
Geophys. J .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInt. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1996) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA125, 584-598 

Two-dimensional multivalued traveltime and amplitude maps by 
uniform sampling of a ray field 

G. Lambark,' P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Lucio' and A. Hanyga2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' bcole des Mines de Ptrris. Centre de Recherche e n  Giophysique. 35 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArue Saint Horiori.. 77 305 I.'o,irtiitiVblP(iiI. France 

* Institutefor Solid Earth Physics, Uniwrsity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo f  Bergen. Allegtrfen 41, SO07 Bcrgcw. Norrvtrp 

Accepted 1996 January 8. Reccived IY9S Dccember 18; in original form 1994 July  28 

SUMMARY 
An algorithm for computing multivalued maps for traveltime, amplitude or any other 
ray-related variable is presented. I t  is based on a wavefront construction method, where 
the ray field is decomposed into elementary cells defined by adjacent rays and 
wavefronts. A sampling criterion for ray density in the phase space is suggested. I t  is 
demonstrated that this new criterion ensures uniform ray density over the entire ray 
field including caustics. The method is applied to complex models. 

Key words: Green's functions, numerical techniques, ray theory, ray tracing, traveltime, 
wave propagation. 

1 INTRODUCTION 

The current interest in 3-D imaging has increased the impor- 
tance of asymptotic methods of wavefield computation based 
on ray tracing. Migration and inversion requires repeated 
evaluation of the wavefield in the scattering region from several 
sources. Asymptotic methods offer a reasonable compromise 
between accuracy and computational efficiency (Hanyga & 
Helle 1995). In 3-D inversion/migration, the task is formidable 
and asymptotic methods become unavoidable. The efficient 
numerical calculation of travellimes and amplitudes is a major 
challenge in imaging by asymptotic methods. A significant 
breakthrough was achieved through the finite-difference (FD)  
calculation of the first-arrival traveltime (Vidale 1988; Podvin 
& Lecomte 1991). However, FD computation of traveltimes 
leads to poor imaging in complex media (Geoltrain & Brac 
1991), owing to unreliable amplitude information. The simul- 
taneous computation of traveltimes and amplitudes is possible 
by dynamic ray tracing of a densely and uniformly sampled 
ray field, and evaluation of traveltimes and asymptotic ray 
theory (ART) amplitudes at a given point by interpolation 
(Lambare et al. 1992; Vinje et al. 1993a,b; Sun 1992; Forgues 
et al. 1994). 

The ray density has to be controlled in order to ensure 
accuracy as well as computational efficiency of the algorithm. 
Ray density can be checked at some selected places, such as 
at a sequence of flat horizons (Lambare et al. 1992) or wave- 
fronts (Vinje et al. 1993a,b; Sun 1992). The latter approach is 
followed in this paper. In order to keep the ray density above 
a minimum level it is necessary to insert additional rays as the 
ray field spreads out from the source. An additional ray is 
generated by interpolation of initial data and subsequent 
tracing of the ray. 

Two criteria for ray density have previously been suggested, 
namely the metric distance between adjacent rays ( Lambare 
et ul. 1992; Vinje et ul. 1993a,b) and their angular distance 
(Sun 1992). Instead of directly addressing the problem of the 
precision of the ray-field sampling, these criteria attempt to 
control ray density by a loosely related input parameter. As 
the control parameter is not directly related to the complexity 
of the ray field, each particular computation requires at least 
some visualization of the ray field in order to check the quality 
of the result. The shortcomings of the above-mentioned 
algorithms are particularly apparent in caustic regions. 

We propose a method for calculating multivalued traveltime 
and amplitude maps in 2-D smooth heterogeneous velocity 
fields. Our approach is based on the wavefront construction 
method initially proposed by Vinje, Iversen & Gjaystdal(l992) 
and on the Hamiltonian formulation of ray tracing. 

The Hamiltonian formulation (Goldstein 1980) is a very 
convenient tool in seismic ray theory (see Burridge 1976; 
Hanyga, Lenartowicz & Pajchel 1985; Chapman 1985; eerveny 
1989; Virieux & Farra 1991). In the Hamiltonian approach, 
rays in the configuration space (x) are replaced by bicharacter- 
istic curves in the phase space (x,p), where p denotes the 
slowness vector. These trajectories, defined as the integral 
curves of the Hamiltonian equations for a fixed source, do  not 
intersect at caustics. In the space (x, p), the bicharacteristics 
span a regular Lagrangian submanifold A (Maslov 1972; 
Hanyga 1984; Hanyga et ul. 1985). The submanifold A can be 
parametrized by two globally defined coordinates, namely the 
traveltime a and the take-off angle 0. The ray-related variables 
are smooth functions of the coordinates (a, 0) and consequently 
i t  is possible to interpolate them on A. The tangent planes to 
A can be determined at every point by paraxial ray tracing. 

