
TWO-DIMENSIONAL NONLOCAL CAHN-HILLIARD-NAVIER-STOKES

SYSTEMS WITH VARIABLE VISCOSITY, DEGENERATE MOBILITY

AND SINGULAR POTENTIAL

S. FRIGERI, C.G. GAL, M. GRASSELLI, AND J. SPREKELS

Abstract. We consider a nonlinear system which consists of the incompressible Navier-Stokes
equations coupled with a convective nonlocal Cahn-Hilliard equation. This is a diffuse interface
model which describes the motion of an incompressible isothermal mixture of two (partially) im-
miscible fluids having the same density. We assume that both the viscosity and mobility functions
depend smoothly on the order parameter. Moreover, we assume that the mobility degenerates at
the pure phases and that the potential is singular (e.g. of logarithmic type). This system is endowed
with a no-slip boundary condition for the (average) velocity and a homogeneous Neumann bound-
ary condition for the chemical potential. Thus the total mass is conserved. In the two-dimensional
case, this problem was already analyzed in some joint papers of the first three authors. However, in
the present general case, only the existence of a global weak solution, the (conditional) weak-strong
uniqueness and the existence of the global attractor were proven. Here we are able to establish
the existence of a (unique) strong solution through an approximation procedure based on time
discretization. As a consequence, we can prove suitable uniform estimates which allow us to show
some smoothness of the global attractor. Finally, we discuss the existence of strong solutions for
the convective nonlocal Cahn-Hilliard equation, with a given velocity field, in the three dimensional
case as well.

1. Introduction

The so-called model H (see, for instance, [36] and references therein) has been proposed to
describe the motion of a binary mixture of two isothermal, partially immiscible and incompressible
fluids. This model is based on the diffuse interface approach and leads to the formulation of a
Cahn-Hilliard-Navier-Stokes (CHNS) system for the average velocity u and the order parameter ϕ
(i.e., the relative concentration of one of the fluid components). In the case of matched constant
densities, a rather general CHNS system is the following:

ut − 2div (ν(ϕ)Du) + (u · ∇)u+∇π = µ∇ϕ+ v , (1.1)

ϕt + u · ∇ϕ = div(m(ϕ)∇µ) , (1.2)

µ = −K ∗ ϕ+ F ′(ϕ) , (1.3)

div(u) = 0 , (1.4)

in Ω× (0, T ), where Ω ⊂ Rd, d = 2, 3, is a bounded smooth domain (say, e.g., of class C2), T > 0 is
a prescribed final time, ν stands for the fluid viscosity, D denotes the symmetric gradient, that is,
Du :=

(
∇u +∇Tu

)
/2 and v is a given external force (the density has been taken equal to one).

The Cahn-Hilliard (CH) equation (1.2) with mobility m is characterized by a nonlocal chemical
potential (1.3) where K : Rd → R is a (sufficiently) smooth even interaction kernel (see [33], cf.
also [7, 32, 34] and the discussion in [35]).
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System (1.1)–(1.4) is subject to the no-slip boundary condition for the velocity u and to the
homogeneous Neumann boundary condition for the chemical potential µ (which ensures the con-
servation of the total mass), namely,

u = 0 , m(ϕ)∇µ · n = 0 , (1.5)

on ∂Ω× (0, T ). Initial conditions must also be prescribed,

u(0) = u0 , ϕ(0) = ϕ0 , in Ω . (1.6)

Here, n stands for the outward normal to the boundary ∂Ω of Ω, while u0 and ϕ0 are given.
Problem (1.1)–(1.6) has been studied so far under various assumptions on ν, m and F (see

[14, 20, 21, 22, 23, 24, 25], cf. also [19] for unmatched densities and [26] for inviscid fluids). The
model studied in these papers is based on a more, say, phenomenological free energy functional (see
[8]), which leads to the chemical potential

µ = −K ∗ ϕ+ a(x)ϕ+ F ′(ϕ) , (1.7)

where a(x) =
∫

ΩK(x−y)dy and F is some (possibly singular) double-well potential. However, from
the mathematical viewpoint all the results obtained so far also hold in the present case. Actually,
proofs are simpler and assumptions on K are more general (see the discussion in [35, Introduction],
cf. also Remark 2.6 below).

