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ABSTRACT

We perform axisymmetric (2D) multiangle, multigroup neutrino radiation-hydrodynamic calculations of the post-
bounce phase of core-collapse supernovae using a genuinely 2Ddiscrete-ordinate (Sn) method.We follow the long-term
postbounce evolution of the cores of one nonrotating and one rapidly rotating 20 M� stellar model for �400 milli-
seconds from160 to�550ms after bounce.We present amultidimensional analysis of themultiangle neutrino radiation
fields and compare in detail with counterpart simulations carried out in the 2D multigroup flux-limited diffusion
(MGFLD) approximation to neutrino transport. We find that 2Dmultiangle transport is superior in capturing the global
and local radiation-field variations associated with rotation-induced and SASI-induced aspherical hydrodynamic con-
figurations. In the rotating model, multiangle transport predicts much larger asymptotic neutrino flux asymmetries with
pole-to-equator ratios of up to�2.5, whileMGFLD tends to sphericize the radiation fields already in the optically semi-
transparent postshock regions. Along the poles, the multiangle calculation predicts a dramatic enhancement of the
neutrino heating by up to a factor of 3, which alters the postbounce evolution and results in greater polar shock radii and
an earlier onset of the initially rotationally weakened SASI. In the nonrotating model, differences between multiangle
and MGFLD calculations remain small at early times when the postshock region does not depart significantly from
spherical symmetry. At later times, however, the growing SASI leads to large-scale asymmetries and the multiangle
calculation predicts up to 30% higher average integral neutrino energy deposition rates than MGFLD.

Subject headinggs: hydrodynamics — neutrinos — radiative transfer — stars: evolution — stars: neutron —
supernovae: general

1. INTRODUCTION

Four decades after the first pioneering neutrino radiation-
hydrodynamic calculations of stellar collapse (Colgate & White
1966; Arnett 1966; LeBlanc & Wilson 1970; Wilson 1971), the
details of the core-collapse supernova explosion mechanism re-
main obscure. However, certain essentials are clear. The collapse
of the evolved stellar core to a protoYneutron star (PNS) and its
evolution to a compact cold neutron star provides a gigantic res-
ervoir of gravitational energy,�3 ; 1053 erg, amass-energy equiv-
alent of �0.17M�. Any core-collapse supernovamechanismmust
tap this energy and convert the fraction needed to match Type II
supernova observations (�1051 erg � 1 bethe [B]) into kinetic
and internal energy of the exploding stellar envelope.

There is general agreement that the prompt hydrodynamic
explosion mechanism does not work and that the bounce shock
always stalls, falling short of blowing up the star (e.g., Bethe
1990; Janka et al. 2007), and must be reenergized to lead to a
supernova. However, there is no agreement on the detailed mech-
anism that revives and endows the shock with sufficient energy to
make a canonical �1 B supernova. For decades, the ‘‘neutrino
driven’’ mechanism, first proposed in its direct form by Colgate
& White (1966) and in its delayed form by Wilson (1985) and
Bethe &Wilson (1985), seemed compelling. It relies on a subtle
imbalance of neutrino heating and cooling that leads to a net en-
ergy deposition behind the stalled shock, sufficient to revive it

and drive the explosion on a timescale of hundreds of millisec-
onds.While appealing, it has been shown to fail for regularmassive
stars in spherical symmetry (1D) when the best neutrino physics
and transport are used (Rampp & Janka 2000; Liebendörfer et al.
2001, 2005; Thompson et al. 2003). Yet, weak explosions may be
obtained in 1D for the lowest mass progenitors, O-Ne-Mg cores
(Kitaura et al. 2006; Burrows et al. 2007a).

It is now almost certain that the canonical explosion mecha-
nism must be multidimensional (2D/3D) in nature. The multi-D
dynamics associated with convective overturn in the postshock
region (e.g., Herant et al. 1994; Burrows et al. 1995; Janka &
Müller 1996; Buras et al. 2006a) and the recently identified stand-
ing accretion shock instability (SASI; e.g., Foglizzo & Tagger
2000; Foglizzo et al. 2007; Scheck et al. 2008; Blondin et al.
2003; Burrows et al. 2007c; Iwakami et al. 2008) lead to a dwelling
time of accreting outer core material in the postshock region that
is larger on average than in the 1D case. This results in a greater
neutrino energy deposition efficiency behind the shock and, thus,
creates more favorable conditions for explosion (Burrows &
Goshy 1993; Janka 2001; Thompson et al. 2005; Marek & Janka
2007).

The first generation of multi-D supernova calculations, still
employing gray flux-limited diffusion (or yet simpler schemes)
for neutrino transport, indeed found that neutrino-driven con-
vective overturn in the region between the stalled shock and the
PNS sufficiently increased the neutrino energy deposition rate to
lead to a delayed explosion (Herant et al. 1994; Burrows et al.
1995; Janka&Müller 1996; Fryer &Heger 2000; Fryer &Warren
2002, 2004). Themore sophisticated studies that followed changed
this picture. Recent long-term axisymmetric (2D) supernova cal-
culations withmultigroup, multispecies neutrino physics and trans-
port find it difficult to explode garden-variety massive stars via
the neutrino mechanism. Buras et al. (2006a) report explosion
only for the low-mass (11.2 M�) progenitor of Woosley et al.
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(2002) while Marek & Janka (2007) report the onset of explo-
sion in a 15M�model of Woosley &Weaver (1995) given mod-
erately fast rotation and the use of the Lattimer-Swesty equation
of state (EOS; Lattimer & Swesty 1991) with a nuclear compres-
sibility modulus K0 of 180 MeV, which is significantly softer
than the current best experimental values (K0 ¼ 240 � 20MeV;
Shlomo et al. 2006). On the other hand, Bruenn et al. (2006)
obtain explosions for 11 and 15M� progenitors fromWoosley &
Weaver (1995) only when they take silicon and oxygen burning
into account and due to a synergy between nuclear burning, the
SASI, and neutrino heating.

Burrows et al. (2006, 2007c) do not obtain neutrino-driven
explosions (except in the case of O-Ne-Mg cores and accretion-
induced collapse; Dessart et al. 2006b), but observe the excita-
tion of PNS core g-modes. In their calculations, the PNS core
oscillations reach nonlinear amplitudes and damp via the emis-
sion of strong soundwaves that propagate through the postshock
region and efficiently deposit energy into the shock, eventually
leading to late explosions at �1 s after bounce. This acoustic
mechanism appears to be robust enough to blow up even the most
massive and extended progenitors (Burrows et al. 2007c; Ott et al.
2006a), but remains controversial and needs to be confirmed by
other groups (see, e.g., Yoshida et al. 2007;Weinberg&Quataert
2008).

In the context of rapid progenitor rotation, Burrows et al.
(2007b), Dessart et al. (2008), and Dessart et al. (2007) (the latter
for the accretion-induced collapse scenario) have shown that en-
ergetic MHD-driven explosions may be obtained if field ampli-
fication by the magnetorotational instability (Balbus & Hawley
1991) is as efficient in the core-collapse context as suggested
(Akiyama et al. 2003). Whether rotation alone and without strong
magnetic fields favors or disfavors a neutrino-driven explosion
remains to be seen (Walder et al. 2005; Dessart et al. 2006b; Ott
et al. 2006b), but rapid rotation has been shown to damp convec-
tion (Fryer &Heger 2000) andweaken the SASI in 2D (Burrows
et al. 2007b).

1.1. Core-Collapse Supernova Theory
and Neutrino Radiation Transport

Neutrinos, their creation, propagation, and interactions with
supernova matter, are of paramount importance to the core-
collapse supernova problem. They carry away�99% of the final
neutron star’s gravitational binding energy and �1% of this en-
ergywould be sufficient to blowup the star. Depending on progen-
itor characteristics that set the postbounce rate of mass accretion
onto the PNS, a successful supernova explosion should occur
within�1Y1.5 s after bounce tomatch observational and theoret-
ical neutron star upper mass limits around�2Y2.5M� (Lattimer
& Prakash 2007 and references therein). Consequently, the ex-
plosion mechanism must deliver canonical 1 B explosions on
this timescale and, if the explosion is neutrino driven, the neu-
trino heating efficiency5must be on the order of 10% to yield an
explosion that achieves an energy of 1 B within �1 s.

The neutrinos traveling through the postshock region in a
postbounce supernova core are not in thermal equilibrium with
the baryonic matter. They should ideally be treated with full
kinetic theory, describing the neutrino distributions and their
temporal distribution with the Boltzmann equation (Mihalas &
Mihalas 1984). Boltzmann transport is in its most general form

a 7-dimensional problem: the 6D neutrino phase space (usually
split up into 3D spatial coordinates, neutrino energy, and 2 an-
gular degrees of freedom) and time. In addition, there are up to
six neutrino types (three particle species, and their antiparticles) to
deal with. Spherically symmetric Boltzmann transport schemes
have been devised and implemented in the core-collapse context
(Mezzacappa&Bruenn 1993a;Messer et al. 1998; Burrows et al.
2000;Yamada et al. 1999;Mezzacappa&Messer 1999; Rampp&
Janka 2002; Liebendörfer et al. 2004; Hubeny & Burrows 2007),
but general Boltzmann transport in multiple spatial dimensions is
computationally challenging and will remain so in the interme-
diate term. Hence, approximations must be made in devising
computationally tractable neutrino transport schemes for multi-D
simulations.
A highly sophisticated approximation that arguably comes

close to full Boltzmann transport in the case of quasi-spherical
configurations in 2D is that presented in Buras et al. (2006b) and
based on earlier work by Rampp & Janka (2002). These authors
solve equations for the zeroth and first angular moments of spher-
ically symmetric radiation fields along multiple radial rays (ray-
by-ray approach; Burrows et al. 1995) and perform a variable
Eddington factor closure (Mihalas & Mihalas 1984) via a single
spherically symmetric Boltzmann solution on an averaged 1D pro-
file of the 2D hydrodynamics data. Neighboring rays are coupled
to provide for limited treatment of latitudinal transport. Theirmulti-
group (multienergy and multineutrino species) scheme includes
inelastic neutrino-electron scattering, aberration, gravitational
redshift, and frame effects to O(v/c).
Livne et al. (2004) implemented a genuinely 2D direct solu-

tion of a reduced Boltzmann equation via the method of discrete
ordinates (Sn; see, e.g., Yueh & Buchler 1977; Mezzacappa &
Bruenn 1993a; Adams & Larsen 2002; Castor 2004 and refer-
ences therein) in the code VULCAN/2D, neglecting energy re-
distribution and fluid-velocity dependence.
A common, more approximate way to handle neutrino transport

that has a long pedigree in 1D core-collapse studies is multi-
group (energy/neutrino species) nonequilibrium flux-limited dif-
fusion (MGFLD; Mihalas &Mihalas 1984, Arnett 1966, Bowers
&Wilson 1982, Bruenn 1985,Myra et al. 1987; Myra& Burrows
1990; Baron et al. 1989; Cooperstein&Baron 1992). FLD schemes
solve a diffusion equation for the mean radiation intensity, the ze-
roth angular moment of the specific radiation intensity. Hence, they
drop all local angular dependence of the radiation field, while,
in the MGFLD case, retaining the spectral neutrino distribution.
MGFLD accurately describes the radiation field at high optical
depth where the diffusion approximation is exact. In the free-
streaming limit, the flux must be limited to maintain causality and
an interpolation must be performed between diffusion and free-
streaming regimes by an ad hoc prescription (using a flux limiter).
Two-dimensional FLD schemes were pioneered in the core-

collapse context byLeBlanc&Wilson (1970) andmodernMGFLD
implementations can be found in Swesty & Myra (2006) and in
Burrows et al. (2007c). It is not a priori clear whether MGFLD is
an accurate enough prescription to yield postbounce supernova
dynamics in qualitative and quantitative agreement with a more
accurate multiangle treatment. Since net energy deposition by
neutrinos is favored only in the semitransparent gain layer, the
quality of a MGFLD scheme may sensitively depend on the flux
limiter chosen (Burrows et al. 2000). The fact that 2D gray FLD
schemes have in the past led to neutrino-driven explosions (Herant
et al. 1994; Burrows et al. 1995; Fryer & Heger 2000; Fryer &
Warren 2002, 2004), while MGFLD schemes appear not to
(Walder et al. 2005; Burrows et al. 2006, 2007c), emphasizes the
importance of a spectral treatment of neutrino transport.