We propose to sample the ray field along rays by a method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Traveltime and amplitude maps 585 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of wavefront construction. The ray field is paved by elementary 
quadrangular cells defined by adjacent rays and wavefronts. 
The cell sizes are checked to ensure a uniform precision of the 
interpolation of the submanifold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA along the sampled wave- 
fronts. First-order interpolation is used and an upper limit on 
the local misfit of the submanifold A with its tangent plane is 
used to constrain the ray density. Each elementary cell is 
projected and interpolated over a regular grid in ( x , z ) .  We 
present applications of our algorithm to some complex models. 

2 HAMILTONIAN FORMULATION OF RAY 
THEORY 

The Hamiltonian for an isotropic medium can be written in 
the form 

where x is the ray position, p the slowness vector associated 
with the ray, a the internal coordinate on every ray (a has the 
dimension of time) and u(x) the slowness. Bicharacteristics 
(x, p)(a) in the phase space satisfy a system of canonical or ray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6m parabolic paraxi$ wavefront zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

:\ 
. . ' p  

Figure 1. Paraxial approximation around a central ray. The parabolic 
paraxial wavefront is shown. 

I Phasespace 

.1 
bicharacteristi 

ropagated isochron 
top 

Figure 2. The paving of the Lagrangian manifold. The Lagrangian 
manifold is paved with quadrangular cells defined in terms of 
bicharacteristics and isochrons. 

differential equations: 

= V,H = plu2(x), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI:= -V,H=--Vu2(x) 1 PZ 
2 u4(x) 

The eikonal equation is satisfied if the Hamiltonian vanishes all 
along the bicharacteristics: H(x, p) = 0. Since the Hamiltonian 
does not depend on G it is constant along any bicharacteristic 
and it is sufficient to ensure that it vanishes at the source point. 

Traveltime is given by the integration of slowness along the 
trajectory of the rays: 

T(X(O)) = T(x(a0)) + p .  - do = T(x(a0)) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACT - go, (3) s.: :; 
where - denotes the scalar product, whence a coincides with 
traveltime, up to an additive constant. 

3 PARAXIAL RAY EQUATIONS 

Linear interpolation of ray-field variables as well as amplitude 
computation is based on paraxial ray tracing (Chapman 1985; 
Farra & Madariaga 1987). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA perturbation of the bicharacter- 
istic (hx, hp) around a central bicharacteristic (Fig. 1) satisfies, 
in the first-order approximation, a linear system of ordinary 

base of the cell n: 
\ CONFIGURATION SPACE 

\ CELL \. 
< dxVinje? top of the cell 

\ 

x and p distances 
bicharacteristic 

(b) 

I < dpSun? 

Figure 3. Vinje's and Sun's criteria for checking the size of the cells. 
(a) Vinje's criterion, where the x distance of the top of the cell must 
not exceed the value d ~ " , ~ , . .  (b) Sun's criterion, where the x and p 
distances of the top of the cell must not exceed the values dxSun 
and dPS,,' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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differential equations: 

isfit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdxmax? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
< dpmax? 

bicharacteristi 

Figure4. Our new criterion for checking the size of the cells. The 
misfit between the tangent plane (defined by the paraxial approxi- 
mation) and the exact manifold must not exceed a given value in 
distance and slowness. A new bicharacteristic is interpolated at the 
base of the cell if the misfit exceeds (dx,,,, dp,,,). 

dense grid of points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

-- 
Figure 5.  Linear interpolation in the configuration space. Each cell 
on the Lagrangian manifold is projected on the configuration space. 
It is subdivided into two triangles. A dense regular grid is defined in 
each triangle. Values of the ray-field variables at the grid points are 
determined by linear interpolation from the values at the vertices 
of triangles. 

A, 

maximum error 

Figure 6.  Accuracy of the linear interpolation. Paraxial ray theory 
provides an estimation for the error associated with our linear 
interpolation. 

= V,VpH * 6x i- V,VpH 6p 

{ %= -V,V,H*6x-VpV,H.6p (4) 

1 + --Vu~(x)(p.6p) \ U 4 i 4  

The eikonal equation implies that the first-order perturbation 
6H of the Hamiltonian vanishes along the perturbed ray 
trajectory: 

SH(x, p) = V,H - 6x + V,H. 6p 

1. P2 VUZ(X) * 6x + -p*6p 1 = 0 - 
2 M4(X) UZ(X) 

(5 )  

The linear differential system of equations (4) can be solved 
by the propagator matrix method (Aki & Richards 1980). The 
solution is given in terms of a propagator matrix P, such that 

This matrix is defined as the 4 x 4 Jacobian matrix 

where Q,, Q2, PI and P, are 2 x 2 matrices (Farra & Madariaga 
1987). It satisfies the linear system of ordinary differential 
equations 

where P(a,, a,) = I (initial condition) and the determinant of 
P is equal to 1 (Liouville's theorem, Goldstein 1980). 