On the other hand, the physically more relevant case, namely, when the viscosity depends on
ϕ, the mobility m degenerates at pure phases (i.e. ϕ = ±1) and F is a singular potential (say,
of logarithmic type) is still substantially open. Concerning m and F , we recall that a physically
relevant choice is

m(s) = m0(1− s2) , (1.8)

F (s) =
θ

2

(
(1 + s) log(1 + s) + (1− s) log(1− s)

)
, (1.9)

where s ∈ (−1, 1), m0 > 0 and θ > 0. In this case, the existence of weak solutions (d = 2, 3) was
proved in [24], where, for simplicity, the viscosity ν was assumed to be constant (as far as existence
of weak solutions is concerned, the case of a ν depending on ϕ can be dealt without difficulties as
well).

It is worth recalling that for CHNS systems, where the CH equation is the standard (local) one
(see, for instance, [1, 2, 12, 13, 27, 28, 29, 37, 44, 47]), the case of degenerate mobility and singular
potential is already difficult in the case of the CH alone (cf. [16]). More precisely, the existence of
a weak solution is essentially the only available result, as far as we know (see [12], and see also [3]
for the unmatched densities case).

Going back to our nonlocal system, in the two-dimensional case, the existence of the global
attractor has also been proved in [24] for constant viscosity. This result can be extended to the
case of ν depending on ϕ as well.

Uniqueness of weak solutions is a more delicate issue. Indeed, it has been established in [20]
for the case of constant viscosity only (incidentally, this entails the connectedness of the global
attractor). If the viscosity depends on ϕ, then weak-strong uniqueness holds true for constant
mobility and regular potential (i.e., defined on R) with polynomially controlled growth, but in
the more general case (m degenerate and F singular) only a conditional weak-strong uniqueness
has been proven by assuming the existence of a strong solution (see [20]). Therefore, in the two-
dimensional case an open issue is the existence of a strong solution under the aforementioned
assumptions on ν, m and F . This is precisely the goal of the present contribution.

Proving the existence of strong solutions when ν depends on ϕ is much more difficult with respect
to the case of a constant ν (cf. [20], cf. also Remark 4.4 below). We recall that in the simplest case
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(i.e., ν and m are constants and F is regular), existence of strong solutions in two dimensions was
proven in [23].

The existence of a strong solution to (1.1)–(1.6) paves the road for two further results. The
first is concerned with uniform in time regularization estimates, which, in particular, entails some
smoothness of the global attractor. The second is concerned with the convective nonlocal CH
equation, for which we are able to prove the existence of strong solutions in dimension three under
quite general regularity assumptions on the given velocity field. In particular, this allows us to
deduce, as above, further regularity of the global attractor.

The plan of the paper is as follows: in the next section, besides some notation and definitions, the
known results on existence and uniqueness of weak solutions are reported for the sake of convenience.
Section 3 is devoted to state the main regularity result of the paper whose proof is given in Section
4. Section 5 contains uniform in time estimates and the related regularity of the global attractor.
In the final Section 6, we extend the analysis of the previous sections to the convective nonlocal
CH equation with a given velocity field.

2. Weak solutions: what is known

Let us fix some notation first. We set H := L2(Ω), V := H1(Ω), and, for d = 2, 3, we introduce
the function spaces

Lrdiv(Ω)d :=
{
u ∈ C∞0 (Ω)d : div(u) = 0

} Lr(Ω)d

, 2 ≤ r ≤ ∞ ,

and

Vdiv :=
{
u ∈ H1

0 (Ω)d : div(u) = 0
}
.