5 We define the heating efficiency as the ratio of the energy deposition rate to
the summed electron-neutrino and antielectron-neutrino luminosities. The � and
� neutrinos and their antiparticles do not contribute much to the heating.
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In 1D, MGFLD and Boltzmann neutrino transport were com-
pared on static hydrodynamic postbounce backgrounds by Janka
(1992), Yamada et al. (1999), Messer et al. (1998), and Burrows
et al. (2000). Also in 1D, Mezzacappa & Bruenn (1993b) com-
pared Boltzmann transport and MGFLD evolutions in the col-
lapse phase, while Liebendörfer et al. (2004) performed the only
comparison to date of 1D long-term Boltzmann and MGFLD
supernova evolutions. The static studies all agree that Boltzmann
transport yields larger instantaneous neutrino heating rates in the
gain region, mostly because of a more slowly decreasing inverse
flux factor (c over the ratio of flux to neutrino energy density), a
quantity that can be related to the rate of energy absorption. On
the other hand, Liebendörfer et al. (2004) find no significant dy-
namical differences between MGFLD and Boltzmann transport
evolutions in their long-term comparison study with the 13 M�

progenitor model of Nomoto & Hashimoto (1988).
In this paper, we present 2D multiangle, multigroup neutrino

transport supernova calculations using theNewtonian axisymmet-
ric VULCAN/2D code (Livne 1993; Livne et al. 2004; Burrows
et al. 2007c). Comparing multi-D Boltzmann andMGFLD treat-
ments, we perform postbounce simulations with VULCAN/2D
and compare 2D steady-state snapshots, as well as fully coupled
dynamical 2D radiation-hydrodynamics evolutions, for non- and
rapidly rotating 20 M� models whose precollapse profiles are
taken fromWoosley et al. (2002).We analyze our angle-dependent
neutrino radiation fields and provide for the first time local 2Dmap
projections of the specific intensity I�.

In x 2 we describe our hydrodynamic and radiation-transport
schemes and themicrophysics thatwe use in this postbounce core-
collapse supernova study. In x 3 we introduce the presupernova
models and the postbounce configurations, the setup, and the
methodology of our Boltzmann transportYMGFLD comparisons.
In x 4 we present results of snapshot Boltzmann transport calcu-
lations and compare them with their MGFLD counterparts. In x 5
we then discuss time-dependent calculations, the dynamical dif-
ferences between Boltzmann transport andMGFLD runs, and the
consequences for postbounce supernova model evolution. We
wrap up in x 6 with a summary and critical discussion of the work
presented in this paper.

2. METHODS

2.1. Hydrodynamics

We employ the arbitrary Lagrangian-Eulerian (ALE, with
second-order total-variation-diminishing [TVD] remap) radiation-
hydrodynamics code VULCAN/2D. The hydrodynamics module
was first described by Livne (1993).6 The 2D time-explicit hy-
drodynamics scheme is second-order accurate (in smooth parts
of the flow), unsplit, and implements a finite-difference represen-
tation of the Newtonian Euler equations with artificial viscosity
on arbitrarily structured grids and in cylindrical coordinates. The
computational grid employed here is set up to resemble a spherical-
polar grid at radii greater than 20 km and gradually transitions
to a Cartesian structure at smaller radii (Ott et al. 2004). This
(1) avoids hydrodynamic time step restrictions due to focusing
of angular grid lines and (2) liberates the PNS core, thus allowing
mass motion along the axis of symmetry.

Self-gravity is implemented via direct grid-based solution of
the Newtonian Poisson equation, as described in Burrows et al.
(2007c), and we employ the finite-temperature nuclear equation

of state of Shen et al. (1998a, 1998b). The calculations are run
with 230 logarithmically spaced radial and 120 angular zones (in-
cluding the inner, quasi-Cartesian region). The grid encompasses
a radial extent of 4000 km and the full 180

�
of the axisymmetric

domain.

2.2. Neutrino Transport and Microphysics

VULCAN/2D contains two multigroup, multispecies neutrino
radiation-transport options. As we discuss below (x 3), both mod-
ules are used in this study. Themodule implementing 2D transport
in the MGFLD approximation, evolving the zeroth moment of
the radiation field, is discussed in Burrows et al. (2007c). The
angle-dependent transport module that evolves the specific neu-
trino radiation intensity, I(r, w, "�, species, t), via the method
of discrete ordinates (Sn), was first discussed by Livne et al.
(2004) (see alsoMorel et al. 1996; Adams & Larsen 2002; Castor
2004).

For convenience and future reference, we define the zeroth,
first, and second moments of the radiation field,

J� �
1

4�

I

4�

d� I�; ð1Þ

H� �
1

4�

I

4�

d� n I�; ð2Þ

K� �
1

4�

I

4�

d� nn I�: ð3Þ

Note the vector and tensor natures of H� and K� , respectively.
Here n is the radiation field unit vector whose coordinate-
dependent components are given in Hubeny & Burrows (2007)
for various common coordinate systems. Here we employ cy-
lindrical coordinates (see Fig. 1). The radiation-pressure tensor
K� obeys the trace condition J� ¼ Tr(K�) (Mihalas & Mihalas
1984). The spectral neutrino flux is defined as F� ¼ 4�H� .

As explained in Livne et al. (2004) the time-implicit Sn solver
in VULCAN/2D updates the specific intensity in the laboratory

6 For details and an extension to magnetohydrodynamics not employed here,
see Livne et al. (2007).

Fig. 1.—Coordinates used in the axisymmetric Sn transport scheme imple-
mented in VULCAN/2D. The radiation direction vector n is defined in terms of #
and ’. Here # is the angle with respect to the coordinate-grid z-axis at all spatial
positions (z,$). At each (z,$), the local momentum-space unit sphere is covered
by n zones in # and at each # location by a numberm(#) of ’-zones, so that each
zone in (#, ’) covers roughly the same solid angle.
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frame via the Boltzmann transport equation (Castor 1972) without
fluid-velocity dependence,

1

c

@I

@t
þ n = :I þ �I ¼ S; ð4Þ

where we have dropped the neutrino group index �. Here � ¼
�a þ � s, where �a(r; "� ; species) is the inverse absorptionmean
free path and � s(r; "�; species) is the inverse scattering mean
free path (both equivalent to the corresponding cross section
multiplied by the number density). We assume scattering to
be isotropic and employ the transport cross section � s ¼ (1�
hcos #i)� s

T instead of the total scattering cross section � s
T . This

approach has been shown to work well in spherically symmet-
ric core-collapse supernova calculations (Burrows et al. 2000;
Thompson et al. 2003). The right-hand side source term S equals
Sem(r; "�; species)þ � sJ , where Sem is the emissivity. The trans-
port grid is identical to the hydrodynamics grid. The specific in-
tensity and its moments are defined at cell centers, facilitating
spatially consistent coupling with the scalar hydrodynamics
variables, as discussed in Livne et al. (2004). Radiation stress at
cell corners is computed via linear interpolation employing cell-
centered values of the radiation flux.

As a consequence of the neglect of O(v/c) terms in our transport
formulation, neutrino advection, Doppler shifts, and aberration ef-
fects are not considered. This greatly limits the computational com-
plexity of the problem, but its impact on the transport solution
depends on the particular choice of reference frame and was ex-
amined in Hubeny & Burrows (2007). It is clear that around core
bounce and neutrino breakout, during the nonlinear phase of the
SASI hundreds of milliseconds after bounce, and in the case
of rapid rotation, including O(v/c) terms is advisable. We leave
them out here in order to make long-term multiangle radiation-
hydrodynamics simulations feasible and allow direct comparison
with theMGFLD variant of VULCAN/2D. FullO(v/c) Boltzmann
transport with energy redistribution will be addressed using the
code BETHE currently under development by a subset of our
group (Hubeny & Burrows 2007; Murphy & Burrows 2008).

We discretize the angular radiation distribution evenly in cos #
from�1 to 1 and in’ evenly from 0 to � (treating only one hemi-
sphere because of axial symmetry).Wemake the number of ’-bins
a function of cos # to tile the hemisphere more or less uniformly in
solid angle. In our time-dependent runs we employ 8 cos # bins, re-
sulting in a total of 40 angular zones. Steady-state radiation fields are
computed with 8 cos # bins, 12 cos # bins (92 total angular zones),
and 16 cos # bins (162 total angular zones) at each spatial grid point.

The standard set of neutrino-matter interactions listed in
Thompson et al. (2003) is included and all computations are per-
formedwith 16 discrete neutrino energy bins, approximately loga-
rithmically spaced from 2.5 to 220 MeV. Electron neutrinos (�e)
and electron antineutrinos (�̄e) are treated independently while we
lump together the heavy-lepton �, �̄, � , and �̄ neutrinos into one
group (‘‘��’’). The code is very efficiently parallelized via MPI in
energy groups and species. As an additional simplification, we do
not include energy redistribution by inelastic neutrino-electron
scattering. Such energy redistribution and scattering are of modest
(�10%) relevance for the trapped electron fraction (Ye) and en-
tropy of the inner core at core bounce, but otherwise arguably
quite subdominant (Thompson et al. 2003).

