 1D cross-correlation and 2D
block matching techniques using finite element simulation models. In vivo experimental
results on a section of the carotid artery that demonstrates the ability of the multi-level
algorithm to track local displacements on the distal wall of the carotid artery are also
presented.
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Figure 1. Schematic diagram of the multi-level motion tracking algorithm.

The multi-level algorithm

The multi-level pyramid construction for the elastographic processing of the pre- and post-
compression frames is described in this section. Let Lmax denote the total number of processing
layers in the pyramid, where layer L = 0 is the bottom layer. In our application, the bottom
layer (L = 0) is constructed from the RF data matrix. At the same time, a B-mode or
envelope image B0 from the RF data matrix is also generated. Layers L = 1 to Lmax–1
are constructed with B-mode or envelope images. These B-mode images are generated by
sub-sampling the initial B-mode image B0 obtained from the L = 0 RF data matrix. For
example, if we denote the B-mode image at layer L as BL, BL is a half sampled version of
BL–1. The reason that the layers L = 1 to Lmax–1 are constructed with B-mode image data
instead of directly down-sampling the RF data, is that direct down-sampling of RF data may
violate the Nyquist sampling criterion. On the other hand, B-mode images are smoother
(envelope of the RF signals) and down-sampling of the B-mode image would still maintain
the B-mode features of the ultrasound image. The bottom layer L = 0 is constructed using
the RF data matrix instead of the B-mode image since motion tracking on RF signals provides
more precise displacement estimates. Figure 1 illustrates the multi-level pyramid constructed
for the elastographic processing. Processing the ultrasound data in this manner enables the
precise and high resolution estimation of the displacement on the RF frame pairs, since these
are guided by the coarser displacement estimates obtained from the B-mode envelope data.
The use of the multi-level pyramid in the processing of the B-mode data enables faster
processing, and easier search and estimation of global displacement trends in the underlying
tissue. This particular feature enables the accurate estimation of the displacement in
discontinuous media such as in the elastographic imaging of arteries previously described,
as opposed to most of the previously described techniques that assume continuity in the
displacement estimates.

A 2D processing kernel is utilized for tracking the displacement due to the tissue
deformation for all the stages of the multi-level pyramid proposed in this paper. Two-
dimensional cross-correlation processing is used to track the displacement, with B-mode
envelope signals used in levels L = 1 to Lmax–1, and RF data for the L = 0 level. Since coarse
displacement estimates are obtained from the B-mode envelope data, the final processing step
on the RF data is conducted using 2D kernels whose sizes are around one wavelength in the
axial dimension and 3–5 A-lines along the lateral or width direction.
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The kernel size used at each level of the pyramid is independently set. Although we
down-sample the envelope signals at each level, we still use larger kernels at the upper
levels. The kernel size can be varied for different applications; for example, a combination of
[15, 10], [4, 5], [1, 3] from the top to the bottom level was utilized in this paper, where the first
value refers to the number of wavelengths utilized along the axial direction, while the second
value denotes the number of A-lines used in the lateral direction.

The 2D cross-correlation coefficient which is used for the matching criteria or the
confidence measure of the displacement estimate is shown below:

• For the L = Lmax–1 (highest level):

CC(i, j) =
∑M

x=1

∑N
y=1[I0(x, y) − Ī 0][I1(x + i, y + j) − Ī 1]√∑M

x=1

∑N
y=1[I0(x, y) − Ī 0]2 × ∑M

x=1

∑N
y=1[I1(x + i, y + j) − Ī 1]2

(1a)

• For the L = Lmax − 2 to L = 0,

CC(i, j) =
∑M

x=1

∑N
y=1[I0(x, y)− Ī 0][I1(x + i + i0, y + j + j0)− Ī 1]√∑M

x=1

∑N
y=1[I0(x, y)− Ī 0]2 × ∑M

x=1

∑N
y=1[I1(x + i + i0, y + j + j0)− Ī 1]2

(1b)

where I0 and I1 represent the pre- and post-compression data frames. i and j denote relative
shifts between the I0 and I1 data frames in the same level, i0 and j0 are relative shifts between
pre- and post-compression data frames from the upper layer. M and N are the block sizes in
axial and lateral directions, where Ī 0 and Ī 1 denote the mean values of the blocks I0 and I1

used in calculation.
After motion or displacement tracking at each level of the pyramid, we utilize the

normalized cross-correlation coefficient as a confidence measure corresponding to the
reliability of the displacement estimate. Displacement estimates with a low normalized cross-
correlation coefficient are replaced or interpolated from surrounding displacement estimates
that possess a higher normalized cross-correlation value. The threshold for the normalized
cross-correlation coefficients was empirically chosen. For example, for a pyramid with
Lmax = 3, we choose [0.3, 0.5, 0.6, 0.75] as the cross-correlation threshold for levels 3, 2, 1, 0
respectively.