We also define Gdiv := L2
div(Ω)d. Recall that Gdiv and Vdiv are the classical Hilbert spaces for

the incompressible Navier-Stokes equations with no-slip boundary conditions (see, e.g., [12, 46]).
Denote by ‖ · ‖ and (·, ·) the norm and the scalar product, respectively, on both H and Gdiv, as
well as on L2(Ω)d and L2(Ω)d×d. The notation 〈·, ·〉X and ‖ · ‖X will stand for the duality pairing
between a Banach space X and its dual X ′, and for the norm of X, respectively. For every f ∈ V ′,
we set f := |Ω|−1〈f, 1〉V . Here, |Ω| is the Lebesgue measure of Ω. The Hilbert space Vdiv is endowed
with the scalar product

(u,v)Vdiv = (∇u,∇v) = 2(Du, Dv) , ∀u ,v ∈ Vdiv .
Let us recall the definition of the Stokes operator S : D(S) ∩ Gdiv → Gdiv in the case of the
no-slip boundary condition (1.5)1, i.e., S = −P∆ with domain D(S) = H2(Ω)d ∩ Vdiv, where
P : L2(Ω)d → Gdiv is the Leray projector (see, for instance, [12, 46]). Notice that we have

(Su,v) = (u,v)Vdiv = (∇u,∇v), ∀u ∈ D(S), ∀v ∈ Vdiv.

It is well known that S−1 : Gdiv → Gdiv is a self-adjoint compact operator in Gdiv and by the
classical spectral theorems there exists a sequence λj with 0 < λ1 ≤ λ2 ≤ · · · and λj → ∞, and a
family of wj ∈ D(S) which is orthonormal in Gdiv and such that Swj = λjwj .

We also need to recall Poincaré’s inequality

λ1 ‖u‖2 ≤ ‖∇u‖2 , ∀u ∈ Vdiv ,
and other two inequalities, which are valid in dimension two and will be used repeatedly in the
course of our analysis. More precisely, the particular case of the Gagliardo-Nirenberg inequality
(see, e.g., [10])

‖v‖L2q(Ω) ≤ Ĉ2 ‖v‖1/q ‖v‖1−1/q
V , ∀ v ∈ V , 2 ≤ q <∞ , (2.1)
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as well as Agmon’s inequality (see [5])

‖v‖L∞(Ω) ≤ Ĉ3 ‖v‖1/2 ‖v‖1/2H2(Ω)
, ∀ v ∈ H2(Ω) . (2.2)

In these inequalities, the positive constant Ĉ2 depends on q and on Ω ⊂ R2, while the positive

constant Ĉ3 depends on Ω only.
The trilinear form b appearing in the weak formulation of the Navier-Stokes equations is the

usual one, namely,

b(u,v,w) :=

∫
Ω

(u · ∇)v ·w dx, ∀u,v,w ∈ Vdiv .

The associated bilinear operator B from Vdiv×Vdiv into V ′div is defined by 〈B(u,v),w〉 := b(u,v,w),
for all u,v,w ∈ Vdiv. We also set Bu := B(u,u), for every u ∈ Vdiv.

If X is a (real) Banach space, we shall denote by Lptb(0,∞;X), 1 ≤ p <∞, the space of functions
f ∈ Lploc([0,∞);X) that are translation bounded in Lploc([0,∞);X), i.e., such that

‖f‖p
Lptb(0,∞;X)

:= sup
t≥0

∫ t+1

t
‖f(s)‖pXds <∞ .

We are now ready to recall the result on the existence of weak solutions proven in [24]. For
completeness, we deal with d = 2 and d = 3. The assumptions on the kernel K, on the viscosity ν
are the following.

(K): K(· − x) ∈W 1,1(Ω) for almost any x ∈ Ω, and K satisfies K(x) = K(−x) and

a∗ := sup
x∈Ω

∫
Ω
|K(x− y)| dy <∞ , b := sup

x∈Ω

∫
Ω
|∇K(x− y)| dy <∞ .