2.3. A Hybrid Approach: Combining Sn
and MGFLD Neutrino Transport

The time-implicit Sn scheme in VULCAN/2D is iterative and
suffers convergence problems in regionswhere the transport prob-

lem is scattering-dominated and the optical depth is high (� k 5).
As a consequence, Livne et al. (2004) limited the time step at post-
bounce times to �0.1Y0.3 �s to ensure accuracy and stability. In
the present study, we take a different approach and introduce a hy-
brid Sn-MGFLD transport scheme that treats the quasi-isotropic
transport problem in the optically thick PNS interior in the diffu-
sion approximation and transitions to full multiangle Sn transport
in a region of moderate optical depth (� k 2), but that is still sig-
nificantly interior to the neutrinospheres (� � 2

3
), where the neu-

trinos decouple from matter and begin to stream.
We chose a radius of 20 km in our calculations for the transi-

tion fromMGFLD to Sn. This is a sensible choice, (1) because the
neutrinosphere radii of all groups (energies/species) remain larger
than 20 km throughout the postbounce period our simulations cover
and, (2) because 20 km also marks the radius at which the transi-
tion from the inner irregular quasi-Cartesian grid to the outer regu-
lar grid is complete. This boundary is smooth and the Sn-MGFLD
transition does not suffer from Cartesian cornerstone effects.
The transition is implemented by setting up for each energy

group and species an approximate specific intensity I� at the
centers of the zones below the Sn-MGFLD interface using the
information available from MGFLD. This approximate I� is ob-
tained via its angular expansion to first order in n (the Eddington
approximation):

I� ¼ I0 þ 3(n = H ): ð5Þ

Here I0 ¼ JMGFLD and H ¼ FMGFLD/4�, where FMGFLD is the
flux andH is the first moment of I� . In MGFLD, FMGFLD is com-
puted via

FMGFLD ¼ �FL(D):J ; ð6Þ

where

D ¼
1

3�
; ð7Þ

with Bruenn’s flux limiter7 (Bruenn 1985)

FL(D) ¼
D

1þ Dj:J j=J
: ð8Þ

The first angular moment of equation (5),FSn ¼
R

n Id�, is then
equal8 to FMGFLD and the Sn-MGFLD matching is consistent
and provides a representation of the specific intensity I that is
accurate to first order in n. Given the essentially isotropic neutrino
radiation field deep inside the PNS, this approximation yields
excellent results. We note that the scheme makes the implicit
assumption that the radial gradient of the mean intensity at the
transition radius is always negative or zero. This condition is
generally fulfilled in PNSs.

3. INITIAL MODELS AND SETUP

We employ the spherically symmetric solar-metallicity 20M�

(at ZAMS) model s20.0 from the stellar evolutionary study of

7 We use Bruenn’s flux limiter in VULCAN/2D, because Burrows et al. (2000)
found it to perform best in their comparison of flux limiters with angle-dependent
transport.

8 Given the limited number of angular zones of I and the fact that we are not
using Gaussian-quadrature-type angular zoning, the integrals of I are only accu-
rate to�5% when eight #-zones are used and accurate to�1% when 12 or more
#-zones are employed. To ensure conservation of energy in the Sn-MGFLDmatch-
ing, we employpurely geometrical and temporally constant correction factors to en-
force FSn ¼ FMGFLD at the interface.
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Woosley et al. (2002) who evolved it to the onset of core col-
lapse. At that moment, its iron core mass9 is �1.46 M� and its
central density has reached �8.4 ; 109 g cm�3. A graph of the
progenitor’s precollapse density stratification as a function of
enclosedmass can be found in Figure 1 of Burrows et al. (2007c).
Note that in the study of Woosley et al. (2002) iron core mass and
extent vary non-monotonically in the 10Y20 M� ZAMS mass
range and that their solar-metallicity 20M� model has, in fact,
a more compact central configuration than the corresponding
15 M� model. Stellar evolution theory of massive stars has yet
to converge and studies by different groups do not presently yield
the same presupernova structures.

We set up two initial models in VULCAN/2D: s20.nr and s20.�.
Both models are mapped from 1D onto our 2D hydrodynamic grid
under the assumption of spherical symmetry. Model s20.nr is kept
nonrotating, while we impose an initial angular velocity profile
in model s20.� according to the rotation law

�($) ¼ �0

1

1þ ($=A)2
; ð9Þ

where$ is the distance from the rotation axis and A is a param-
eter governing precollapse differential rotation. This rotation law
enforces constant angular velocity on cylindrical shells and, for
sensible choices of A, reproduces qualitatively (Ott et al. 2006b)
predictions from presupernova models that include rotation in a
1D fashion (Heger et al. 2000, 2005). Since the computational
complexity of this study inhibits us from performing a sweep of
the �0-A parameter space, we chose A ¼ 1000 km and �0 ¼
� rad s�1. Hence, the initial central period is 2 s; this is an iden-
tical rotational setup to the fiducialmodel in Burrows et al. (2007b).
As discussed in Ott et al. (2006b), 2 s is rather short, leads to
a rapidly rotating postbounce configuration with a millisecond-
period PNS, and, unless significant postbounce spin-down (e.g.,
viaMHD torques) occurs, is inconsistentwith average pulsar birth
spin estimates. We chose such rapid rotation simply because we
wish to study a postbounce supernova core with significant rota-
tionally induced asymmetry. Key model parameters and charac-
teristics are summarized in Table 1.

We collapse both models with the MGFLD variant of
VULCAN/2D and evolve them to �160 ms after core bounce.
Then, we transition to Sn Boltzmann transport and solve for the
stationary neutrino radiation field based on the artificially frozen
hydrodynamics data at this postbounce time. Once we have ob-
tained a converged angle-dependent radiation field, we activate
neutrino-matter coupling and hydrodynamics and evolve in time
the coupled radiation-hydrodynamics equations. For direct com-
parison, we also continue the MGFLD simulations to later times.
All steady-state snapshots are computed in three momentum-
space angular resolutions, S16, S12, and S8, while the long-term
evolution calculations could only be performed with S8, due to
computational constraints.

In Figure 2 we show entropy color maps of both models at
160 ms after bounce. Fluid velocity vectors are superposed, pro-
viding a snapshot of the flow. By 160ms after bounce, in the non-
rotating model s20.nr convection in the high-entropy [O(10) kB/
baryon] gain layer has developed fully. The shock sits at�175 km
and is slightly deformed by the onset of the SASI. Not visible on
the scale of this figure is the lepton-gradient-driven convective re-
gion deep inside the PNS, which was extensively discussed in
Dessart et al. (2006a).

The PNS in the rapidly rotating model s20.� is rotationally
flattened, with unshocked low-entropy inner-core pole-equator
asymmetry ratios below �0.5. The shock is slightly prolate and
has attained an average radius of �230 km. The moment-of-
inertia-weighted mean period of the unshocked (specific entropy
s � 3kB) inner core is�2.0ms.Differential rotation between�20
and 200 km is very large, with the angular velocity � dropping
from�1600 rad s�1 to a mere�15 rad s�1 over this radial equa-
torial interval. Yet, the specific angular momentum j is still mono-
tonically and rapidly increasing. It flattens, but does not decrease,
only at radii greater than�100 km. This positive gradient in j sta-
bilizes the postbounce core against convective instability at low
latitudes (Fryer & Heger 2000), confining overturn to the polar
regions and large equatorial radii where the j gradient is less steep.

4. RESULTS: SNAPSHOTS

In this section, we present our Sn multiangle transport results
for steady-state model snapshots at 160ms after core bounce.We
diagnose the angle-dependent neutrino radiation fields and carry
out a comparison between multiangle and MGFLD transport re-
sults based on local and global radiation-field variables.

4.1. Angular Distributions

The quintessential problem in treating neutrino radiation trans-
port in core-collapse supernova cores is the fact that the neutrino
transportmean free path, the average distance a neutrino can travel
without experiencing scattering or absorption, changes by orders
of magnitude from inside to outside.Moreover, the neutrino trans-
port mean free path k� varies locally strongly with neutrino en-
ergy (/"2� ) and matter density. As a consequence, gray transport
schemes are problematic, since neutrino-energy averages can be
defined only locally and the mean neutrino energy varies signifi-
cantly throughout the supernova core.

From a more geometric point of view, the radiation field in
momentum space goes from being completely isotropic (net flux
�zero) to being focused into the radial direction (‘‘forward-
peaked’’) in the free-streaming regime. In the MGFLD approx-
imation, the mean intensity J� is evolved in time and the angular
information, in particular the information on the degree of forward-
peaking, is captured only by computing spatial gradients in J� and
employing a flux limiter to interpolate between diffusion and free
streaming.

The Sn Boltzmann solver in VULCAN/2D is able to self-
consistently handle the transition from isotropic to forward-
peaked radiation. Figure 3 depicts the angular distribution in the
azimuthal angle ’ (see Fig. 1) of the normalized specific spectral
neutrino intensity I� for electron neutrinos at 12.6 MeV. In Fig-
ure 3 the polar angle # is set equal to �/2 and the’-distribution is
given at various radii in the equatorial plane of model s20.nr. At
30 km from the center, the radiation field of �es at "� = 12.6MeV

TABLE 1

Model Summary

Model Name Progenitor

�0

(rad s�1)

A

( km)

tb
(ms)

tsnap
(ms)

tf � tb
(ms)

s20.nr.................. s20.0 0.0 . . . 179.2 160.0 500.0

s20.�................... s20.0 � 1000 193.7 160.0 550.0

Notes.—Summary ofmodel parameters. The progenitors are taken fromWoosley
et al. (2002).�0 is the initial central angular velocity, A is the differential rotation
parameter of the rotation law (eq. [9]), tb is the time of core bounce, tsnap is the
time after tb at which the postbounce snapshots are taken, and tf � tb is the point
at which we stop our simulations.

9 Determined by the discontinuity in the electron fraction, Ye, at the outer edge
of the iron core where Ye � 0:5.
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is nearly isotropic, which corresponds to a circle in Figure 3.
With increasing radius (and, of course, decreasingmatter density)
the transport mean free path at fixed "� increases and the radiation
field gradually departs from isotropy and becomesmore and more
forward-peaked. We define the neutrinosphere as the surface at
which the optical depth �� , given by

�� ¼

Z R

1

dr

k�
; ð10Þ

is equal to 2
3
. At around this �� , the neutrinos decouple frommat-

ter and begin to stream freely. At 160 ms after bounce in model
s20.nr, the 12.6 MeV �e neutrinosphere is located at r � 55 km.
As is obvious from Figure 3, the radiation field at the neutrino-
sphere is not yet dramatically forward-peaked, but becomes so
with increasing radius. However, complete forward-peaking only
obtains at radiik250Y300 km, beyond which the angular resolu-
tion of our Sn scheme becomes suboptimal, even with n ¼ 16.
However, calculations with varying number of # (and, hence, ’)
angles reveal that the transition from isotropy to moderate and
large anisotropy is adequately reproduced at small and inter-
mediate radii (out to �200 km) even in the case of S8.
For the purpose of displaying and studying the local neutrino

radiation field, we provide equal-area Hammer-type map projec-
tions (Hammer 1892). Such map projections are new to the field
of neutrino radiation transport and beautifully reveal the multi-D
angular dependence of the radiation field. In Figure 4 we present
such Hammer projections on the equator (spatial � ¼ 90

�
) of

model s20.nr at radii of 60, 120, and 240 km for the three neutrino
species included in our simulations at "� ¼ 12:6 MeV. In each
plot, we normalize the specific intensity to the mean intensity to
set a common scale. The color map is logarithmic and chosen to

Fig. 3.—Polar plot of the normalized specific intensity I�(r; #; ’)/max ½I�(r;
#; ’)� in model s20.nr at 160 ms after core bounce, at selected equatorial radii,
and for �e neutrinos at "� ¼ 12:6 MeV. At each radius, we normalize the specific
intensity by its local maximum. Shown is the variation with ’ at fixed # ¼ �/2.
The graphs are based on an S16 calculation. At r ¼ 30 km, the radiation field is
practically isotropic, but is already appreciably forward-peaked at the neutrino-
sphere (r� ¼ 55 km; optical depth � ¼ 2

3
) and thereafter smoothly transitions over

�200Y300 km to the free-streaming limit.

