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Abstract

Background: In this paper, a novel method is proposed to identify plant species by using the two- dimensional

multifractal detrended fluctuation analysis (2D MF-DFA). Our method involves calculating a set of multifractal

parameters that characterize the texture features of each plant leaf image. An index, I0, that characterizes the

relation of the intra-species variances and inter-species variances is introduced. This index is used to select three

multifractal parameters for the identification process. The procedure is applied to the Swedish leaf data set containing

leaves from fifteen different tree species.

Results: The chosen three parameters form a three-dimensional space in which the samples from the same species

can be clustered together and be separated from other species. Support vector machines and kernel methods are

employed to assess the identification accuracy. The resulting averaged discriminant accuracy reaches 98.4% for every

two species by the 10 − fold cross validation, while the accuracy reaches 93.96% for all fifteen species.

Conclusions: Our method, based on the 2D MF-DFA, provides a feasible and efficient procedure to identify plant species.

Keywords: Plant identification, Multifractal detrended fluctuation analysis, Support vector machines and kernel methods

Introduction
The increasing interest in biodiversity and biocomplex-

ity, together with the growing availability of digital im-

ages and image analysis algorithms, makes plant species

identification and classification a topic that has attracted

many researchers’ attention. In general, many parts of a

plant such as flowers, seeds, roots, and leaves can be

used to identify plant species [1-3]. In this paper, we

focus on the usage of image of leaves as they are widely

available. Leaf ’s shape, color, vein properties, texture and

contours are important features for plant identification.

For example, leaf shapes were used in [4-6]; complex

veins and contours of leaves were used in [7] and leaf tex-

ture was used in [8-11] for plant species identification. For

plant species identification using digital morphometrics,

we refer the reader to [12-14] and the references therein.

Note that in [7], a monofractal method was used to ex-

tract plant leaf ’s features from leaf images. This method

was then used in [15,16]. It’s been recognized that the

monofractal method cannot fully extract detailed informa-

tion from the leaf image and therefore cannot be efficiently

applied to process the images of the objects that are locally

irregular [17]. To overcome this difficulty, several multifrac-

tal analysis (MFA) methods were proposed [18-22]. For

example, Backes et al. [18,19] used multi-scale fractal di-

mensions to describe the texture property of leaf ’s surface

to identify plants, which turned out to be very efficient.

Note that the classical MFA is based on capacity measure-

ment or probability measurement and thus describes only

stationary measurements [17]. For a leaf image, the surface

itself is hardly stationary. Therefore, the multifractal

detrended fluctuation analysis (MF-DFA) method that can

deal with non-stationary is a desirable method for leaf

image analysis [23]. Though the MF-DFA method has been

successfully applied in many fields for non-stationary series

and surfaces [24-30], to the best of our knowledge, no work

yet has applied the MF-DFA on leaf images for plant identi-

fication and classification. In this paper, we attempt to iden-

tify plant species via leaf images by using the MF-DFA.

More precisely, we first adopt the MF-DFA to extract im-

portant texture features from leaf images and obtain several

key multifractal parameters, and then we apply the support

vector machines and kernel methods (SVMKM) to distin-

guish leaves from different plant species. The widely used

Swedish leaf data set [31] containing leaves from fifteen
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different Swedish tree species are used for our experiments.

Our results show that the average accuracy is 98.4% for

every two species by the 10 − fold cross validation; for the

over-all species, the average accuracy reaches 93.96% by the

same validation criterion.

We organize the rest of this paper as follows: in

Methods and materials we adopt the two-dimensional

(2D) MF-DFA to calculate the multifractal parameters.

In Results and discussion, we present and discuss our re-

sults. Our method is then further tested in Model test. A

summary is provided in Conclusions.