4 RAY FIELD A N D  LAGRANGIAN 
MANIFOLD 

A 2-D ray field is naturally parametrized by any coordinate 0 
specifying the initial direction of the rays (the take-off angle in 
the case of a point-source radiation) and an internal coordinate 
a of the rays. 

In the phase space (x, p) the bicharacteristics parametrized 
by (0, a) span a submanifold A (Pham 1992). The manifold A 
is locally represented by graphs of smooth functions such as 
V T(x), and consequently is Lagrangian and regular (Guillemin 
& Sternberg 1977; Weinstein 1979). A can in general fold over 
the configuration space (x). Caustics of the ray field are images 
of the folds of A under the projection mapping (x, p) + (x) 
(Hanyga et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1985). Consequently, at the caustics the pro- 
jection of A: (0, a) + (x, z )  is singular (non-invertible), and many 
functions associated with the ray field cannot be expressed as 
smooth functions of the configuration space coordinates (x, z) .  

The tangent planes of A in the phase space are given by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Traveltime and amplitude maps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA581 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
partial derivatives of the coordinates (x, p) with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. They can be expressed in terms of paraxial quantities 
a(x, p ) / h  and d(x, p)/80, and, consequently, in terms of their 
initial values and the propagator matrices: 

(9) 

where the partial derivatives with respect to 0 are given 

In view of Liouville’s theorem, regularity of A is ensured by 
the condition that the derivatives of (x,p) with respect to 0 
and r~ are independent at  any fixed value of go, for example at 
the source. 

Using eq. (9) it is possible to determine a beam of paraxial 
rays around a central ray. I n  order to describe the variation 
of rays in the beam we introduce the vector 

by eq. (2). 

where for a point source 

/ o \  

In the zero-order approximation of the ray theory, the 
amplitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is given in terms of the geometrical spreading 

by the equation 

We now describe a method to estimate the values of the 
parameters (x, p) and the traveltime T(x) in the vicinity of a 
central ray for a given ray field. Suppose we know the values 
of the vector J and of the traveltime Tl at the point 
A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (xl, p l )  E A. We want to estimate the values of the 
slowness vector p2 and of the traveltime T, at a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

distance in krn px in .0001 s/m 
-0.09 0.63 1.36 2.09 -5.00 -1.67 1.67 5.00 

-4.99 

E-1.66 

2 
d 

0 

1.66 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C .* 
N 

&4.99 

distance in km px in .0001 s/m 
-0.09 0.63 1.36 2.09 -5.00 -1.67 1.67 5.00 

-0.10 -0.10 

0.63 0.63 

E E 

.s 1.37 ,: 1.37 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 5 

i? a, 

2.10 a 2.10 

41 41 

a 

Figure 7. The Lagrangian manifold A for a constant-velocity field ( u  = 2000 m SKI). The paving in the cells of A is shown for various 2-D 
projections of the phase space [ ( x ,  z ) ,  ( x ,  p x ) ,  ( p x ,  z),  ( p x ,  p z ) ] .  The source point is at x = 110 m, z = 110 m. The traveltime step is 0.03 s, and the 
ray-density criterion is dx,,, = 10 m and dp,,, = 10 x s m-’, In the plane ( x ,  z )  the rays are straight lines and the wavefronts are circles. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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corresponding to the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 in the vicinity of A , .  In the 
vicinity of A , ,  we have the following relation between the 
perturbed parameters (Sx, Sp) and the perturbation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(&, 68): 

(i;) = "( x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 + -( a x  ) d o ,  

aa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP a0 P 

where the partial derivatives are estimated at A , .  We estimate 
60 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 from the linear system consisting of eq. (13) and the 
definition of 6x: 6x = x2 - xl. We then obtain 6p to the first 
order from eq. (13) and the traveltime to the second order 
from the relation 

L 

5 UNIFORM SAMPLING OF THE 
LAGRANGIAN MANIFOLD A 

I t  remains to find a criterion for sampling the Lagrangian 
manifold A in the phase space (x, z,  p x ,  p z ) .  Drawing on the 
wavefront construction method proposed by Vinje et ul. ( 1992, 
1993a) and Sun (1992), we divide the Lagrangian manifold A 
into curvilinear quadrilateral cells. This approach has the 
advantage of an easy numerical implementation and of a 
possible extension to three dimensions (Vinje et al. 1993b; 

-4.77 

E-1.71 

2 
4 

0 

1.36 

E: 

a 4.42 

.d 

N 

Lucio, Lambari: & Hanyga 1995). A cell is defined as the 
section of a ray tube bounded by two isochrons. It can be 
specified in terms of its four vertices (Fig. 2 ) .  