Following displacement estimation, a cubic spline based smoothing technique is utilized
to reduce noise artefacts, in the estimated displacement field D0(x, y). Assuming that D0(x, y)

denotes the estimated displacement field, where x denotes the lateral direction, and y the axial
direction, the function of the cubic spline smoothed displacement field D1(x, y) is to satisfy
the following condition:

arg min
D1(x,y)

∑
x

∑
y

[
p|D0(x, y) − D1(x, y)|2 + (1 − p)

d2D1(x, y)

dy2

]
. (2)

The first term in the above bracket is utilized to keep the smoothed displacement field D1(x, y)

close to the original estimated displacement field D0(x, y). The second term in the above
bracket represents the second-order derivative of the smoothed displacement field D1(x, y).
The weighting parameter p (0 < p < 1) is used to balance the contribution of these two terms
to the smoothing of the displacement field. When p = 1, D1(x, y) becomes the least-squares
straight line fit of the original displacement field D0(x, y). At the other extreme when p = 0,
D1(x, y) becomes the natural cubic spline fit of the original displacement field D0(x, y).
When the weighting parameter takes a value between 0 and 1 (i.e. 0 < p < 1) the smoothed
displacement field D1(x, y) lies between the least-squares straight line fit and natural cubic
fit.
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Simulation results

Method

To verify the performance of the 2D multi-level algorithm on discontinuous media, we utilize
the commercial ANSYS finite element analysis (FEA) software to simulate the deformation
induced by the pulsation of blood on simulated vessel walls embedded in tissue. Tissue with
the embedded vessel was scanned using a linear array transducer with a width of 4 cm and an
imaging depth of 5 cm. The vessel wall was simulated to have a thickness of 5 mm, and the
inner diameter of the vessel was set to 5 mm. The modulus ratio for vessel wall versus the
surrounding tissue was set at 2:1. The top and bottom boundaries of the tissue surrounding
the vessel are fixed, and internal pressure perpendicular to the vessel wall applied from within
the vessel lumen.

The pre-compression nodal positions and the displacement field after compression are then
utilized in an ultrasound simulation program (Li and Zagzebski 1999) to generate pre- and
post-compression RF echo signal data for elastographic processing. This program simulates
the frequency domain response of ultrasound wave transmission through a scattering medium.
The frequency response is then transformed back to the time domain to obtain ultrasound
images. This simulation program achieves similar RF waveforms when compared to typical
time domain simulation programs such as Field II. We simulate the speed of sound in tissue to
be 1540 m s−1, the size of scatterers as 50 µm and the density of scatterers to be 1011 m−3 to
simulate Rayleigh scattering statistics. The simulated centre frequency is 10 MHz with 80%
bandwidth. The region corresponding to blood flow, i.e. the region within the vessel lumen
was not assigned any material properties in the ANSYS finite element simulation software.
However, in the frequency domain ultrasound simulation program, this region with blood
flow comprises random scatterers with a very low density (106 m−3, which is 1/105 of the
scattering density in tissue) when compared to the scattering from surrounding tissue similar
to that observed under in vivo scanning conditions. The backscattered signals from the region
within the lumen are significantly lower in the RF pre- and post-compression signals, due
to the lower density of the scatterers. The cross-correlation coefficient values in this region
between the pre- and post-pressure signals are also quite low. We compare the performance
of the following strain estimation algorithms to compute the elastograms or strain images
from the simulated RF data pairs, namely the: (1) 1D cross-correlation method; (2) 2D block
matching method that utilizes the continuity assumption; (3) 2D multi-level method.