Fig. 2.—Entropy color maps of the nonrotating model s20.nr (left) and the rotating model s20.� (right) at 160 ms into their postbounce evolution computed with
MGFLD. Velocity vectors are superposed with vector lengths saturated at 1.0 ; 109 cm s�1. Model s20.nr has a practically spherical PNS and shows features of violent
overturn in the convectively unstable postshock region. The shock radius in this model is �175 km at this point and the onset of the SASI is apparent from the slightly
deformed shock. Model s20.�, on the other hand, has a strongly rotationally flattened PNS and convective overturn is confined to polar regions. These regions exhibit the
globally highest entropies and greatest entropy gradients, since the polar velocity divergence at the shock is the highest. The shock radius at this time in model s20.� is
�230 km and no SASI features are visible.
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have regions on the sphere with high intensity appear red and re-
gions of low intensity appear black.

For neutrinos on the equator, the momentum-space forward
direction is (# ¼ 90

�
, ’ ¼ 0). Electron neutrinos generally have

the shortest transport mean free path of all species in the core-
collapse context and decouple from matter at the lowest densi-
ties. The Hammer projection in the top left corner of Figure 4 of
the "� ¼ 12:6 MeV equatorial radiation field at 60 km corre-
sponds roughly to the blue line graph in Figure 3, which portrays
only its variation with’. At fixed neutrino energy group "� , elec-
tron antineutrinos and ‘‘��’’ neutrinos decouple at smaller radii.
Hence, as Figure 4 shows, at 60 km, they already manifest greater
local anisotropy than the �es. This trend continues at all consid-
ered radii in Figure 4.

In Figure 5 we again present Hammer projections of the nor-
malized specific intensity, but this time consider only �es, keep
the radius fixed at 150 km, and vary the neutrino energy and the
angular position on the grid. The bottom row of Figure 5 shows
the normalized I� at the equator (� ¼ 90

�
) and for the 12.6 and

35.7 MeV �e energy groups. The center and top rows show the
same groups at � ¼ 45

�
and at � ¼ 0

�
, respectively. From the dis-

cussion of Figure 4, we are already familiar with the overall radia-
tion field geometry. The transport mean free path scales roughly
inversely with "2� . Hence, at any given position in the postbounce
supernova core, more energetic neutrinos should be locally more
isotropically distributed in momentum space than less energetic
ones. The less forward-peaked angular I� distribution of the higher
energy neutrinos reflects this.

The degree of forward-peaking in # and’ of the radiation field
in the quasi-spherically symmetric nonrotating model s20.nr is

essentially independent of the angular position on the grid and
the radiation fields at any given radius can be transformed into one
another by simple rotation. Because of the aspherical and oblate
distribution of matter in the rotating model s20.�, the forward-
peaking is also a function of polar angle. Due to its PNS’s oblate-
ness (see Fig. 2), the neutrinos generally decouple at significantly
smaller radii near the pole than near the equator, in turn leading to
more strongly forward-peaked radiation fields in the polar than
in the equatorial regions (Janka & Mönchmeyer 1989a, 1989b;
Walder et al. 2005; Dessart et al. 2006b, 2007).

4.2. Eddington Factors

The radiation-pressure tensorK�, also known as the Eddington
tensor, represents the second angular moment of the specific in-
tensity and is defined by equation (3). In the following, we use its
normalized variant k� ¼ K�/J� .

In spherical symmetry, k� is diagonal and has a single inde-
pendent component, the Eddington factor k�. For isotropic radia-
tion, k� ¼

1
3 and k� ¼ diag(1

3
; 1
3
; 1
3
), while in the streaming regime,

k� ¼ 1 and k� ¼ diag(1; 0; 0). In the transition from isotropy to
free streaming, k� generally varies from

1
3
to 1, but in special cases,

e.g., enhanced radiation perpendicular to the radial direction, may
assume values below 1

3
. Note that one of the common assumptions

of MGFLD is the Eddington closure, setting k� ¼
1
3
everywhere.

In axisymmetry and ignoring velocity-dependent terms, the
Eddington tensor has four independent components whose indi-
vidual meaning depends on the coordinates chosen.10We assume

Fig. 4.—Hammer-type interpolated (smoothed) map projections of the normalized specific intensity I�(#; ’)/J� in model s20.nr at 160ms after bounce. The color map
is logarithmic and in each individual projection is set up to range from max ½I�(#; ’)/J� � (red ) to 10

�4 max ½I�(#; ’)/J� � (black). Shown is the specific intensity of �e, �̄e,
and ‘‘��’’ neutrinos at "� ¼ 12:6 MeV (rows) on the equator (� ¼ 90

�
, measured from the pole) and at radii of 60, 120, and 240 km (columns). The Hammer projection

is set up in such away that # varies in the vertical from 0
�
(top) to 180

�
(bottom) and’ varies horizontally from�180

�
(left) to +180

�
(right). Grid lines are drawn in #- and

’-intervals of 30�. Note (1) the increasing forward-peaking of I� with increasing radius (and decreasing optical depth) and (2) that at any given radius I� of ‘‘��’’ is more
forward-peaked than that of the �̄e component, which, in turn, is always more forward-peaked than the �e component. This fact is a consequence of a transport mean free
path that varies with species (and energy; not shown here) and is smallest for the electron neutrinos.

10 Off-diagonal components of the Eddington tensor can be related to radia-
tion shear viscosity (Mihalas & Mihalas 1984), which we do not consider here.
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and transform to spherical coordinates for our discussion, since they
make the interpretation of the components most straightforward.

In Figure 6 we present radial profiles of normalized Eddington
tensor components at selected electron-neutrino energies "� in
models s20.nr and s20.�. The nonrotating model can be consid-
ered nearly spherically symmetric, and, hence, should and does
exhibit the expected Eddington-factor systematics. At small radii
and high densities, where neutrinos and matter are in equilib-
rium, krr ¼ k## ¼ k’’ ¼ 1

3
and with increasing radius, krr ! 1

and fk##; k’’g! 0. As expected from the basic decoupling hier-
archy, the value of the Eddington tensor components is a strong
function of "� . Lower "� neutrinos decouple at higher densities,
and, hence, haveEddington tensor componentswhich depart from
1
3
at smaller radii than �es of higher energy. This systematics ap-

plies, of course, to �̄es and ‘‘��’’s as well. The off-diagonal com-
ponent kr# is zero in the isotropic region, does not exhibit clear
systematics, and stays an order of magnitude smaller than the di-
agonal components for all "� and species.

Fig. 6.—Normalized Eddington tensor k components in spherical coordinates as a function of neutrino energy "� and spherical radius r. Left: Angular-averaged krr and
k## for electron neutrinos in model s20.nr. Here k’’ is not shown, but has essentially identical behavior to k##. The diagonal components start out with 1

3
at small radii, as

expected for the prevailing isotropic radiation fields. With increasing radius (and decreasing density), the local radiation field becomes more anisotropic and forward-
peaked. This occurs at progressively larger radii with increasing "� and is reflected by the increasing krr and the decreasing k## in the plot. The off-diagonal component kr#
is not shown, does not exhibit clear systematics, and is generally a factor of 10Y100 smaller than the diagonal components. Middle: Same as left, but showing profiles
extracted from regions near the pole in the rapidly rotating model s20.�. Interior to�100 km, krr and k## show the same systematics with "� as in the nonrotating model.
However, at larger radii they are reversed, krr and k## exhibiting greater isotropy for lower "�. See text for discussion. Right: Equatorial profiles of krr , k##, and k’’ for
electron neutrinos in model s20.nr. Due to rotational flattening of the PNS, the transition to free streaming occurs over a much larger range of radii near the equator. Here
k## shows a significantly larger variation as a function of energy than k’’.

Fig. 5.—Hammer map projections of the interpolated (smoothed) normalized specific intensity I�(#; ’)/J� at 160 ms postbounce in model s20.nr. The projections are
set up in identical fashion to Fig. 4. Shown here is the variation of the angular distribution with energy group (columns) and angular position (rows) for electron neutrinos.
The radius is fixed to 150 km. As expected in the coordinates used for the Sn transport in VULCAN/2D (see Fig. 1), I� becomes forward-peaked into # ¼ 0

�
and degenerate in

’ along the pole (� ¼ 0
�
), forward-peaked into# ¼ 45

�
,’ ¼ 0

�
on the diagonal (� ¼ 45

�
), and forward-peaked# ¼ 90

�
,’ ¼ 0

�
on the equator (� ¼ 90

�
). The degree of the

radiation anisotropy and its variation from forward-peaked at "� ¼ 12:6 MeV to less forward-peaked at "� ¼ 37:5 MeV is apparent.
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The rotating model s20.� has a postshock configuration that is
far from spherically symmetric (Fig. 2). We present in Figure 6
separate plots for its Eddington tensor components in regions near
the pole and near the equator. In the polar regions and at small radii
(r P 100 km), the Eddington tensor components show the same
qualitative behavior as in model s20.nr. At larger radii, however,
the systematics are reversed and lower "� electron neutrinos have
more isotropic radiation fields (smaller krr) than their higher "�
counterparts. Analyzing their radiation fields and matter coupling
in detail, we find that this surprising feature is a consequence of
electron capture and the polar compactness (large density gradient
due to rotation) of the supernova core. Electron capture near the
shock leads to isotropic neutrino emission that can locally iso-
tropize the radiation field in semitransparent regions. With de-
creasing density and temperature, the mean energy of neutrinos
emitted by capture processes shifts to lower "�. This leads to greater
local isotropization of lower "� neutrinos, which in turn is reflected
in the more slowly increasing krr of these neutrinos. This inter-
pretation is confirmed by the fact that we do not find any such fea-
ture in the Eddington tensor components of the ‘‘��’’ neutrinos
that are not produced in capture processes.We also do not observe
significant isotropization in the �̄e radiation fields, since the emis-
sion of �̄es by positron capture on neutrons is weaker due to the
lower positron abundance.

In regions of model s20.� near the equator where the PNS is
most extended, the neutrino radiation fields stay isotropic to large
radii and decouple frommatter only slowly with radius. Since the
matter densities in the equatorial plane stay roughly a factor of
4 larger than in the polar regions, the crossover feature in fkrr;
k##; k’’g does not appear and these components follow the stan-
dard decoupling hierarchy. Interestingly, and different from in the
nonrotating model, k## and k’’ show quantitatively distinct vari-
ation with "� , the latter exhibiting significantly less variation with
"� at any given radius. The interpretation of this observation is not
straightforward, but we suggest that it can be attributed to the fact
that in model s20.� the radiation field at any given point on the
equator of the rotationally flattened core and for any "� and
neutrino species varies locally less in the #-direction than in the
’-direction. This, in combination with the fact that on the
equator the radiation field asymptotically peaks into the (# ¼ 0,
’ ¼ 0) direction, results on average in smaller k’’ with less spread
in energy than exhibited by k##. The off-diagonal component
kr# (not shown in Fig. 6) vanishes in krr ¼ k## ¼ k’’ ¼ 1

3
re-

gions, but can become relatively large at greater radii (up to
�0.2 in magnitude; increasing with "� and radius) and flips sign
at the equator. The interpretation of kr# is not straightforward,
since its magnitude depends on the choice of coordinates. We
do not attempt to study it, nor its implications for neutrino shear
viscosity, in any detail.