The cells are constructed proceeding along the rays from an  
initial set of cells. Some criterion must be chosen to control 
the cell size. An acceptable discretization of the coordinate CT 

can be based on a periodic sampling. Any other sampling, for 
example a constant step in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, could be chosen, but a constant 
traveltime step has a more direct physical meaning. 

The sampling of H must take into account the local ray-field 
complexity. A recently proposed criterion by Vinje et ul. 
(1993a, b) is based on the maximum distance between rays on 
successive wavefronts. Consider the top of a cell defined by 
the two points Al(x l ,  p,) and A,(x,, pz) and associated with 
the bicharacteristics 0, and O 2 .  Vinje's criterion imposes 
(Fig. 3a) 

1x2 - XI I < dxvinje. (15) 

This criterion has the advantage of being simple, but it does 
not guarantee uniform accuracy of interpolation. In particular, 
the ray density is drastically underestimated in the vicinity of 
caustics. As a result, Vinje et al. (1993a) have to ignore some 
parts of the wavefront adjacent to caustics. 

In order to overcome this limitation, Sun (1992) introduced 
an angular distance in addition to the metric distance between 

distance in km px in ,0001 s/m 
-0.10 0.63 1.36 2.09 -4.43 -1.48 1.48 4.43 

distance in km px in .0001 s/m 
-0.10 0.63 1.36 2.09 -4.43 -1.48 1.48 4.43 

Figure 8. The Lagrangian manifold A for a constant-gradient velocity field. Velocity increases linearly with depth, from 2083 m s-' at z = 0 m to 
3833 m s-' at z = 2000 m. The traveltime step is 0.03 s, and the ray-density criterion is dx,,, = 10 m and dpmax = 10 x s m-'. In the (x, y) 
plane, the cells are defined by circular rays and wavefronts. Note the p-caustic at the bottom of the (x, p . )  projection. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 are ul ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHI and o,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,. For a given perturbation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
60=02  - 0 ,  of the bicharacteristic 0,  we can compute a 
paraxial estimate of the bicharacteristic H,. In the vicinity of 
point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,  the coordinates (x, p) can be approximated in terms 
of 68 and 60 by the linear equation 

rays. With respect to Vinje’s criterion, this criterion has the 
advantage of taking into account in some way the distance 
between the rays in terms of slowness (even if it considers only 
the direction of the slowness). In this paper, a slightly altered 
version of Sun’s criterion was used for tests, where the original 
angular distance was replaced by an equivalent test on slowness 
vectors (Fig. 3b): 

1x2 - X I  I < d . h n  3 i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIPZ - PI I < dpsun. 

This choice was motivated by the simplicity of the expressions 
and by the fact that it retains the underlying philosphy. With 
respect to Vinje’s criterion, Sun’s one gives a better ray 
coverage in the vicinity of caustic cusps but no significant 
improvement in the case of simple caustics, where the slow- 
ness variation is often smaller. Numerical specification of 
Sun’s criterion is still difficult, however, and in general ray 
density has to be overestimated to obtain an overall satisfying 
numerical precision. 

A correct way to proceed should involve a criterion that 
ensures a uniform precision of the interpolation. Since we use 
a first-order interpolation, the local sampling density of the 
Lagrangian manifold A should be related to the curvature of 
A. A good criterion for estimating the curvature of the surface 
is the mismatch between a bicharacteristic and its paraxial 
approximation from an adjacent bicharacteristic. Two 
bicharacteristics R,, R, are close enough if the estimate of R, 
obtained by linear approximation based on paraxial 
matrices computed for R ,  does not deviate too much from 
R, (Fig. 4). 

Consider two points (x,, pl)  and (x,, p,) on two different 
bicharacteristics and suppose that the corresponding values 

where J, denotes the value of J at (x,,pl). We compare a 
point A, on the isochron (60 = 0) through A ,  with the linear 
approximation given by eq. (17). The above criterion amounts 
to an upper limit on the error in distance and slowness: 

As we will see later, this criterion is related to the curvature 
of the Lagrangian manifold A along the isochrons. 

Following the idea of Sun (1992) and Vinje et al. (1993a,b), 
a new bicharacteristic is traced from the base of the cell when 
two end points of the bicharacteristics turn out to be too far 
apart at the top of the cell. The parameters of the new 
bicharacteristic are interpolated in the phase space at  the base 
of the cell (Fig. 4). Cubic Hermite interpolation (Farin 1993) 
in 0 is used for x ,p  and traveltime. In order to ensure the 
embedding of the cells in the space (x), the new interpolated 
point has to be on the base of the cell. An abscissa ci is 
introduced such that X(CI) = x1 + (x2 - x,)ci, and derivatives 
with respect to CI of parameters are given by combinations of 
the paraxial parameters. 

distance in k m  

0.00 0.45 0.90 1.35 1.80 

0.00 

0.46 

0.90 

d 
.rl 

g 1.36 
4 
a 
al 
a 1.80 

a.9~5 

3.600 

COMPLEX VELOCITY FIELD 

1.100 

1.W5 

asso 

Figure 9. A complex velocity field. 25 x 25 knot points spaced by 100 m are used for the B-spline representation of the velocity field. The velocity 
ranges from 1093 m s C 1  to 3800 m s C 1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 10. The Lagrangian manifold A in a complex velocity field. The criterion (18) has been applied. The source is at x = 110 m, z = 110 m. 
The traveltime step is 0.03 s, and the ray density is specified by criterion (18) with dx,,, = 10 m and dp,,, = 10 x s m-’. The ray field exhibits 
many caustics, and projections involve many overlapping cells. The density of rays in the configuration space is increased in the regions of strong 
curvature of the rays. 