(V): The viscosity ν is Lipschitz continuous on [−1, 1] and there exists some ν1 > 0 such that

ν1 ≤ ν(s) , ∀s ∈ [−1, 1] .

The mobility m is supposed to be degenerate at ±1, and the potential F is assumed to be singular
(e.g., logarithmic like) and defined in (−1, 1). More precisely, we assume the condition

(M): The mobility m is Lipschitz continuous on [−1, 1], and satisfies m ≥ 0, m(s) = 0 if and
only if s = −1 or s = 1. Moreover, there exists some ε0 > 0 such that m is nonincreasing in
[1− ε0, 1] and nondecreasing in [−1,−1 + ε0].

Furthermore, m and F are supposed to fulfill the condition

(A1): F ∈ C2(−1, 1) and λ := mF ′ ′ ∈ C[−1, 1].

Condition (A1) is typical in the analysis of the CH equation with degenerate mobility (see
[16, 31, 33, 34]). As far as F is concerned, we assume that it satisfies the following assumptions.

(A2): There exists some ε0 > 0 such that F ′′ is nondecreasing in [1− ε0, 1) and nonincreasing
in (−1,−1 + ε0].

(A3): There exists some c0 > 0 such that

F ′′(s) ≥ c0 , ∀s ∈ (−1, 1) .

(A4): There exists some α0 > 0 such that

m(s)F ′′(s) ≥ α0 , ∀s ∈ [−1, 1] .

Remark 2.1. It is worth recalling that the assumptions (M), (A1)-(A4) are satisfied, for instance,
by (1.8) and (1.9). Also, we recall that any symmetric kernel K ∈ W 1,1 (Bρ), where Bρ := {z ∈
Rd : |z| < ρ}, ρ := diam(Ω), satisfies (K).
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As far as the weak formulation is concerned, we point out that if the mobility degenerates then
the gradient of the chemical potential µ cannot be controlled in some Lp space. For this reason, and
also in order to pass to the limit to prove the existence of a weak solution, a suitable reformulation
of the problem needs to be introduced in such a way that µ does not appear explicitly (cf. [16],
see also [24]). The definition of weak solution given in [24] but modified accordingly to our setting
reads as follows.

Definition 2.2. Let u0 ∈ Gdiv, ϕ0 ∈ H with F (ϕ0) ∈ L1(Ω), v ∈ L2(0, T ;V ′div), and 0 < T < +∞
be given. A couple [u, ϕ] is called weak solution to (1.1)-(1.6) on [0, T ] if

• u, ϕ satisfy

u ∈ L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv) ,

ut ∈ L4/3(0, T ;V ′div) , if d = 3 ,

ut ∈ L2(0, T ;V ′div) , if d = 2 ,

ϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ,

ϕt ∈ L2(0, T ;V ′) ,

and

ϕ ∈ L∞(QT ) , |ϕ(x, t)| ≤ 1 for a.e. (x, t) ∈ QT := Ω× (0, T ) ;

• for every w ∈ Vdiv, every ψ ∈ V , and for almost any t ∈ (0, T ) we have that

〈ut,w〉Vdiv + 2 (ν (ϕ)Du, Dw) + b(u,u,w) = ((−K ∗ ϕ)∇ϕ,w) + 〈v,w〉 ,

〈ϕt, ψ〉V +

∫
Ω
m(ϕ)F ′′(ϕ)∇ϕ · ∇ψdx−

∫
Ω
m(ϕ)∇K ∗ ϕ · ∇ψdx = (uϕ,∇ψ) ;

• the initial conditions u(0) = u0, ϕ(0) = ϕ0, hold true a.e. in Ω.

Observe that the regularity properties of the weak solution imply that

u ∈ Cw([0, T ];Gdiv) , ϕ ∈ Cw([0, T ];H) .

Therefore, the initial conditions u(0) = u0, ϕ(0) = ϕ0, make sense.
The results on existence of weak solutions can be found in [24, Theorem 2]. The uniqueness of

a weak solution in the case of constant viscosity is provided in [20, Theorem 4] (cf. Remark 2.6).