4.3. Global Radiation Field Diagnostics: Luminosities,
Spectra, Flux Factors, and Neutrino Energy Deposition

So far we have studied aspects of neutrino transport inaccessible
to MGFLD. We now go on to discuss radiation field diagnostics
that facilitate a Sn-MGFLD comparison. For further reference
and comparison with previous studies (Janka 1992; Messer et al.
1998; Burrows et al. 2000), we define the neutrino luminosity per
species L�i at spherical radius r,

L�i (r) ¼

I

d!

Z

d"� Fr(r; "�; �i)r
2; ð11Þ

where Fr is the spectral radial neutrino flux in species �i at energy
"� . Here d! is the spatial solid-angle element, d! ¼ 2� sin �d� in

axisymmetry. Furthermore, we define the mean inverse flux factor
h1/F�ii,

�

1

F�i

�

¼
c
R

d"�E("�; �i)
R

d"�Fr("�; �i)
; ð12Þ

where E("�; �i) ¼ 4�c�1J ("�; �i) is the spectral neutrino energy
density, and the neutrino rms energies are

Erms;�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

d"�i"
2
�i
J ("�i )

R

d"�iJ ("�i )

s

: ð13Þ

The above three quantities are particularly useful diagnostics,
since the "�-averaged energy deposition rate by charged-current
absorption of �e and �̄e on neutrons and protons scales linearly
with their product (Messer et al. 1998).

4.3.1. Model s20.nr

In Figure 7 we plot neutrino luminosities L�i , angle-averaged
mean inverse flux factors, and the angle-averaged Erms for the

Fig. 7.—Sn-MGFLD comparison for the nonrotating model s20.nr at 160 ms
after bounce. All Sn results where obtained with a 16 #-angle calculation. See text
for details and discussion. Top: Neutrino luminosity as a function of radius and
broken down into the three neutrino species considered. The ‘‘��’’ neutrinos dom-
inate in luminosity and their luminosity profiles are scaled by a factor of 1

4
to pre-

serve the overall scale of the plot. Middle: Angle-averaged energy-mean inverse
neutrino flux factor profiles. Bottom: rms neutrino energy profiles.
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postbounce snapshot at 160 ms of the nonrotating model s20.nr.
The asymptotic total luminosity at this time is�150 B s�1 and is
already dominated by the thermally produced ‘‘��’’s that cool the
PNS, but contribute little to the heating in the gain region, since
they cannot take part in charged-current absorption processes.
In this quasi-spherically symmetric model, we define a spherical
gain radius rgain as the radial position beyond which net neutrino
energy deposition occurs. At 160 ms after bounce, rgain ’ 90 km
and the gain region extends almost out to the shock at�175 km.
The MGFLD luminosities in Figure 7 are systematically lower
by�5% for �es,�3.5% for �̄es, and�4% for ‘‘��’’s, but qualita-
tively resemble the Sn luminosity profiles in the gain region. At
around the shock position, all MGFLD luminosities increase by
�5%. This is a due to the combination of the artificially spread-out
shock (over�4Y5 zones), the rapid change of the inverse neutrino
mean free path in the spread-out shock, and the implementation
of the flux limiter in VULCAN/2D. Since this MGFLD artifact
occurs right at the shock, it can have only little influence on the
heating in the gain region, but leads to somewhat overestimated
asymptotic luminosities in the MGFLD case.

The middle panel of Figure 7 shows the "�-averaged inverse
flux factors for the three neutrino species in the MGFLD and Sn
steady-state calculations of model s20.nr. For isotropic radiation
h1/F�ii tends to infinity, while it approaches 1 when the radiation
field becomes forward-peaked at low optical depth. Focusing on
the gain region between rgain and the shock position, we find that
MGFLD yields mean inverse flux factors that are up to �5%
larger for �̄es ( less for the other species) in the inner gain region.
At radii k150 km, the MGFLD h1/F�ii quickly drops to 1 (free
streaming), becoming up to 8% lower than the Sn values in the
outer gain region. We note that ‘‘��’’ interact only via neutral-
current weak interactions, hence, decouple from matter at higher
densities and temperatures. Next in the decoupling hierarchy are
electron antineutrinos followed by electron neutrinos. Both Sn
and MGFLD realize this hierarchy at radii below �150 km, be-
yond which MGFLD rapidly transitions to free streaming irre-
spective of neutrino species.

The behavior we observe with radius of the luminosity and
mean inverse flux factor agrees with the general findings of
Messer et al. (1998). In particular, we agree with their assess-
ment that the artificially accelerated transition to free streaming
inMGFLD occurs not at the neutrinospheres (which are generally
below the gain region), but at relatively large radii within which
most of the neutrino source is enclosed.
In the bottom panel of Figure 7 we present profiles of the rms

neutrino energy for all species in MGFLD and Sn snapshots of
model s20.nr. The corresponding luminosity spectra (extracted
at 500 km) are shown in Figure 8. Both MGFLD and Sn capture
the energy systematics that is set essentially by the matter temper-
ature in the decoupling region. Neutrino species that decouple at
smaller radii (higher densities and temperatures) have higher rms
energies and harder spectra than neutrinos decoupling at larger
radii. Quantitative differences in rms energies and in the spectra
between MGFLD and Sn are small, the slightly higher MGFLD
spectral luminosities being mostly a result of the artificially en-
hanced MGFLD luminosities near and beyond the shock.
We nowconclude our discussion of the 160ms postbounce snap-

shot of model s20.nr by considering the instantaneous neutrino
energy deposition rates. Figure 9 depicts angle-averaged radial
profiles of the specific neutrino heating/cooling rates in units of
erg (g s)�1. The region of net gain extends from �90 km to the
shock radius and the chief contribution to the heating comes from
charged-current �̄e-capture processes on protons, exceeding the cor-
responding �e-capture on neutrons by a factor of 2 and more in the
narrow radial interval from 145 to 175 km. MGFLD underesti-
mates the specific net gain in the angle-averaged radial profile by
at most 10% locally and by�5% on average at radii greater than
�110 km. The integral total net gain predicted by S16 is 2.13 B s�1.
This is only 3% larger than the MGFLD value of 2.07 B s�1. We
note in passing that S8 overestimates the integrated gain rate by at
most �1.6% while S12 agrees with S16 to better than �0.3%.
Figure 10 depicts the 2D distribution of neutrino heating and

cooling in the snapshot of model s20.nr considered here. Regions
of net gain range from green to red, cooling regions are blue to

Fig. 8.—Neutrino luminosity spectra extracted at a radius of 500 km for �e,
�̄e, and ‘‘��’’ neutrinos at 160 ms after bounce in model s20.nr. Solid lines cor-
respond to Sn results, while dashed lines are obtained usingMGFLD. The spectra
have the canonical shape and the quantitative behavior found in nonrotating
intermediate-time postbounce supernova calculations (e.g., Thompson et al.
2003) with the ‘‘��’’ neutrinos peaking at the highest energies, since they decouple
from the fluid at the smallest radii. MGFLD and Sn spectra agree closely in shape,
but MGFLD is overestimating slightly the total asymptotic luminosity (cf. Fig. 7).

Fig. 9.—Angle-averaged specific neutrino net gain profile in the s20.nr model
at 160 ms after core bounce. Shown are theMGFLD results, as well as results from
steady-state Sn calculations with 8, 12, and 16 #-angles, corresponding to a total
number of angular zones of 40, 92, and 162. The gain region extends from�90 km
to the shock position at �175 km. The three different Sn resolutions yield net gain
profiles that agree verywell (relative differences below 1%even for S8). TheMGFLD
calculation underestimates the total net gain in the outer gain region by atmost 10%
locally and P5% on average.
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black. The color map demonstrates the somewhat misleading
character of angle-averaged profiles. While we find that there is
little spatial angular variation in the neutrino radiation field, the
neutrino-matter coupling depends strongly on angular position,
and energy deposition is generally greatest in regions of high en-
tropy (cf. Fig. 2).

4.3.2. Model s20.�

Aswe discussed in the context of the Eddington tensor in x 4.2
and as may be guessed from the significant rotational deforma-

tion of the core in model s20.� (Fig. 2), the radiation field in this
model exhibits a strong rotationally induced asymmetry between
pole and equator. In Figure 11 we present 2D color maps of the
radial spectral flux component (in erg s�1 cm�2 MeV�1) and
isoenergy-density contours (4�J� /c in erg cm�3 MeV�1) at a
representative "� of 12.6 MeVand for all species. Numbers for
both Sn and MGFLD are compared side by side. The global
radiation-field anisotropy systematics are qualitatively similar
to what was found in the previousMGFLD rotating core-collapse
study of Walder et al. (2005). At small radii, the radiation field
(energy density) follows the density distribution and is oblate, but
in the snapshot at 160 ms after bounce shown in Figure 11 has a
pole-to-equator ratio of only 1:2. This ratio increases as the PNS
cools and contracts. The polar compactness of the PNS core leads
to a decoupling of matter and neutrinos at smaller radii in regions
near the pole, resulting there in greater spectral fluxes at higher
neutrino energies and in a prolate distribution of neutrino fluxes
and isoenergy-density contours.

The most striking difference between the Sn and MGFLD ra-
diation fields presented in Figure 11 is the former’s much greater
prolateness at large radii for all species (and all energies, although
we show only "� ¼ 12:6 MeV). With the MGFLD prescription,
the prolateness of the flux is muted and does not extend to large
radii. Although the radiation fields are smoothed out at radii
k150 km byMGFLD, the Sn fluxes and energy densities remain
prolate through the entire postshock region and beyond. At radii
outside�200 km, the typical striping pattern of Sn (Castor 2004)
becomes visible, although not yet dominant.

In Figure 12 we plot line profiles of the polar and equatorial
‘‘luminosities’’ (4�r 2Fr) of eachneutrino species. Profiles obtained
with Sn and MGFLD are shown. The asymptotic luminosities ob-
tained with Sn have pole-to-equator ratios of 2.2 (�e), 1.8 (�̄e), and
2.4 (‘‘��’’).MGFLDsmoothes out these large asymmetries, yielding
higher equatorial and significantly lower polar luminosities at radii
greater than�100 km. This is consistent with the more qualitative
findings based on Figure 11. We note that the MGFLD variant of
VULCAN/2D still conserves total flux and energy. For the Sn cal-
culation, we find total asymptotic luminosities of 21.1 B s�1 for
�e neutrinos (MGFLD: 20.4 B s�1), 22.7 B s�1 for �̄e neutrinos
(MGFLD: 22.6 B s�1), and 53.0 B s�1 for ‘‘��’’ neutrinos
(MGFLD: 52.3 B s�1). Hence, Sn and MGFLD total luminosities
per species agree very well (and differ at most by�3.5% in the �e
case), while their flux distributions disagree significantly.