6 I N T E R P O L A T I O N  I N S I D E  THE CELLS 

For interpoIating the results obtained at cell vertices on a 
denser grid of points we use a robust first-order scheme. Each 
cell is divided into two triangles according to a criterion of 
the smallest misfit in position and slowness between the 
opposite edges of the cell. A dense grid is defined in each 
triangle. For each grid point, the values of (p, 8, T, J) are 
evaluated by linear interpolation from the values at the vertices 
of the triangle (Fig. 5). The precision of linear interpolation 
on the ray field can be then estimated with the help of 
paraxial theory. 

Suppose that on a given triangle A,(@,, Go), A,(#,, uo) and 
A2(6,, a,), A is approximated by a quadratic expression: 

x(H, a) = xo + a,Ao + b,A6 + c,(Aa)’ + d,AoA# + e,(AH)’, 

p(H, a) = po + a,Aa + b,AO + c,(Aa)’ + d,AaA6 + e,(AH)’, 

(19) 

where Aa = a - a. and AH = 0 -  B0. 
Linear interpolation of x,p on the triangle yields the 

following (Fig. 6) estimates: 

xz-xg x, -xo 
x,,(6, a) = xo + - do+- AH, 

a,-fJo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH 1 - H o  

This result can be compared with the second-order approxi- 
mation (19). An estimate of the maximum error of the 
approximation (20) is restricted by the inequalities 

and 

( 1 . 1  denotes here the vector norm, Aol= 1 0 ~ - 0 ~ 1  and 
AHl = 16, - Hal). The partial derivatives with respect to o are 
given by eqs (2) and (4). The first-order derivatives with respect 
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Figure 11.  Maps for traveltime obtained for the ray-field sampling 
presented in Fig. 1 0  (a) by the algorithm of Podvin & Lecomte (1991); 
(b) by our algorithm for the first-arrival traveltime; (c) by our algorithm 
for the strongest-arrival traveltime. The vertical and horizontal steps 
are 10m. 

(a) distance in km 
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Figure 12. Maps for amplitude obtained for the ray-field sampling 
presented in Fig. 10: (a) the first-arrival amplitude; (b) the strongest- 
arrival amplitude. The vertical and horizontal steps are 10 m. 

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 are given by the paraxial parameters. Finally, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2 =V,V,HV,H -V,V,HV,H, 

I a2p = -V,V,HV,H$V,V,HV,H, 
ao2 

As we shall see later, the associated error is bounded by the 
values of our ray-density criterion. The accuracy depends on 
the constant traveltime step Ao chosen initially for sampling 
A and on the values of dx,,, and dp,,,. The precision of 
interpolation in the 8 direction is uniformly bounded, since 
the ray-density criterion (18) implies that 

Unfortunately, paraxial ray theory cannot provide any 
information about the precision of the interpolated amplitude. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Note that second-order partial derivatives in 0 characterize 
the curvature of the wavefront (a=constant) in the phase 
space. 

Note also that the precision of linear interpolation of A is 
bounded for an interpolation with respect to the coordinates 
(0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr), but not with respect to ( x ,  z ) ,  since the Jacobian matrix 
d(x, z) /J(O,  a) is not invertible at caustics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 APPLICATIONS 

The ray prolongation scheme presented above assumes a 
smooth velocity field. This restriction is motivated by the 
applications in linear inversion, where ray tracing is much 
faster in a smooth background (Thierry & Lambare 1995; 
Ettrich & Gajewski 1995). The implementation of cell ray 
tracing in velocity models with interfaces has already been 

a 

distance in km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.00 0.44 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.89 1.33 1.78 

0.76 A- 

0.82 

1.08 

1.26 

1.42 

distance in km 
0.00 0.44 0.89 1.33 1.78 

0.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. 

0.38 

0.76 

1.13 

I de-=-4 

1.61 , ,! , , 

developed (Vinje et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/. 1993a; Pajchel & Moser 1995) and 
applied in inversion (Moscr 1995). 

In the most general case, a smooth velocity field can 
be specified in terms of cardinal cubic B-splines (de Boor 
1978). This ensures smoothness up to the second order, 
which suffices to guarantee the continuity of the paraxial 
parameters. Integration of eqs (2)  and (4 )  is implemented by 
a fourth-order Runge-Kutta scheme with a constant step. 