Methods and materials
Multifractal detrended fluctuation analysis

We first adopt the 2D MF-DFA method proposed in

[32] to our setting as follows:

Step 1: Regard a leaf image as a self-similar surface and

represent it by an M×N matrix X = (X(i, j)), i = 1, 2,…,

M and j = 1, 2,…, N. Partition the surface into Ms × Ns

non-overlapping square sub-surface of equal length s,

where Ms ≡ [M / s] and Ns ≡ [N / s] are positive integers

(Here [u] stands for the largest integer that is less than

or equal to u). Each sub-surface is denoted by Xm,n =

Xm,n(i, j) with Xm,n(i, j) = X(r + i, t + j) for 1 ≤ i, j ≤ s,

where r = (m-1)s and t = (n-1)s. Note that M and N

are not necessarily multiples of the length s, therefore,

the sub-surfaces in the upper-right and the bottom

may not be taken into consideration. We can then

repeat the partitioning procedure starting from the

other three corners.

Step 2: For each sub-domain Xm,n, find its cumulative sum

Gm;n i; jð Þ ¼
X

i

k1¼1

X

j

k2¼1

m;n Xm k1; k2ð Þ; ð1Þ

where 1 ≤ i, j ≤ s, m = 1, 2, …, Ms and n = 1, 2, …, Ns.

Then Gm,n =Gm,n(i, j) (i, j = 1, 2, · · ·, s) itself is a surface.

MI: Ulmus 

carpinifolia 

MII: Acer MIII: Salix  

aurita 

MIV:  

Quercus 

MV: Alnus  

incana 

MVI: Betula 

pubescens 

MVII: Salix  

alba Sericea 

MVIII: Populus

tremula 

MIX: Ulmus 

glabra 

MX: Sorbus 

aucuparia 

MXI: Salix 

sinerea 

MXII:  

Populus

MXIII: 

Tilia 

MXIV: Sorbus 

intermedia 

MXV: Fagus 

silvatica 

Figure 1 Fifteen species of tree leaf images from the Swedish leaf database, their species’ name and corresponding.
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Figure 2 Multifractal nature in the power-law of the gray image of leaf MIV004. (a): The plots of the detrended fluctuation function Fq(s)

for different values of q. In order to make clearer contrast among the different curves, some constants are subtracted. The straight lines are the

best fitted lines whose slopes are shown in the legend. (b): Dependence of τ(q) and h(q) on q.
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Step 3: For each surface Gm,n, obtain a local trend G~
m,n

by fitting it with a pre-chosen bivariate polynomial

function. In this paper, we choose the trending function

as

~Gm;n i; jð Þ ¼ aiþ bjþ c; ð2Þ

a.where 1 ≤ i, j ≤ s and a, b and c are free parameters to

be determined by the least-squares method. The re-

sidual matrix is then given by ym,n = ym,n(i, j) with

ym;n i; jð Þ ¼ Gm;n i; jð Þ−~Gm;n i; jð Þ: ð3Þ

Step 4: Define the detrended fluctuation function F(m,

n, s) for the segment Xm,n as follows:

F2 m; n; sð Þ ¼
1

s2

X

s

i¼1

X

s

j¼1

ym;n i; jð Þ2 ð4Þ

and the qth-order fluctuation function

Fq sð Þ ¼
1

MsN s

X

Ms

m¼1

X

N s

n¼1

F m; n; sð Þ½ �q
" #1=q

; q≠0: ð5Þ

Fq sð Þ ¼ exp
1

MsN s

X

Ms

m¼1

X

N s

n¼1

ln F m; n; sð Þ½ �

( )

; q ¼ 0: ð6Þ

Step 5: Vary the value of s ranging from 6 to min(M,N)/4.

If there is long-range power-law correlation for large

values of s, then

Fq sð Þ∝sh qð Þ:

This allows us to obtain the scaling exponent h(q) via

linearly regressing lnFq(s) on lns. Note that h(2) is the so

called Hurst index of the surface, we then call h(q) the

generalized Hurst index of the surface. For each q, the

corresponding classical multifractal scaling exponent

τ(q) is given by:

τ qð Þ ¼ qh qð Þ−Df ¼ qh qð Þ−2; ð7Þ

where Df is the fractal dimension of the geometric sup-

port of the multifractal measure, and takes the value of

Df = 2 in our work. The generalized multifractal dimen-

sion Dq is then given by
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Figure 3 Multifractal nature in the power-law of the gray image of leaf MX017. (a): The plots of the detrended fluctuation function Fq(s) for

different values of q. In order to make clearer contrast among the different curves, some constants are subtracted. The straight lines are the best

fitted lines whose slopes are shown in the legend. (b): Dependence of τ(q) and h(q) on q.