Fig. 10.—Two-dimensional color map of the specific (per gram) net gain dis-
tribution in model s20.nr at 160ms after core bounce. The left half of the plot de-
picts theMGFLD result; Sn is shown on the right. The differences between Sn and
MGFLD are marginal at this time in this model and are practically indiscernible
by eye. As a consequence of convection in the gain region and the onset of the
SASI, even this nonrotatingmodel exhibits significant angular and radial variations
in the neutrino energy deposition not captured by the average profiles in Fig. 9.

Fig. 11.—Color maps of the radial spectral flux at "� ¼ 12:6MeVof �e (left), �̄e (middle), and ‘‘��’’ (right) neutrinos in the rapidly rotatingmodel s20.� at 160ms after
bounce. Isoenergy density contours (4�c�1J� ; vertical color legend ) are superposed. The left half of each panel displays the MGFLD result; Sn is shown in the right half.
The radiation fields are oblate in the PNS core and deform to a prolate shape farther out. Note that Sn predicts a prolateness of the radiation field to much greater radii than
MGFLD does. The latter leads to nearly spherically symmetric radiation fields at radii greater than k150Y200 km independent of neutrino species.
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Figure 13, depicting polar and equatorial luminosity spec-
tra [4�r 2Fr("�)], reveals that in the Sn calculation (polar, black
graphs; equatorial, red graphs) the neutrino radiation emerging
from the PNS and postshock environments through the polar re-
gion not only has greater fluence, but also a significantly differ-
ent and—in the �e case—a significantly harder spectrum. The �e
neutrinos decouple at the largest radii. Their luminosity spectrum
observed by a polar observer peaks at "� � 9:5 MeV, while for an
observer near the equator it peaks at�7.5MeV. Both �̄e and ‘‘��’’
neutrinos (which decouple farther in) exhibit a smaller variation in
peak energy frompole to equator. TheMGFLDcalculation, on the
other hand, shows much smaller variations in neutrino energy and
flux between pole and equator (green and blue graphs, respec-
tively). We note in passing that the emerging neutrino spectra of
model s20.� are systematically softer by up to�10% in each spe-
cies than those of the nonrotating model s20.nr presented in Fig-
ure 8. This is a direct consequence of the rotationally induced
lower overall compactness of the PNS in model s20.�.

The rms neutrino energies in model s20.� show the same
overall qualitative behavior and decoupling hierarchy discussed

in the context of model s20.nr. Hence, we do not show them
here, but rather state quantitative results. They do, of course,
trace the strong pole-equator asymmetry that we observe in the
radiation field. The rms energies in the 160 ms Sn snapshot are
11.5MeV (pole) and 10.5MeV (equator) for �e, 16.7MeV (pole)
and 15.2MeV (equator) for �̄e, and 25.8MeV (pole) and 24.8MeV
(equator) for ‘‘��’’ neutrinos. The MGFLD values converge
at pole and equator to 10.5 MeV (�e), 15.2 MeV (�̄e), and
25.0 MeV (‘‘��’’).
In Figure 14 we plot polar and equatorial mean inverse flux

factor profiles for �e and �̄e neutrinos in our steady-state snapshot
for model s20.�. Results from MGFLD and S16 runs are shown.
A free-streaming radiation field has an inverse flux factor of 1.
Due to the steeper density gradient in polar regions, neutrinos
decouple from matter at smaller radii than at the equator. While
MGFLD must handle the decoupling and increased forward-
peaking of the radiation field via the flux limiter, Sn can track it
self-consistently. For �e neutrinos and along the poles, Sn pre-
dicts significantly greatermean inverse flux factors with shallower
slopes than MGFLD, indicating a more gradual transition to free
streaming than predicted by the flux limiter. In the radial interval of
�60Y100 km, the relative difference is �12%Y19%, decreasing

Fig. 12.—Radial neutrino luminosity profiles (4�r 2Fr) as seen by observers
near the pole (solid lines) and near the equator (dashed lines) in model s20.� at
160 ms after bounce. Red graphs correspond to Sn results, black graphs depict
MGFLD results. Top, middle, and bottom panels show L� for �e, �̄e, and ‘‘��,’’
respectively. All Sn results were obtained with n ¼ 16, but for comparison we
also plot in the top panel polar profiles that were obtained with S8 and S12 and find
that both S16 and S12 are verywell converged, while S8 has troubles at radii greater
than�200 km. However, it agrees very well at smaller radii with the higher resolu-
tion Sn calculations.

Fig. 13.—Top: Neutrino luminosity spectra [4�r 2Fr("�)] in Sn (red ) and
MGFLD (black) variants of model s20.� as seen by observers near the pole.
The �e spectra have solid lines, �̄e spectra are shown in dashed lines, and ‘‘��’’s
have dash-dotted spectra. The spectra are taken froman S16 calculation at a radius of
300 km at 160ms after core bounce.Bottom:Luminosity spectra seen by equatorial
observers.
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to �6%Y12% out to 200 km. In equatorial regions, the �e radia-
tion field is somewhat more forward-peaked in the Sn calculation
at radii below �120 km, beyond which MGFLD transitions
quickly to free streaming while Sn approaches it more gradually,
exhibiting�6%Y8% larger mean inverse flux factors in the outer
postshock region. For �̄e neutrinos, the behavior of the mean in-
verse flux factors in polar regions essentiallymirrors that observed
for the �es. In equatorial regions, the Snmean inverse flux factor of
the �̄es stays below that using MGFLD out to 165 km, beyond
which the MGFLD �̄e radiation field rapidly transitions to free
streaming. At 180 km, theMGFLD �̄e mean inverse flux factor is
�1% smaller than that predicted by Sn. At 220 km, this difference
has grown to �5%.

Having established the overall neutrino radiation-field charac-
teristics in the 160 ms postbounce snapshot of model s20.�, we
now turn our focus to the neutrino cooling and heating rates in
this model. We have found little difference in the net neutrino
heating between Sn and MGFLD variants in the 160 ms post-
bounce snapshot of the nonrotatingmodel s20.nr. However, based
on the differences between Sn andMGFLD in neutrino fluxes, rms
energies, and flux factors we have highlighted in this section, we
may expect to find significant differences in the neutrino heating
rates for model s20.�.

Figure 15 depicts 2D colormaps of the neutrino energy gain and
loss rate per unit mass (accounting for all energies and species),
computed for the 160 ms postbounce snapshot of model s20.�
using Sn (left panel ) and MGFLD (right panel ). At low latitudes
near the equator, Sn and MGFLD agree very well to the eye. In
regions near the pole, both MGFLD and Sn show a pronounced
region of net loss at z-coordinates between �40 and �80 km,
beyond which a region of net gain (colors light blue and green to
red) prevails out to the shock position at�230 km.While the gain
region has roughly the same physical extent in MGFLD and Sn,
the latter yields significantly higher energy deposition rates. This
is particularly the case in the lower gain region at polar angles be-
low�20

�
and at radii between�80 and 150 km,where the Sn gain

rate is larger by a factor of 2 and more. The left panel in Figure 16

provides a more quantitative comparison of Sn andMGFLDgain/
loss rates, since it contrasts average specific gain/loss profiles
obtained from polar and equatorial 20

�
wedges. In the polar re-

gion, the Sn gain region begins at a radius of �80 km (MGFLD:
�88 km) and the Sn specific gain rate magnitude exceeds the
MGFLD numbers by a factor of 2.6 at 100 km, increasing to 3.2
at 200 km. Near the equator, net energy deposition occurs only
in a small radial interval of �90Y120 km and the MGFLD spe-
cific gain rate is larger by 80% at 95 km, 41% at 100 km, and
26% at 110 km. The net energy loss between�120 and 210 km
(captured by both Sn and MGFLD) results from strong electron
capture that dominates energy deposition by neutrino absorption.

The observed local differences in neutrino energy deposition
between Sn and MGFLD are due primarily to the vastly different
degree to which the two schemes capture the global pole-equator
asymmetry of the radiation field in the rapidly rotating postbounce
supernova core of model s20.�. Sn yieldsmuch larger fluxes in the
polar direction thanMGFLD, but predicts lower neutrino fluxes in
equatorial regions (cf. Fig. 12). Differences in the radial mean in-
verse flux factors and rms energies are much smaller, and, hence,
are of only secondary importance. The Sn steady-state snapshot
yields an integrated gain rate of 1.603 B s�1 while MGFLD pre-
dicts 1.637 B s�1 for the s20.� snapshot under consideration. This
corresponds to�2.1%more energy deposition per unit time in the

Fig. 14.—Mean inverse flux factors in model s20.� at 160 ms after bounce in
polar regions (solid lines) and equatorial regions (dashed lines). Shown are pro-
files for �e neutrinos obtained with Sn (red ) and MGFLD (black), as well as pro-
files for �̄e neutrinos (Sn, blue; MGFLD, green). Sn and MGFLD graphs agree
well inside �50 km at the pole and inside �80 km in equatorial regions. For �e
neutrinos, Sn yields systematically larger mean inverse flux factors in polar and
equatorial regions. For �̄e, however, Sn predicts larger mean inverse flux factors in
polar regions, yet transitions slightly faster thanMGFLD to free streaming in equa-
torial regions.

Fig. 15.—Color maps of energy- and species-integrated specific neutrino en-
ergy deposition and loss rates in the rotating model s20.� at 160 ms after core
bounce (in units of erg s�1 g�1). The left section of the plot depicts the MGFLD
result and the right shows the result of the Sn calculation. Note the distinctively
enlarged polar gain regions and greater specific gain of the Sn result compared to
theMGFLDcalculation. This is in part a consequence of the larger polar neutrino
fluxes and overall greater flux asymmetry in the Snmodel (see Fig. 11). A feature
prevalent in both Sn and MGFLD versions of this rapidly rotating core is an ex-
tended loss region between the shock and the small gain region at low latitudes
(cf. Fig. 16). The material in the loss region is still proton rich (Ye k 0:4) and effi-
ciently captures electrons as it advects in, radiating away a significant flux of neu-
trinos (see, e.g., the increase in the equatorial luminosity between 120 and 150 km
in the Sn variant of this model, visible in the top panel of Fig. 12). Note that both
MGFLD and Sn exhibit a very small artifact ( lower gain/loss) at the symmetry axis
associated with imperfect numerics/regularization.
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MGFLD calculation. Given the above discussion, the reader may
be surprised by these numbers. The explanation consists of two
factors. Owing to rotation, the amount of mass per unit volume
(i.e., the rest-mass density) is higher at any given equatorial radius
than at the same radius in the polar direction. Plotting the neutrino
gain/loss rate per unit volume instead of per unit gram, the right
panel of Figure 16 clearly shows the rotation-induced enhance-
ment of the energy deposition (per unit volume) near the equator
and the larger gain rate per unit volume predicted by MGFLD at
small to intermediate radii. The second factor is the simple fact
that the volume of the equatorial gain regions is much larger than
that of the polar gain regions.

As we shall discuss in the following section, the large local
differences in neutrino heating between the Sn and MGFLD snap-
shots have a dynamical consequence for the rapidly rotating model
and lead to a significant polar expansion of the shock in the Sn post-
bounce evolution calculation.