The scheme requires further improvements. I n  particular, 
sampling in the ray direction should also be controlled and 
locally adjusted by appropriate cell subdivision. Local 
reductions of ray density would prevent ray oversampling and 
improve performance. 

0 
Ray Theory  

h I-.--. 
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Figure 14. Seismogram obtained from the traveltimc and amplitude - 
given in Fig. 12. The phasc shift associated with crossing caustics has 
been taken into account, The Figure 13. Multivalued traveltimes (a) and amplitudes (b) for a 

vertical line of receivers at x = 2000 m with a vertical step of 10 m 
signature is 

obtained by the ray-field sampling presented in Fig. 10. Note numerous 
triplications and caustics. 

dZ  
s ( r ) =  Yexp[-(t/0.005jZ] d t  
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distance in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.00 0.67 1.33 2.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.67 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E 
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2.00 
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distance in km 

0.00 0.67 1.33 2.00 

0.00 

0.67 

E 
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.A d 1.33 

A 
c, 
F4 
P) 
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2.00 
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.rl 

a 

0.00 

0.67 

1.33 

2.00 

distance in km 

0.00 0.67 1.33 2.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I I 

7.1 

The tolerances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx,,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdp,,, are related to the desired 
accuracy of the Lagrangian manifold sampling. We have set 
dx,,, equal to the x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz step in the maps, while dpmax 
corresponds to a maximum error in the direction of rays of 
about 1 to 2 degrees. 

Choice of the values for dx,,, and dp,,, 

7.2 Constant velocity field 

In the first place we consider a constant velocity field 
( I ’  = 2000 m s-I) .  The source point is at x = 110 m, z = 110 m. 
Fig. 7 shows the partitioning of the Lagrangian manifold A 
for various 2-D projections of the phase space [(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz), (x, p x ) ,  

( p x ,  z ) ,  (p, ,  p z ) ] .  The traveltime step is 0.03 s, and the ray- 
density criterion dx,,, = 10 m, dp,,, = 10 x s m-’. Over 
the (x, z )  plane, the rays are straight lines and the wavefronts 
are circles. The ray field does not exhibit multiple coverage in 
the configuration space. 

7.3 Constant gradient of velocity 

In the next example, velocity increases linearly with depth, 
from 2083 m s - ’  at z = 0  m to 3833 m s - ’  at z = 2000 m. Fig. 8 
shows various projections of the Lagrangian manifold A. 
The traveltime step is 0.03 s, and the ray-density criterion is 
dx,,, = 10 m, dp,,, = 10 x s m-’. The cells are defined 
by circular rays and wavefronts. This figure can be compared 
with the previous one. As rays spread apart, new rays are 
inserted and the cells are subdivided to meet the ray-density 
criterion. No caustic appears in the configuration space ( x ,  z).  
One can see a folding of A over the plane ( x ,  p , )  at the bottom 
of the picture. An asymptotic solution in the ( x , p , )  domain 
exhibits a caustic in this region (called a p-caustic). A p-caustic 
can also be characterized by an infinite ( x ,  p,)-domain 
amplitude. 

It is a general property of Lagrangian submanifolds that, 
at every point of a Lagrangian submanifold A, at least one of 
the four projections of A on the planes (x, z), (x, p,), ( p x ,  z) or 
(p , ,p , )  is regular (Hanyga 1984). The Fourier transform of 
the asymptotic solution with respect to the corresponding 
conjugate pairs of variables ( z ,  p z ) ,  ( x ,  p , )  or both involves 
a non-vanishing ‘ray spreading’ Jacobian a(x, p,)/a(H, o), 
&I,, z)/a(O, r ~ ) ,  a(p,, p,)/a(O, o). For a caustic in the con- 
figuration space one can find a regular asymptotic solution by 
summing regular asymptotic ‘plane’ waves corresponding to 
the fixed value of p x  [in the (p,, z) domain] or p z  [in the (x, pL) 
domain] (Maslov 1972). 

7.4 A complex velocity field 

Let us now consider a more complex velocity field. The velocity 
field is the superposition of strong Gaussian heterogeneities 

Figure 15. Comparison of ray-density criteria for ray tracing on the 
complex velocity field presented in Fig. 9. The source is at I = 1000 m, 
z = I 10 m. The time step is 0.03 s. The ray ficld i s  sampled according 
to: (a) Vinje’s criterion; (b) Sun’s criterion; (c) our uniform sampling 
criterion. I n  order to compare equivalent results in terms of com- 
putational cost, we choose the values of the ray-density criteria in 
such a way as to have the same number of cells (about 2305 in 
each case). 
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superposed on a constant background (u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2000 m s-') 
(Fig. 9). 25 x 25 knot points spaced by 100m are used for 
the B-spline representation of the velocity field. The velocity 
ranges from 1093 m s- l  to 3800 m s-'. Fig. 10 shows the four 
projections of the Lagrangian manifold. The source is at 
x = 110 m and z = 110 m. The traveltime step is 0.03 s and the 
ray density is specified by the criterion (18) with dxmax = 10 m, 
dp,,, = 1.0 x s m-'. The ray field exhibits many caustics, 
and projections involve many overlapping cells. The density 
of rays in the configuration space is increased in the regions 
of strong curvature of the rays. 