Figure 4 The generalized Hurst exponents h(q) for each species.
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Dq ¼
τ qð Þ

q−1
¼

qh qð Þ−2

q−1
; q≠1: ð8Þ

In the case where q = 1, D1 can be obtained via a lin-

ear regression of
XMs

m¼1

XN s

n¼1
Pm;n ln Pm;n against lns,

where

Pm;n ¼

X

1≤i;j≤s
Xm;n i; jð Þ

X

1≤i≤M

X

1≤j≤N
X i; jð Þ

:

The other two indicators characterizing the singularity

strength of the multifractal surface are the Hölder exponent

α(q) and the singularity spectrum f (α), which are given by

α qð Þ ¼ τ
′ qð Þ ¼ h qð Þ þ qh′ qð Þ; f αð Þ

¼ qα qð Þ−τ qð Þ ¼ q α−h qð Þ½ � þ 2: ð9Þ

Here α(q) characterizes the local singularity of an

image texture, and f (α) measures the global singularity

of an image texture. Varying the value of q in the range

from −15 to 15 determines ∆α and ∆f as follows:

Δα ¼ αmax−αmin;Δf ¼ f αmaxð Þ−f αminð Þ; ð10Þ

αmax =max{α(q), q∈[−15,15]} and αmin =min{α(q),

q∈[−15,15]}. Note that the index ∆α is considered as an

indicator to measure the absolute magnitude of the

gray scale volatility. The larger value of ∆α, the

smaller even distribution of probability measure and

the more roughness image surface will be expected.

The index ∆f is the Hausdorff dimension of the meas-

ure object, which measures the degree of confusion.

Therefore both ∆α and ∆f are important multifractal

parameters in describing the characteristics of an

image in our study.

Experiment materials

To demonstrate our method of identifying plant species

by using the leaf texture, we use the Swedish leaf data

set [31] for our experiment, which is widely employed in

computer vision and pattern recognition fields [4,33,34],

plant taxon fields [1] and image processing fields [6,35].

This leaf data set has images of 15 species of leaves with

75 sample images per species. We label the fifteen spe-

cies by MI, MII, · · ·, MXV (See Figure 1).

We first transform the color image to gray scale so

that each image can be viewed as a three- dimensional

surface with the first two coordinates (i, j) denoting the

2D position and the third coordinate z denoting the gray

level of the corresponding pixel.

Figure 5 The standard deviations of the averaged h(q) calculated in Figure 4.

Figure 6 The averaged values for six related multifractal parameters based the MF-DFA estimation for each species.
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Multifractal nature of image surfaces

Each image is stored as a 2D matrix in 256 grey levels.

This allows us to follow the procedure introduced in

Multifractal detrended fluctuation analysis to calculate

the associated h(q) and τ(q). If τ(q) is nonlinear in q, that

is h(q) is not independent of q, then the image possesses

the multifractal nature.

For the Swedish leaf data set, we find that the leaf im-

ages all possess the multifractal nature. Figure 2 and

Figure 3 demonstrate the multifractal nature of two ran-

domly chosen leaf images, namely, image MIV004 and

image MX017, the former has 1793 × 979 pixels and the

latter has 2934 × 1771 pixels. In each the left panel illus-

trates the dependence of the detrended fluctuation function

Fq(s) as a function of the scale s for different q. The well fit-

ted straight lines indicate the evident power law scaling of

Fq(s) versus s. The right panel shows that τ(q) is nonlinear

in q, indicated by the fact that h(q) depends on q.

Results and discussion
For each image, we can calculate the generalized Hurst

exponents h(q) and six other multifractal parameters

including αmax, αmin, ∆α, ∆f, D1 and D2. For each tree

species, we take the averaged value over the 75 sam-

ples and report our calculated values in Figures 4 and

5. Their standard deviations are given in Figures 6 and

7, respectively.