5. RESULTS: EVOLUTION CALCULATIONS

In order to study differences between Sn andMGFLD in a time-
dependent postbounce setting, we follow our relaxed 160 ms Sn
models in fully coupled radiation-hydrodynamics fashion for
�340ms (model s20.nr) and 390ms (model s20.�) of postbounce
time. In parallel with the Sn runs, we continue theirMGFLD coun-
terparts for the same time span.

5.1. Model s20.nr

Since we begin the MGFLD and Sn calculations from an iden-
tical hydrodynamic configuration at 160 ms after bounce, any
qualitative or quantitative differences in their evolutions must ul-
timately be due to differences in the neutrino heating and cooling
between Sn and MGFLD.

In the left panel of Figure 17, we display the time evolution of
the integral neutrino energy deposition (net gain) in the gain re-

gion of model s20.nr. The net gain systematically declines at early
postbounce times, due (1) to the declining neutrino luminosity and
(2) to the rapid settling of accreting material into the net loss re-
gion near the PNS core (cf. Fig. 7 of Marek & Janka 2007). At
later times, SASI-modulated convection increases the dwell time
of accreting outer core material in the gain layer and the slope of
the net gain evolution flattens. Both Sn and MGFLD track these
systematics without qualitative difference. The Sn calculation pre-
dicts on average�5%Y10% higher net gain in the postbounce in-
terval from �160 to �220 ms. Between �220 and �280 ms,
MGFLD and Sn net gain rates agree to within a few percent.
Toward the end of this interval, the net gain of the Sn calcula-
tion grows and settles at values that are on average 20%Y30%
higher than those of the MGFLD run. This trend is confirmed by
the right panel of Figure 17, which portrays the heating efficiency,
defined as the ratio of net gain to the sum of �e and �̄e luminosities.
The left panel of Figure 18 depicts the temporal evolution of

the �e ‘‘luminosities’’ (4�r 2Fr) as seen by observers situated at
250 km along the north pole and south pole as well as in the equa-
torial plane of models s20.nr and s20.�. Here we focus on model
s20.nr and note for the Sn variant that north pole (thin solid black
lines) and south pole (thin solid green lines) luminosities agree (on
average) in magnitude, but exhibit oscillations about their tem-
poral average that are roughly out of phase by half a cycle. The
MGFLD calculation (thin dashed lines), on the other hand, does
exhibit some short-period luminosity variations, yet shows no ap-
preciable difference between poles and equator.
The time at which Sn begins to yield systematically larger

neutrino heating rates (Fig. 17) coincides with the growth of the
SASI-related shock excursions to large amplitudes (Fig. 19). This
suggests that the increased heating is related at least in part to the
Sn variant’s ability to better capture radiation field asymmetries
(see also the discussion in x 4.3.2), induced at late times by the
rapidly varying shock and postshock hydrodynamics in thismodel.
Other factors that contribute to the increased heating in the Sn

Fig. 16.—Left: Averaged specific radial neutrino gain and loss profiles in model s20.� at 160 ms after core bounce. Shown are results from the Sn (red ) and MGFLD
(black) calculations. Both polar and equatorial radial profiles are obtained by averaging over 20

�
wedges. As is already clear from Fig. 15, Sn yields significantly greater

polar specific neutrino energy gain thanMGFLD. The Sn gain region extends farther in by�10 km and the gain is more than a factor of 2 larger in the interval from�90 to
200 km. Given the larger flux asymmetry in the Sn calculation (Fig. 11), less neutrino flux is going through regions of low latitude, resulting in the lower specific gain at
low latitudes predicted by Sn. Right: Neutrino gain density (density-weighted specific gain). Due to rapid rotation higher densities obtain out to larger radii at low latitudes.
This results in a partial reversal of the picture presented by the left panel; weighted by density, the neutrino gain (now per unit volume) in the equatorial wedge becomes
comparable to that near the poles. Furthermore, equatorial regions, since they subtend the largest solid angles, contribute most to the volume integral. The integral numbers
for the net gain in the polar wedge (counting both poles) for Sn (MGFLD) are 0.17 B s�1 (0.047 B s�1) and in the equatorial wedge are 0.35 B s�1 (0.47 B s�1). The total in-
tegrated net gain is 1.603 and 1.637B s�1 for Sn andMGFLD, respectively. These numbers are surprisingly close given the large qualitative and quantitative local differences in
the neutrino gain distribution.
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calculation are the higher rms neutrino energies (by�5%; shown
in the right panel of Fig. 18) and themore gradual transition of the
Sn neutrino radiation field to free streaming in the postshock re-
gion (see x 4.3.1).

Figure 20 contrasts Sn and MGFLD simulations of model
s20.nr by means of color maps depicting the specific entropy
distributions in the two variants. To visualize the hydrodynamic

flow,we superpose fluid velocity vectors. Each panel of this figure
corresponds to a specific postbounce time and each panel’s left-
hand side depicts the state of the MGFLD calculation, while
the right-hand side depicts the corresponding Sn calculation.
The figure covers a postbounce interval from 160 ms (top left)
to 500 ms (bottom right). At the beginning of the runs, the SASI-
driven deviation from sphericity of the stalled shock is mild,

Fig. 18.—Left: �e luminosities (4�r 2Fr) as a function of postbounce time as seen by observers located at a spherical radius of 250 km along the north pole (black lines),
south pole (green lines), and in the equatorial plane (red lines) in Sn (solid lines) and MGFLD (dashed lines) variants of model s20.nr (thin lines) and s20.� (thick lines).
Note that the south pole, north pole, and equator MGFLD luminosities in model s20.nr (thin dashed lines) are very similar. Their lines are indistinguishable. The same
holds for the south and north poleMGFLD luminosities in model s20.� (thick black and green dashed lines). Right: Angle-averaged rms energies of �e (solid lines) and �̄e
(dashed lines) neutrinos as a function of postbounce time in the Sn andMGFLD simulations of the two models. Sn predicts systematically higher rms neutrino energies in
both models.

Fig. 17.—Left: Evolution of the total neutrino net gain rate as a function of postbounce time in the Sn andMGFLD variants of models s20.nr and s20.�. At postbounce
times before �300 ms in model s20.nr, Sn yields a net gain rate that is larger by (on average) �10%Y15% than that predicted by MGFLD. As the SASI becomes more
pronounced at postbounce times k300 ms, the Sn net gain begins to more significantly exceed that of MGFLD, averaging out at �20%Y30% larger values than the
MGFLD net gain rate. In model s20.�, Sn and MGFLD net gain rates stay very close in the first�30 ms of evolution, yet depart when the Sn variant approaches its new
dynamical equilibrium (see Fig. 19) and provides for a larger gain region (mass and volume). This leads to a net gain rate that is larger by�20%Y25% (on average in the
postbounce interval from 200 to 350ms). At later times, theMGFLD calculation, approaching the Sn variant’s postshock extent (Fig. 19), produces larger net gain rates due
to its larger equatorial neutrino fluxes at similar hydrodynamic configuration. Right: Heating efficiency evolution in the two models with their Sn and MGFLD variants. We
define the heating efficiency as the ratio of total neutrino net gain rate and the sum of electron and antielectron neutrino luminosities.
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Fig. 19.—Left: Average shock radii as a function of postbounce time in Sn (red ) and MGFLD (black) variants of the nonrotating model s20.nr. Also shown are the
overall average shock radius, the average of south-pole and north-pole shock radii, and the equatorial shock radius for the rapidly spinningmodel s20.�, again for Sn (blue)
and MGFLD (green). In model s20.nr, MGFLD and Sn show little quantitative deviation from each other. In the s20.� evolution, however, a significant increase in the
various shock radii is noticeable right at the beginning of the time-dependent Sn calculation. At later times MGFLD catches up and the average shock radii approach each
other. The Sn variant exhibits larger variations, indicating stronger SASI-like shock excursions. Right: Evolution of the north-pole (positive) and south-pole (negative) shock
radii for the Sn andMGFLD variants of the twomodels. Since the lowest order and dominant mode of the 2D SASI is the ‘ ¼ 1 polar sloshing mode, the polar shock radii are
good indicators of its strength and periodicity. Note the initial suppression, but late-time development of SASI-like polar shock excursions in the rotating model.

Fig. 20.—Two-dimensional entropy color maps portraying the postbounce evolution of model s20.nr between 160 ms (top left) and 500 ms (bottom right) after core
bounce. Fluid-velocity vectors are superposed to provide an impression of the flow. Each panel’s left-hand side corresponds to the MGFLD calculation and each panel’s
right-hand side shows the Sn result. The time of each panel is given relative to the time of core bounce. The sequence of panels portrays the canonical development of the
SASI in the nonrotating axisymmetric context. Sn andMGFLD evolution agree very well in the early SASI phases, but deviate in detail at later times, while still exhibiting
the same overall SASI dynamics.



but grows with time, showing ‘ ¼ 1 excursions now generally
recognized as characteristic of the SASI11 (Scheck et al. 2008;
Marek & Janka 2007; Bruenn et al. 2006; Burrows et al. 2007c).

As expected from the discussion of the s20.nr 160 ms post-
bounce steady-state snapshot in x 4, Sn and MGFLD variants of
this model do not differ significantly in the early SASI phase.
However, at later SASI stages, in particular at postbounce times
k300Y350 ms, the simulations diverge, showing different local
qualitative and quantitative behavior within the overall SASI
theme. This is also reflected in Figure 19, which depicts the evo-
lution of the average shock radius, as well as the shock radii
along north pole and south pole. The shock positions in the Sn
andMGFLD simulations remain close and the SASI stays prac-
tically in phase (right panel of Fig. 19) until�350ms after bounce.
Only then do they begin to show significant departures from each
other. The SASI in the Sn calculation appears more pronounced at
later times, exhibiting larger local (in time) shock excursions. Yet,
quite surprisingly, given the significant increase in neutrino energy

deposition, the Sn calculation does not exhibit any increase in the
average shock radius, nor does it appear to be any closer to ex-
plosion than its MGFLD counterpart.

5.2. Model s20.�

The diagnosis of the radiation-hydrodynamic evolution of the
rapidly spinning model s20.� is less straightforward than for the
nonrotating model s20.nr. As discussed in x 4.3.2, rotation cre-
ates a global pole-equator asymmetry in the hydrodynamics of
this model. MGFLD and Sn track the effect of globally asymmet-
ric matter distributions on the neutrino radiation field to different
degrees. In the steady-state snapshot at 160ms, Sn predicts stronger
neutrino heating in polar regions, yet weaker heating in the higher
density, larger volume equatorial regions.

The polar, equatorial, and angle-averaged shock positions por-
trayed by Figure 19 show that the hydrodynamics responds im-
mediately to the increased polar heating in the Sn calculation by a
pronounced expansion of the shock along the poles. This expan-
sion lasts for �40 ms, after which the shock has expanded by
�20% from�230 to�275 km on both poles. It stagnates at this
radius and subsequently contracts again when feedback of the
hydrodynamics to the neutrino microphysics leads to increased
cooling (cf. the increased polar neutrino emission shown in
Fig. 18). The increased postshock volume also results in a larger
gain region and increased (compared to MGFLD) total neutrino

Fig. 21.—Two-dimensional entropy color maps portraying the postbounce evolution of the rapidly rotating model s20.� between 160ms (top left) and 550ms (bottom
right) after core bounce. Fluid-velocity vectors are superposed to relay an impression of the flow and convey the partial suppression of convective overturn in regions of
positive specific angular momentum gradient. As in Fig. 20, we plot the MGFLD result on the left-hand side and the Sn result on the right-hand side of each panel. Easily
discernible is the immediate increase in the polar shock radius in the Sn calculation. This is a direct consequence of the increased polar neutrino heating in this variant (Figs. 15
and 16). At intermediate times, Sn andMGFLD shock positions grow closer, but later on in the postbounce evolution, the Sn variant begins to develop larger top-bottom SASI-
like asymmetry and polar shock excursions at earlier time than its MGFLD counterpart.