Theorem 2.3. Assume that (K), (V), (M), and (A1)–(A3), are satisfied. Let u0 ∈ Gdiv
and ϕ0 ∈ L∞(Ω) with F (ϕ0) ∈ L1(Ω) and M(ϕ0) ∈ L1(Ω), where M ∈ C2(−1, 1) is defined by
m(s)M ′′(s) = 1 for all s ∈ (−1, 1) and M(0) = M ′(0) = 0. Let also v ∈ L2

loc([0,∞);V ′div).

(a) Then, for every T > 0, system (1.1)–(1.6) admits a weak solution [u, ϕ] on [0, T ] such that
ϕ(t) = ϕ0 for all t ∈ [0, T ]. In addition, if d = 2, then the weak solution [u, ϕ] satisfies the
energy equation

1

2

d

dt

(
‖u‖2 + ‖ϕ‖2

)
+ 2 ‖

√
ν(ϕ)Du‖2 +

∫
Ω
m(ϕ)F ′′(ϕ)|∇ϕ|2dx

=

∫
Ω
m(ϕ)∇K ∗ ϕ · ∇ϕdx+

∫
Ω

(−K ∗ ϕ)u · ∇ϕdx+ 〈v,u〉 , (2.3)
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for almost any t > 0. In the case d = 3, [u, ϕ] satisfies the following energy inequality

1

2

(
‖u(t)‖2 + ‖ϕ(t)‖2

)
+ 2

∫ t

0
‖
√
ν(ϕ)Du‖2 +

∫ t

0

∫
Ω
m(ϕ)F ′′(ϕ)|∇ϕ|2dx

≤ 1

2

(
‖u0‖2 + ‖ϕ0‖2

)
+

∫ t

0

∫
Ω
m(ϕ)∇K ∗ ϕ · ∇ϕdx

−
∫ t

0

∫
Ω
K ∗ ϕu · ∇ϕdx+

∫ t

0
〈v,u〉 , ∀ t > 0 . (2.4)

(b) Let d = 2, and let ν be constant. In addition, suppose that (A4) is satisfied. Then the weak
solution to system (1.1)-(1.6) is also unique. Moreover, let [ui, ϕi] be two weak solutions
corresponding to two initial data [u0i, ϕ0i] and external force densities vi, with u0i ∈ Gdiv,
ϕ0i ∈ L∞(Ω) such that F (ϕ0i) ∈ L1(Ω), M(ϕ0i) ∈ L1(Ω) and vi ∈ L2

loc([0,∞);V ′div),
i = 1, 2. Then, setting u := u2 − u1, ϕ := ϕ2 − ϕ1 and v := v2 − v1, the following
continuous dependence estimate holds true:

‖u(t)‖2 + ‖ϕ(t)‖2V ′ + ‖u‖2L2(0,t;Vdiv) + ‖ϕ‖2L2(0,t;H) (2.5)

≤
(
‖u(0)‖2 + ‖ϕ(0)‖2V ′

)
Λ0(t) + |ϕ(0)|2 Λ1(t) + ‖v‖2L2(0,T ;V ′div)Λ2(t) ,

for all t ∈ [0, T ], where Λ0, Λ1 and Λ2 are continuous functions which depend on the norms
of the two solutions. The functions Λi also depend on F,K, ν and Ω.

Remark 2.4. By a careful look to the argument in [24, Theorem 2] it is easy to see that, as far
as the only existence of a weak solution is concerned (cf. point (a) in the statement of Theorem
2.3) the Lipschitz continuity of ν and m in assumptions (V) and (M) can be weakened into just
ν,m ∈ C0([−1, 1]). The condition m ∈ C0,1([−1, 1]) is needed for the uniqueness of the weak
solution and for the continuous dependence estimate (2.5), while the Lipschitz continuity of both
ν and m will be used in Theorem 3.6.