Traveltime maps are shown in Fig. 11 for the same 
parameters as in Fig. 10. The maps are compared with the 
result obtained for the first-arrival traveltime given by the 
finite-difference traveltime algorithm of Podvin & Lecomte 
(1991). The  CPU time for the algorithm of Podvin & 
Lecomte was 0.4 s, as compared with 3.90 s for our ray-tracing 
code (CPU times are given for a SparclO workstation). The 
latter CPU time breaks down into 1.07 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs of ray-field sampling 
and 2.79 s of linear interpolation of the required parameters 
(traveltime, amplitude, take-off angle, paraxial ray parameters 
and the slowness vector). This CPU cost is fairly modest 
as  compared with the CPU cost of the code of Podvin & 
Lecomte (1991), taking into account that the latter yields only 
the first-arrival traveltime while our code computes up to nine 
parameters and gives all the arrivals. 

In our tests, the number of cells was 4400 and the number 
of points in the maps was 201 x 201 with a step of 10 m. 
Amplitude maps are shown in Fig. 12. In order to demonstrate 

the ability of our algorithm to cope with multiple arrivals, 
Fig. 13 shows the multiple traveltimes and amplitudes for a 
vertical line of receivers located at x = 2000 m. Many caustics 
can be seen. Infinite amplitudes at caustics are due to the fact 
that we have applied asymptotic ray theory (ART) to evaluate 
the field (Fig. 14). These singularities can be eliminated by 
summation over A, as explained in Hanyga et al. (1995a). 
In Fig. 15, comparison of the ray field sampled with the 
criteria of Vinje et al. (1993a) (eq. 15) and Sun (1992) (eq. 16) 
is shown. In order to compare equivalent results in term of 
computational cost, we choose the values of the ray-density 
criteria in such a way as to have the same number of cells 
(about 2305) in each case. The source is at  x = lOOOm, 
z = 110 m. The time step is 0.03 s.  The complex ray field 
sampled according to Vinje's criterion (eq. 15) (dxvij, = 100 m) 
is shown in Fig. 15(a), while Fig. 15(b) shows the ray 
field sampled by Sun's criterion (eq. 16) with dxSun = 142 m, 
dp,,, = 92 x s m-'. Fig. 15(c) shows the result of 
sampling according to criterion (18) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx,,, = 20 m, 
dp,,, = 25 x 

Some attehtion must be paid to the caustic zones. Vinje's 
criterion leads .to a drastic undersampling in the vicinity of 
caustics. Sun's criterion brings some improvement at the caustic 
cusp, but in a neighbourhood of simple caustics the ray field 
is still drastically undersampled. 

We also compared the errors of the ray-field interpolation 
for the ray fields sampled with the three criteria. As a reference 
for error estimation, we used a very densely sampled ray field 
(Fig. 16) obtained with our ray-tracing code with a traveltime 

s m-'. 

distance in km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.00 0.33 0.67 1.00 1.33 1.67 2.00 

0.00 

0.33 

0.67 

1.00 

1.33 

E 
4: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.d F1 1.67 

Figure 16. Reference ray-field sampling for testing the accuracy of the ray-field interpolation. The traveltime step is 0.01 s, dx,, = 1 m, dpmax = 

s m-'. 37 516 cells were generated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Traveltime and amplitude maps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA595 

step of 0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs and dx,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.0 m, dp,,, = s m-'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA37 516 
cells were generated. Figs 17 and 18 show comparisons between 
the three criteria, for the errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI x , , ~  - x,J, and lplnt - prefl as 
functions of the coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH and c in a region of A. Our 
uniform sampling criterion appears to ensure a better precision, 
especially in the caustic zones. The error is more uniformly 
distributed and has smaller extremal values. Sun's criterion 
gives a little improvement with respect to Vinje's criterion, but 
still exhibits large errors localized in caustic zones. 
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Figure 17. Comparison of the interpolation of the ray field for the 
various ray-density criteria. This figure presents the error Ix,,, - xrefl 
associated with the linear interpolation of x(0, u) for the ray-field 
samplings presented in Fig. 15 in respect to the reference sampling 
shown in Fig. 16. Errors are given in metres for: (a) Vinje's criterion 
(maximum error 64.9 m); (h)  Sun's criterion (maximum error 65.0 m); 
(c) our uniform sampling criterion (maximum error 8.2 m). 