Results

Figures 2(a) and (b) show the pre- and post-compression B-mode images. The simulated ideal
strain image obtained using ANSYS is shown in figure 2(c), while figures 2(d)–(f) show the
calculated elastogram using the three methods mentioned above. Note from figure 2(d) that
the 1D cross-correlation method fails due to the increased lateral signal decorrelation due to
the movement of the scatterers in the lateral direction. The 2D block matching method works
well for the top half of the vessel as expected (see figure 2(e)), since the displacement field is
continuous to that point. However, starting from the middle of the vessel, the displacement
field becomes discontinuous, since the tissue displacement in this region is away from the
transducer as opposed to the first half of the vessel where the displacement is towards the
transducer. Therefore this method fails, as would all the methods developed for continuous
media (where the displacement field is continuous) since they are unable to track these
discontinuous displacement fields. The strain image or elastogram obtained for the lower half
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Figure 2. Ultrasound B-mode and strain images for a simulated artery. B-mode images (a) before
and (b) after the internal applied pressure within the lumen to deform the artery walls. The ideal
axial strain image obtained using the ANSYS model (c). Local strain images obtained using (d)
1D cross-correlation (e) 2D block matching, and (f) the 2D multi-level method.

is therefore contaminated with increased noise artefacts. On the other hand, the 2D multi-level
method tracks the displacement field accurately, and the calculated elastogram clearly shows
the vessel wall on both sides of the lumen. The 2D multi-level algorithm does not make any
assumptions regarding the continuity of the displacement field. Comparing figure 2(f) with
the ANSYS simulated strain result shown in figure 2(c) illustrates the similarity in the results.

A quantitative comparison of the strain estimation performance of the 2D multi-level
method with the 2D block matching method is illustrated in figure 3. Figure 3(a) presents
plots of the variation in the signal-to-noise ratio (SNRe) in a uniformly elastic region around the
top edge of the vessel phantom at different compressions. We choose a region of interest (ROI)
with dimensions of 1 cm2 centred at depth of 1 cm. Observe that the SNRe values obtained for
2D block matching for small compression (1–2%) are higher than the 2D multi-level method,
while at larger applied compressions, the SNRe for both methods are very similar. This result
compares the performance of the two 2D methods in media where the displacement field is
continuous. The primary reason for the better performance of the 2D block matching method
is due to the fact that it tracks the displacement by utilizing a priori displacement information
from the previous row, and therefore for small strains the displacement field satisfies the
continuity assumption due to the smooth displacement field. The 2D multi-level algorithm,
on the other hand, estimates the displacement field at each location, and thus the neighbouring
displacement estimates could be discontinuous, and therefore the strain estimated from the
displacement field has a smaller SNRe than the 2D block matching approach.
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Figure 3. Comparison of the SNRe obtained versus applied strain for the 2D multi-level method
and block matching methods, for a 1 cm2 region (a) centred at depth of 10 mm depth; (b) and
centred at a depth of 40 mm (after the distal wall).

The 2D multi-level method, however, performs better for discontinuous media such as for
blood vessels, where the displacement field is discontinuous starting at the vessel lumen. The
improvement in the strain estimation performance is illustrated in figure 3, where the variations
in the SNRe are plotted for ROIs within the vessel wall on the proximal side in figure 3(a), and
the distal side in figure 3(b). Note that the multi-level method performs significantly better
than the block-matching method on the distal part of the vessel as illustrated in figure 3(b).

Simulation results obtained using a FEA simulation of a fibrous capsule with a lipid
inclusion are shown in figure 4. Plaque geometry within a typical carotid artery is simulated
and meshed using ANSYS. The model shows a lipid based plaque with a thin fibrous capsule
surrounding the lipid region attached to the bottom wall of the artery. A small calcified region
is also simulated inside the lipid region. The deformation of the plaque is obtained by applying
a uniform pressure from within the lumen similar to that utilized in figure 2, on both the inner
wall and the plaque capsule. The resultant displacement field as well as the initial nodal
position of the mesh is then utilized by the ultrasound simulation program to generate pre- and
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Figure 4. Ultrasound B-mode and strain images for a simulated artery with atherosclerotic plaque.
(a) B-mode image before and (b) after compression, and the (c) ideal strain image obtained using
FEA analysis. Local strain images obtained using (d) 1D cross-correlation, (e) 2D block matching
and (f) the 2D multi-level method.