11 At least in detailed 2D models. Iwakami et al. (2008) carried out an ex-
ploratory 3D numerical study with nonrotating progenitors that suggests that in
the 3D case the ‘ ¼ 1 dominance still obtains, yet reaches smaller relative ampli-
tudes, since not only higher ‘modes, but alsommodes, may now contain power.
However, Yamasaki & Foglizzo (2008), who performed a perturbative study with-
out symmetry constraints, argued that in the 3D case with rotation, a dominant
m ¼ 1 (m ¼ 2) mode is likely to emerge in the case of slow (rapid) rotation.
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energy deposition and heating efficiency. However, this increased
heating is not able to sustain the large postshock volume. The
shock slowly recontracts in the postbounce interval from�250
to �380 ms and eventually settles at radii similar to those ob-
tained by the MGFLD shock.

In Figure 21 we present a sequence of 2D entropy color maps
with superposed velocity vectors, portraying the postbounce evo-
lution of model s20.� from 160 ms on. The rapid rotation in this
model not only partially stabilizes convection, but also weakens
and delays the growth of the characteristic ‘ ¼ 1 SASI.12 Since
larger shock radii are associated with an increased growth rate of
the SASI (e.g., Foglizzo et al. 2007; Scheck et al. 2008), the Sn
variant begins to develop periodic shock excursions along the
symmetry axis at much earlier times than the MGFLD simulation
(Fig. 19). However, at times later than �400 ms, the MGFLD
model picks up the large-amplitude SASI as well and both calcu-
lations exhibit large-scale radial shock excursions beyond�400 km
along the pole (Fig. 19). The average shock radius increases in both
calculations in this late postbounce phase. We observe neither
such large shock excursions nor a systematic late-time increase
of the average shock radius in the nonrotating model. The ob-
served behavior is most likely due to the rapid rotation and the
resulting rarefaction of the polar regions that reduces, in particular
at late times, the ram pressure of accretion and allows for themore
pronounced SASI.

In the left panel of Figure 18, we contrast the �e ‘‘luminosities’’
(4�r 2Fr) seen by observers located at a radius of 250 km above
the north pole, the south pole, and in the equatorial plane of model
s20.�. TheMGFLDvariant predicts a pole-equator flux asymmetry
of P10% that is roughly constant with time. The Sn calculation
yields a very different picture. Polar and equatorial luminosities
at 250 km (i.e., near the shock) are vastly different (cf. x 4.3.2).
Over time, the equatorial luminosity decreases while the lumi-
nosity along the poles is enhanced. At�200 ms, polar and equa-
torial luminosities differ by a factor of �3. By �500 ms, this
factor has grown to 4. In addition, the Sn simulation shows SASI-
induced variations in north- and south-pole luminosities that grow
to�3%Y5% at late times and are not tracked in the MGFLD var-
iant. These variations are akin to those reported for the nonrotating
model s20.nr, yet have longer periods, since the large shock excur-
sions in model s20.� occur on longer timescales.

As in the nonrotatingmodel, we also find inmodel s20.� that Sn
yields systematically higher rms neutrino energies for all species
and at all times. However, as shown in the right panel of Fig-
ure 18, the angle-averaged rms energies do not exhibit a signifi-
cant increase in the time interval covered by our simulations. This,
again, is due to rapid rotationwhich slows down the PNS’s contrac-
tion. Not shown in Figure 18, but present in the Sn variant through-
out its postbounce evolution, are�10%Y20% (roughly constant in
time and independent of species) higher rms energies for neutrinos
emitted from polar regions compared to those emitted from the
PNS equator. This is consistent with our analysis of the neutrino
spectra and rms neutrino energies for the 160 ms postbounce
steady-state snapshot presented in x 4.3.2.

We end our postbounce simulations of model s20.� with Sn
and MGFLD at 550 ms after bounce. Although within roughly
the same qualitative picture, the two approaches to neutrino trans-
port yield appreciable differences in the postbounce radiation-
hydrodynamics evolutions. Importantly, and in contrast to our
findings for the nonrotating model, Sn in model s20.� does not

lead to systematically higher integral neutrino energy deposition,
and at late postbounce times shows a volume-integrated heating
rate that is even �30% lower (on average) than in its MGFLD
counterpart.

6. SUMMARY AND DISCUSSION

Using the code VULCAN/2D (Livne et al. 2004, 2007;
Burrows et al. 2007c), we perform long-term full-2D multiangle,
multigroup neutrino radiation-hydrodynamic calculations in the
core-collapse supernova context. Based on postbounce hydrody-
namic configurations fromMGFLD simulations, we first compute
2D angle-dependent (Sn) steady-state solutions for models with-
out precollapse rotation and with rapid rotation (�0 ¼ � rad s�1).
From these snapshots, we numerically follow the radiation-
hydrodynamics evolution with Sn neutrino transport, tracking
the nonrotating model to 500ms and the rotatingmodel to 550ms
after bounce.
Done for the first time in 2D, we investigate in detail the angle-

dependent specific intensities and neutrino radiation fields. We
compute angular moments of the specific intensity, including the
Eddington tensor, and introduce Hammer-type map projections
to visualize the angle dependence of the specific intensity. These
we employ to demonstrate the decoupling systematics of the neu-
trinos and the gradual transition to free streaming of the radiation
fields with decreasing optical depth.
We compare our Sn simulations with MGFLD counterparts.

We find for both models and at all times that the Sn specific in-
tensity distributions transition less rapidly from isotropy to free
streaming in the semitransparent outer postshock regions. Sn yields
mean inverse flux factors and rms neutrino energies in these re-
gions that are �10% larger than those obtained with MGFLD. In
the context of the neutrinomechanism of core-collapse supernova
explosions, differences in the net neutrino energy deposition rates
between MGFLD and multiangle Sn transport are of greatest in-
terest. In the quasi-spherical early postbounce phase of the non-
rotatingmodel, we find that Sn predicts a 5%Y10% greater neutrino
energy deposition rate thanMGFLD.At later times, when the SASI
has reached large amplitudes and globally deforms the postshock
region, we find that Sn yields consistently larger (up to 30% on av-
erage) energy depositions and leads to significantly larger tempo-
rary shock excursions around average shock radii that do not depart
much from those in the MGFLD calculation.
Convection on small and intermediate scales and SASI on large

scales are the key agents of the breaking of spherical symmetry in
nonrotating (or slowly rotating) core-collapse supernovae. While
we observe no large qualitative differences in the growth and dy-
namical evolutions of convection and SASI between nonrotating
Sn and MGFLD models, we find that the imprint of the asym-
metric hydrodynamics on the neutrino radiation fields is captured
with greater detail by the multiangle transport scheme. For the
late-time, heavily SASI-distorted postbounce core, Sn predicts as-
ymptotic neutrino fluxes that have variations with time and angle
of 5%Y10% in magnitude. MGFLD is able to capture the tem-
poral variations of the neutrino luminosity, but smooths out the
angular flux variations at large radii/low optical depths.
Rapid rotation leads to large deviations from spherical sym-

metry and a rotationally deformed PNS emits, by von Zeipel’s law
of gravity darkening, a greater neutrino flux along its rotational
axis than through its equatorial regions (Janka & Mönchmeyer
1989a, 1989b; Kotake et al. 2003; Walder et al. 2005; Buras et al.
2006a;Dessart et al. 2006b).We find that both 2DMGFLDand Sn
yield similar radiation fields and pole-equator flux ratios at radii
smaller than �100 km. At larger radii, the MGFLD radiation
fields sphericize and show little pole-equator asymmetry in their

12 But see the work of Yamasaki & Foglizzo (2008) who find via perturbative
analysis that in 3D, rotation enhances the development of azimuthal m ¼ 1 and
m ¼ 2 SASI-related spiral structure.
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asymptotic variables. Sn, on the other hand, captures large pole-
equator flux ratios of up to 4 : 1 at late times and predicts polar
neutrino spectra that are harder in peak energy (rms energy)
than on the equator by up to 30% (10%Y15%) for �e neutrinos,
and somewhat less for the other species. All this results in a neu-
trino energy deposition rate per unit mass in polar regions that is
locally up to �2.5Y3 times higher when multiangle transport is
used. This increased polar neutrino heating has a dynamical effect
on the postbounce evolution, leading to rapid shock expansion in
the polar regions and an earlier onset of the (initially) rotationally
weakened SASI. However, at late times, the SASI in the MGFLD
calculation catches up and yields shock excursions of a similar
magnitude.

In summary, our results show that 2Dmultiangle neutrino trans-
port manifests interesting differences with 2D MGFLD when ad-
dressing local and global radiation field asymmetries associated
with rapid rotation and the nonlinear SASI at late postbounce
times. In addition, multiangle transport results in enhanced neu-
trino energy deposition. The latter is most significant in the polar
regions of rapidly rotating postbounce configurations and affects
dynamically the postbounce evolution, including the growth of
the SASI. However, in the large postbounce interval covered by
our simulations, the local and global differences between multi-
angle transport and MGFLD calculations do not appear large
enough to alter the overall simulation outcome. Importantly, the
multiangle models do not appear to be closer to explosion than
their MGFLD counterparts.

Although we neglect velocity-dependent transport terms and
coupling of neutrino energy bins, we do not expect our conclusions
to be altered by their inclusion, since they are not likely to affect
significantly the differences between multiangle transport and
MGFLD. Further significant limitations of our present study are
the neglect of general relativistic and MHD effects, the restriction
to only one finite-temperature nuclear EOS, the limited resolution
in momentum space imposed by the computational cost of multi-
angle calculations, and the use of two spatial dimensions, plus ro-
tation. In the future, we will investigate the dependence of our
results (e.g., heating rates, radiation-field asymmetries, etc.) on the
choice of flux limiter andwill consider different progenitor models.

The core-collapse supernova problem is one of many feed-
backs. Larger heating rates and heating efficiencies than found in
our models appear to be necessary to break the feedback cycle
between neutrino radiation fields and hydrodynamics, revive the
stalled shock, and unbind the supernova envelope—if the neu-
trino mechanism is to obtain in the way presently envisioned.
Future work will have to go beyond the limitation of axisym-
metry and must address in detail the entire ensemble of possible
factors relevant in the supernova problem, including, but not
limited to, 3D dynamics, multiangle neutrino transport with ve-
locity dependence and inelastic �e-e

� scattering, progenitor struc-
ture, rotational configuration, magnetohydrodynamics, convection,
the SASI, PNS g-modes, general relativity, the nuclear EOS, and
neutrino-matter interactions.
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