7.5 The Marmousi velocity field 

In the last example we applied our algorithm to a smoothed 
section of the Marmousi model (Fig. 19). The B-spline rep- 
resentation of the velocity field is based on 33 x 34 knot points 
spaced at 198 m. The source is at x = 150 m, z = 1550 m. The 
wavefront spacing is 0.03 s and the ray-density criterion is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dx,,, = 10 m, dp,,, = 10 x s m-'. The extreme com- 
plexity of the wavefronts can be seen in Fig. 20. Figs 21 and 
22 show the maps of traveltimes and amplitudes corresponding 
respectively to the first arrival and to the most energetic arrival. 
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Figure 18. Comparison of the interpolation of the ray field for the 
various ray-density criteria. This figure presents the error lplnt - prefl 
associated with the linear interpolation of p(0, T )  for the ray field 
samplings presented in Fig. 15 in respect to the reference sampling 
shown in Fig. 16. Errors are given in seconds per metres for: (a) Vinje's 
criterion (maximum error 63.3 x 10-'s m-'); (b) Sun's criterion 
(maximum error 63.4 x s m -  '); (c) our uniform sampling criterion 
(maximum error 9.9 x lo-' s m-'). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1996 RAS, GJI  125, 584-598 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
2
5
/2

/5
8
4
/6

4
7
9
5
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



596 G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALamburg, P. S. Lucio und zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA .  Hunygu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
distance in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.00 0.76 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.60 8.86 3.00 

0.00 

0.76 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* 3.00 

MARMOUSI VELOCITY FIELD 
Figure 19. Smoothed section of the Marmousi model. The B-spline representation of the velocity field is based on 33 x 34 knot points spaced 
a t  198m. 

d is tance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin kni  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 0 50 1 0 0  1 5 0  2 00 2 50 3 00 

0 00 

0 50 

1 0 0  

1.50 

2.00 
3 

Figure20. Ray-field sampling in the Marmousi model presented in Fig. 19. The source is at x = 150m, z =  1550m. The wavefront spacing is 
0.03 s and the ray-density criterion is dx,,, = 10 m and dp,,, = 10 x 10 - h  s m-' ,  There are 15 616 cells. 
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In terms of computational time we have 3.34 s for sampling 
the ray field (for 15 616 cells) and 9.29 s for interpolating 
amplitudes and traveltimes (334 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 334 points) on a SparclO 
workstation. The extra computational time for additional 
interpolation of the take-off angle of the ray, slowness vector 
and paraxial ray parameters is around 3 s. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 CONCLUSION 

The Hamiltonian approach allows us to deal fairly efficiently 
with the complexity of the ray field: the singularities appearing 
in the configuration space are unfolded in the phase space 
yielding a regular 2-D manifold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Paraxial ray theory allows 
a control of the sampling of the ray field on A. A reliable 
criterion for uniform sampling of the Lagrangian manifold A 
has been found. It corresponds to a uniform precision of the 
linear interpolation along selected wavefronts. On the basis of 
these considerations we have developed a fast and robust 
algorithm for calculating multivalued maps of traveltimes and 
amplitudes. 

The algorithm is particularly useful for migration and inver- 
sion of seismic data. I t  can naturally be extended to 3-D 

(a) distance in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk m  

0.00 

0.76 

1.60 

d 
.r( 

f3 
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6- 
a 8.00 

0.00 

0.76 

1.60 

d 

A 8.86 
.r( 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e 
a 8.00 

distance in km 
0.00 0.76 1.80 8.86 8.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 21. Trvvcltimc maps obtained by the ray-field sampling shown 
in Fig. 20 on the Marmousi model. There arc 334 x 334 points spaced 
by 10 m in x and z.  (a) The first traveltime arrival; (b) the strongest 
arrival. 

problems, for which the requirement of fast modelling methods 
is still more crucial. The 2-D version was developed for testing 
the concepts that will be applied in three dimension (Lucio 
et al. 1995). Some extensions and applications based on the 
2-D version are under development, namely, time-domain 
Maslov integrals at caustics and caustic cusps (Hanyga, 
Lambare & Lucio 199Sa) as well as application to 2-D 
asymptotic inversion (Thierry & Lambare 1995). 
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Figure 22. Amplitude maps obtained by the ray-field sampling shown 
in Fig. 21 on the Marmousi model. There are 334 x 334 points spaced 
by 10 m in Y and z .  (a) The first traveltime arrival; (b )  the strongest 
arrival. The difference between the maps agrees with the conclusion 
of Geoltrain & Brac (1991), concerning the opportunity of using only 
the minimum traveltime arrival for imaging from the Marmousi 
data set. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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criteria i n  non-convex space mappings. W e  are grateful t o  one  
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for  discussion and  for  providing the algor i thm for calculat ing 
first-arrival traveltime by finite differences. 
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