post-compression RF data frames. Figures 4(a) and (b) show the B-mode images before and
after compression, while figure 4(c) shows the ideal strain image calculated from the ANSYS
displacement field.
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Elastograms or axial strain images are then calculated using 1D cross-correlation, 2D block
matching and the 2D multi-level method. Figure 4(d) shows the strain image obtained using
1D cross-correlation, and figure 4(e) presents results from the 2D block matching algorithm.
The strain image calculated using the 2D multi-level method is shown in figure 4(f), where the
plaque structure simulated is clearly observed as simulated using the FEA, when compared
to figure 4(c). In a similar manner as was illustrated in figure 2, 1D cross-correlation fails
due to the increased lateral motion of the scatterers, while the 2D block-matching algorithm
estimates the local displacement field up to the lumen centre or as long as the displacement
field is continuous. In figure 4(e) for the block-matching algorithm, displacements were
computed from the distal end of the artery, such that simulated tissue that included the plaque
was continuous. This is the reason for the noise artefacts in the top section of the strain image
in figure 4(e).

Experimental results

Experimental setup and data processing

In vivo data acquisition on patients with carotid stenosis and plaque was performed at the
University of Wisconsin-Madison Hospitals and Clinics. This study was approved by the
UW-Madison Institutional Review Board (IRB) for data acquisition on human patients.
Ultrasound RF data were acquired on patients who had consented to the study, using a
Siemens Antares system with the Axius direct ultrasound research interface (URI). Patient
scanning was performed as a standard clinical carotid examination, where the sonographer
places the VFX 13-5 transducer on the skin surface at the location of carotid artery. The
centre frequency of the transducer was set at the highest frequency of the transducer, i.e.,
11.43 MHz. The lateral resolution was also set to the highest value, i.e. 508 A-lines for a
beamwidth of 38 mm. The sampling rate was 40 MHz, and a single transmit focus was set at
the depth of the plaque with dynamic focusing on receive. Radiofrequency data were acquired
at the maximum frame rate allowed by the system under the imaging conditions described
above. During data acquisition, the patients were requested to hold their breath to reduce
respiratory motion artefacts. After data acquisition on the patient, RF data were transferred to
a personal computer for off-line post-processing. Normalized 2D cross-correlation processing
was performed on RF data frames with a relative deformation of around 1–2% to compute the
displacement field and local strain using the multi-level processing technique described in the
paper.

Figures 5(a) and (b) show typical pre- and post-deformation B mode images from a patient
prior to carotid endarterectomy. The ultrasound B-mode images show a large plaque attached
to the distal wall of the carotid artery. The plaque contains both soft region and calcified
regions that are clearly seen using the arrows. The arrow at the bottom points to the location
of the calcified region, while the five arrows at the top indicate the boundary of the plaque.
The softer plaque region is under the top three arrows on the right. We expect a relatively low
strain area on elastogram, corresponding to the calcified region, and a relatively high strain
region corresponding to the softer region. We also expect to be able to visualize the plaque
boundaries on the elastogram.

Figures 5(c) and (d) show the elastograms calculated using 1D cross-correlation, and
the 2D block matching method respectively. Observe from figure 5(c) that the 1D cross-
correlation method does not perform well at the plaque boundary due to increased lateral
signal decorrelation. In figure 5(d), the strain image obtained using 2D block-matching based
on the tissue continuity assumption provides accurate estimation of local strain for regions
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Figure 5. Ultrasound B-mode and strain images for an in vivo carotid artery with atherosclerotic
plaque. (a) B-mode image before (frame 43) and (b) after (frame 44) the deformation induced by
the blood flow. Local strain images obtained using (c) 1D cross-correlation and the (d) 2D block
matching method. Both the local (e) displacement field and (f) strain image calculated using the
2D multi-level method are presented.
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near the vessel wall closest to the transducer, and fails to estimate local displacements from
the vessel boundary distal to the transducer (since the tissue continuity assumption does not
hold in this region). On the other hand, figure 5(e) presents the local displacement field
estimated using the 2D multi-level method described in this paper. Figure 5(e) shows that
the displacement field becomes discontinuous almost immediately at locations close to the
artery wall closest to the transducer. Finally, figure 5(f) presents the local strain image
generated from displacement image shown in figure 5(e), obtained using the 2D multi-level
algorithm.

Observe from figure 5(f) that the boundary of the plaque is clearly delineated in the
elastogram, while on the B-mode images 5(a), (b) the boundary is not clearly visualized.
Moreover, the elastogram in figure 5(f) shows large regions inside the plaque that exhibit
uniform strains. A region that incurs large strains, indicating a softer region is also clearly
visualized. We have to point out that the large strain region does not represent the calcified
region; instead, it is located just above the calcified region. The strain value corresponding to
the calcified region is actually close to zero. The elastogram shown in figure 5(f) correlates
very well with the B-mode image, as well as providing useful information not obtained from
the B-mode image (figure 5(a)).