As seen in Figure 4, comparing with h(2) and h(3), the

estimations of h(−3), h(−2), h(−1) and h(1) vary in rela-

tively wider dynamic ranges and thus demonstrate better

abilities to distinguish textures among different species.

Yet, one notes that there are relatively large variations in

the standard deviations among the 75 samples for the h

(q) exponents in Figure 5. This suggests that this indica-

tor alone may not be adequate to identify the fifteen tree

species. Also as seen in Figure 6 that the three parame-

ters, αmax, ∆α, and ∆f admit wider dynamic ranges than

the other three parameters do. The variations among the

75 samples in the same tree species are notably large as

shown in Figure 7.

For species i (i = I, II, · · ·, XV), with respect to each

calculated multifractal parameter, we denote the stand-

ard deviation of the 75 samples by σin(i) and define σin

as

σ in ¼
1

15

X

XV

i¼I

σ in ið Þ; ð11Þ

which represents the intra-species variance. Note also

that for each indicator, we can calculate its value corre-

sponding to each species and there are 15 values in total

for those 15 species. We define σbet. as the standard de-

viation of these 15 calculated values. Then the term σbet.

represents the inter-species variance for each multifrac-

tal indicator. We now define an index, I0, as

I0 ¼
σbet:

σ in
: ð12Þ

From the definition, we note that the multifractal par-

ameter with larger I0 serves better as an indicator to dis-

tinguish species. We present the calculated values of I0
in Table 1.

Figure 7 The standard deviations of the averaged parameter values calculated in Figure 6.

Table 1 The calculated σbet., σin and I0 for the 12 multifractal parameters

Parameters h(−3) h(−2) h(−1) h(1) h(2) h(3) αmax αmin Δα Δf D1 D2

σbet. 0.0605 0.0403 0.0363 0.0255 0.0237 0.0233 0.0845 0.0183 0.0806 0.1327 0.0140 0.0259

σin 0.0368 0.0342 0.0381 0.0779 0.0496 0.0395 0.0722 0.0151 0.0646 0.2645 0.0264 0.0252

I0 1.6459 1.1810 0.9548 0.3280 0.4777 0.5891 1.1705 1.2132 1.2469 0.5015 0.5316 1.0284

Tip: the symbol bold numbers mean the best choice yielding the top three I0 indices.
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We choose the combination of three multifractal pa-

rameters with larger I0 values, namely, {h(−3), αmin, Δα},

as the feature descriptors for our classification purpose

and apply the support vector machines and kernel

methods (SVMKM) with the heavy-tailed radial basis

function-’htrfb’ as the kernel [36]. It is worth mentioning

that the combination of 4 or more parameters does not

lead to significant higher accuracies, but at a cost with

much longer computational time and with no visual ad-

vantages. In this sense, the combination of the above

three parameters is optimal. For the total sample set

containing 75 × 15 = 1125 samples, we use the K − fold

cross validation to evaluate the learning performance.

This means that 100 (K − 1)/K% samples are randomly

chosen as a training set and the remaining 100/K% sam-

ples are considered as a test set. The calculation process

is then repeated 10 times to eliminate the impact of

randomness.

In our first identification experiment, we test the pro-

posed method through examining the distinguishing

α

∆
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α

∆
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∆
α
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Figure 8 Visualization of two tree species in the {h(−3), αmin,Δα} space. (a): Ulmuscarpinifolia versus Alnusincana; (b): Salixaurita versus

SalixalbaSericea; (c): Salixsinerea versus Tilia; (d): Sorbusaucuparia versus Fagussilvatica.
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Figure 9 Average identification accuracies. (a): the average accuracies of every two species using different values of K; (b): The accuracies of

identifying species Ulmus carpinifolia versus the other 14 species using K = 10.
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effect for every two species. To this end, we form a

three-dimensional parameter space with components

given by the above chosen feature descriptors {h

(−3), αmin, Δα}. In this space, one point represents a leaf

sample image. In Figure 8(a)-(d), we plot the corre-

sponding points for Ulmus carpinifolia versus Alnus

incana, Salix aurita versus Salix alba Sericea, Salix

sinerea versus Tilia and Sorbus aucuparia versus Fagus

silvatica, respectively. As shown in these plots, the sam-

ples from the same tree species are clustered together

reasonably well.