Discussion

In this paper, we demonstrate the ability of the 2D multi-level cross-correlation method to
compute local displacement fields and strains in discontinuous media. Coarse displacement
estimates are initially obtained using sub-sampled B-mode data using a multi-level pyramid
algorithm. The coarse displacement estimates are then utilized to guide the high resolution
estimation on the lowest level of the pyramid containing the RF echo signal data. This method
combines the advantages provided by the robustness of B-mode envelope tracking and the
precision obtained using RF motion tracking to obtain high resolution displacement and strain
estimates. The processing scheme described in this paper that utilizes the coarse displacement
estimation using B-mode data and the multi-level approach enables the algorithm to track
discontinuous displacement fields. This algorithm is therefore not limited by the assumption
of a continuous displacement field utilized in most strain estimation algorithms. This method
therefore is particularly suited for local strain estimation of blood vessels and for plaque
characterization.

Several groups (Yeung et al 1998) have applied speckle tracking algorithms by searching
regions using larger 2D search regions over the B-mode images and progressively moving to
smaller blocks to improve the resolution of the strain image. The approach followed by Yeung
et al (1998), however, does not down-sample the ultrasound B-mode image to construct the
multi-level pyramid, claiming that the down-sampling of the B-mode images would change
the speckle patterns. However, in our multi-level method, we find that the down-sampling
of the B-mode images does not introduce any speckle tracking problems. In contrast, the
smaller B-mode image sizes in each upper level of the pyramid significantly improve the
computational efficiency.

Maurice et al (2004) developed a method for noninvasive vascular elastography, using
the Lagrangian speckle model to estimate two-dimensional tissue motion. This estimator
iteratively optimizes the motion field between pre- and post-compression images to obtain an
optimum match. However, this approach has the drawback that the calculation of motion relies
on the model, which has been evaluated in simulations. However for in vivo applications,
tissue motion is complicated and the appropriate tissue motion model may be difficult to set
up. In addition, the assumption regarding the linear transformation between the pre- and
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post-compression data would be dependent on specific strain imaging applications and may
be restrictive in certain situations.

Pellot-Barakat et al (2004) have also utilized a multiscale method to track tissue
displacements. However, they assume tissue continuity which is different from our approach
as previously described. In their in vitro experiment, the ultrasound transducer is placed on
the top surface of the phantom, and the induced displacement field after compression with the
transducer is primarily along the same direction. This differs from the results reported in this
paper where pressure is applied within the lumen, and the displacement fields are in opposite
directions, i.e. towards the transducer before the lumen and away from the transducer beyond
the lumen.

In this paper, we focus on strain estimation in discontinuous tissue or tissue with
discontinuous motion fields. Smoothing of the displacement field after displacement
estimation in each level using the cubic splines reduces errors in propagation of the
displacement estimates at each level. The selection of the value of the weighting parameter
‘p’ is important for estimation of the local displacement fields. When the weighting parameter
approaches 0, the displacement field obtained is similar to that obtained using the linear least-
squares fit of the displacement field, while when the weighting parameter is close to 1, the
displacement field is the same as the natural cubic spline fit of the original displacement field.

To compare the computational load, we ran the three algorithms in the same environment,
i.e., Matlab 7.0 on a PC (Windows XP Pro, Pentium III 1GB CPU, 512MB memory). For a
typical data set with 4096 points along the axial direction and 360 A-lines, the computation
time for the 1D cross-correlation algorithm was ∼30 s (this value varies depending on the CPU
fraction), while the typical computation time for the Matlab code for the 2D block matching
algorithm requires ∼9 times the computation time, while the Matlab code with the multi-level
algorithm requires ∼14 times the computational time. One of the reasons why the 2D multi-
level code is more computationally intensive is due to the large search range in the upper
levels to obtain the relative movement between the two frames. However, these codes can
be rewritten using C++; and run on a faster state-of-the-art system to improve computational
efficiency and operate in real time.

Conclusion

In this paper, we explore the feasibility of utilizing a 2D multi-level cross-correlation based
method to compute local displacements and strains for discontinuous tissue. The FEA
simulations and in vivo experimental data demonstrate the improvement in the strain estimation
performance over algorithms based on the tissue continuity assumption.
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