In addition, we calculate the discriminant accuracies

of every two tree species by SVMKM using the K − fold

cross validation with different K values. The average ac-

curacies of 10 trials are shown in Figure 9(a). To display

the applicability of identifying different tree species by

our proposed method, as an example, we plot the accur-

acy of identifying species MI (Ulmus carpinifolia) versus

other 14 species with K = 10 in Figure 9(b). As expected,

the average accuracy of every two species is increasing

with respect to K. The obtained best accuracy is 98.40%,

higher than 96.82% reported in [35], which requires a

very complex pre-processing process for leaf images. It

is seen from Figure 9(b) that there are accuracy varia-

tions between species Ulmus carpinifolia and the other

14 species. Five species, namely, Salix aurita, Betula

pubescens, Ulmus glabra, Salix sinerea and Fagus silva-

tica, have accuracies below the average accuracy. This

suggests that species Ulmus carpinifolia has high simi-

larity with the above mentioned five species, which

agrees with the observation from Figure 1.

For each species, the averaged {h(−3), αmin, Δα} of the

75 samples is represented by a single point in the three-

dimensional parameter space (see Figure 10) in which

different points representing different species may be

clustered into several groups. We use the calculated dis-

criminant accuracy of every two species as the distance

between these two points (species). This allows us to
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Figure 10 Feature descriptors of the 15 species and clustering result based on them. (a): Visualization of averaged indicators over 75

samples in each tree species in the {h(−3), αmin,Δα} space; (b): Clustering analysis result on the 15 tree species.
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conduct a cluster analysis for all samples of the 15 spe-

cies by the method of hierarchical clustering [37]. The

result is given in Figure 10(b), which suggests that the

15 tree species’ leaf samples can be clustered into five

groups: (i) {Ulmus carpinifolia, Salix aurita, Ulmus gla-

bra, Salix sinerea, Fagus silvatica}; (ii) {Betula pubescens,

Populus, Sorbus intermedia}; (iii) {Quercus, Alnus incana,

Salix alba Sericea, Populus tremula}; (iv) {Acer, Tilia} and

(v) {Sorbus aucuparia}. This is consistent with visualizing

the images directly from Figure 1 showing our proposed

approach is applicable.

As another important aspect of identification experi-

ment, we next test our method through calculating the

identification accuracies for different numbers of species.

The averaged accuracy result calculated when K = 10 is

shown in Figure 11(a). Note that the average accuracy is

decreasing as the number of tree species increases.

This is due to the increasing probability of incorrect

classification. However, under the worst situation, all

75 × 15 = 1125 sample leaf images are well mixed to-

gether, which gives the lowest average accuracy:

93.96%. This is still very convincing that our approach

is feasible. We calculate the identification accuracy

also when K = 10 for each species and report the result

in Figure 11(b), while the identification result for

each species is displayed in Table 2. The best three

accuracies reach 98.67%, 97.33% and 96%, and the cor-

responding species are Sorbus aucuparia, Sorbus inter-

media and Tilia. As is seen in Figure 1, these three

species are clearly distinct from the other species in

leaf shapes and textures. This again shows that our

method is effective and feasible.

Table 2 The results of identification for the fifteen species of tree leaves by the method of SVMKM with K = 10

MI MII MIII MIV MV MVI MVII MVIII MIX MX MXI MXII MXIII MXIV MXV

MI 69 0 2 0 1 0 0 0 3 0 0 0 0 0 0

MII 0 70 0 0 1 0 1 0 1 1 0 1 0 0 0

MIII 1 0 71 0 0 0 0 0 0 0 2 1 0 0 0

MIV 1 0 1 68 1 0 0 3 1 0 0 0 0 0 0

MV 0 2 0 0 69 0 0 2 1 0 0 1 0 0 0

MVI 1 0 1 1 0 69 0 0 1 0 1 1 0 0 0

MVII 0 2 0 1 2 0 70 0 0 0 0 0 0 0 0

MVIII 0 0 0 1 2 0 1 70 0 0 1 0 0 0 0

MIX 1 0 0 0 1 1 0 0 70 0 1 1 0 0 0

MX 0 0 0 0 0 0 0 0 0 74 1 0 0 0 0

MXI 1 0 1 0 0 0 0 0 3 0 70 0 0 0 0

MXII 0 0 1 1 0 1 1 0 0 0 0 71 0 0 0

MXIII 0 0 0 0 0 0 0 0 0 0 0 0 72 0 3

MXIV 0 0 0 0 0 0 0 0 0 0 0 0 0 73 2

MXV 0 0 0 0 0 0 0 0 0 0 0 0 2 2 71

Figure 12 Average identification accuracies of the 15 species calculated with K = 10 with different species sample sizes.
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We remark that the sample size of each species has lit-

tle effect on the average discriminant accuracy. To jus-

tify this, we randomly choose n (n ≤ 75) leaf samples for

each species and run the procedure. Then repeat the

process 10 times and take the average accuracy, which is

reported in Figure 12. It can be seen from Figure 12 that

as the number of samples changes from 40 to 75, the ac-

curacy changes only 0.73%.

Model test
In this section, we test our proposed method to dem-

onstrate its efficiency. More precisely, we test the

validity of the optimal multifractal parameter combin-

ation {h(−3), αmin, Δα}. To this end, we choose other

four combinations composed by three multifractal pa-

rameters to construct four three-dimensional spaces

from Table 1. These four choices are {h(−3), Δf, D1}, {h

(2), h(3), αmin}, {h(2), Δα, Δf} and {h(1), h(2), Δf}. One

notes that each of the first three combinations con-

tains one multifractal parameter from {h(−3), αmin, Δα}

and the fourth combination consists of the three pa-

rameters that produce the three smallest I0 values. As

in the procedure proposed in the previous subsection,

we place the 1125 leaf samples into the four new

three-dimensional spaces and also use the SVMKM to

distinguish them. Under the K − fold cross validation,

the discriminant accuracies with increasing K are

shown in Figure 13. Obviously, the highest accuracy

Figure 13 The average accuracies of the 15 species for the selected combinations with increasing K.

Figure 14 The flow chart of software programing base on our model is as follows. Detailed codes are available upon request.
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still comes from the combination {h(−3), αmin, Δα} for

each K and the lowest accuracy comes from the com-

bination {h(1), h(2), Δf}. This again suggests that the

index I0 successfully indicates the optimal multifractal

parameter combination.

Conclusions
In this paper we have adopted the 2D MF-DFA method

proposed in [32] to extract important texture features

from leaf images. This allow us to calculate the general-

ized Hurst exponents, h(q), and several other multifrac-

tal parameters including αmax, αmin, ∆α, ∆f, D1 and D2.

By defining an index, I0, which examines the variation of

the inter-species variances and the intra-species vari-

ances, we are able to find an optimal combination of the

multifractal parameters that best characterizes the key

features of plant species allowing high accuracy in plant

species identification. For the Swedish leaf data set

which contains 15 species and 75 × 15 = 1125 samples in

total [31], the combination of {h(−3), αmin, Δα} turns out

to be optimal compared to other combinations of pa-

rameters. We have obtained 98.4% of averaged discrim-

inant accuracy for every two species by SVMKM with

the 10 − fold cross validation, while the accuracy

reaches 93.96% for the over-all 15 species. Software

based on our work can be designed and coded, for that

purpose, we provided the corresponding flow chart in

the Figure 14.

We should point out that most of the existing work

on texture image recognition focuses mainly on the

standard multifractal analysis. Our work has shown

that the MF-DFA is of particular practice for plant leaf

identification as the MF-DFA multifractal parameters

can be combined to distinguish similar but different

leaf textures.
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