Remark 2.5. In [24], the viscosity ν was assumed to be constant just to avoid technicalities, but the
results therein also hold for a nonconstant viscosity satisfying (V). Notice that the approximation
argument developed in [24] actually requires an upper bound for ν on the whole of R (see [24,
Proof of Theorem 1]). However, the argument therein can be repeated by working with a (globally)
Lipschitz continuous bounded extension ν̃ of ν outside [−1, 1] (e.g., we could take ν̃(s) = ν(±1) for
s ≷ ±1). Indeed, in the limit, the weak solution satisfies |ϕ| ≤ 1 a.e in Ω× (0, T ).

Remark 2.6. As we already observed in the Introduction, in [24] a slightly different model was
considered. All of the results in [24] and, in particular, [24, Theorem 2], can be obviously restated
for system (1.1)–(1.4). We also point out that in [24, Theorem 2] an additional condition was
assumed. In the present situation, this condition more precisely becomes: there exist some k > 4a∗

and ε0 > 0 such that

F ′′(s) ≥ k, ∀s ∈ (−1,−1 + ε0] ∪ [1− ε0, 1) . (2.6)

This assumption, which yields the equicoercivity Fε(s) ≥ (k/8)s2 − k′, for all s ∈ R (with k′ ∈ R
independent of ε), for the family of ε−regularizations Fε of F , was helpful to deduce the lower
bound

Eε(uε, ϕε) =
1

2
‖uε‖2 −

1

2
(ϕε,K ∗ ϕε) +

∫
Ω
Fε(ϕε) ≥

1

2
‖uε‖2 +

1

2

(k
4
− a∗

)
‖ϕε‖2 − k′′

for the regularized energy associated to the approximate solution [uε, ϕε], which, combined with
the approximate energy inequality, leads, in turn, to the basic estimates for [uε, ϕε]. However,
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we now show that (2.6) is superfluous. Indeed, it can be removed by employing a variant of the
Elliot-Garcke type of approximation (see [24, Proof of Theorem 2]). More precisely, the following
approximation Fε can be considered (see also [19])

Fε(s) =



F (1− ε) + F ′(1− ε)
(
s− (1− ε)

)
+ 1

2F
′′(1− ε)

(
s− (1− ε)

)2
+
(
s− (1− ε)

)3
, s ≥ 1− ε ,

F (s) , |s| ≤ 1− ε ,
F (−1 + ε) + F ′(−1 + ε)

(
s− (−1 + ε)

)
+ 1

2F
′′(−1 + ε)

(
s− (−1 + ε)

)2
+
∣∣s− (−1 + ε)

∣∣3, s ≤ −1 + ε .

It is easy to check that Fε ∈ C2,1
loc (R) and that, thanks also to (A3), there exist two constants

k1 > 0 and k2 ∈ R, which do not depend on ε, such that

Fε(s) ≥ k1|s|3 − k2 , ∀s ∈ R . (2.7)

Moreover, as a consequence of (A3), we still have that

F ′′ε (s) ≥ c0 , ∀s ∈ R , a.e. x ∈ Ω , (2.8)

and (A2) implies that there exists ε0 > 0 such that

Fε(s) ≤ F (s) + ε3 , ∀s ∈ (−1, 1) , ∀ε ∈ (0, ε0] . (2.9)

Thanks to the bounds (2.7)–(2.9), the argument of [24, Proof of Theorem 2], to which we refer
for the details, can still be reproduced, and the same basic estimates for the sequence [uε, ϕε] of
approximate solutions can be recovered. Moreover, the argument to prove that |ϕ| ≤ 1 almost
everywhere in QT is unchanged. There only remains to show that we can still pass to the limit,
as ε→ 0, in the term

∫
Ωmε(ϕε)F

′′
ε (ϕε)∇ϕε · ∇ψ (for all ψ ∈ V ), which appears in the variational

formulation of the approximate problem, in order to prove that the limit couple [u, ϕ] is a weak
solution. To this aim, notice that, due to (A1) and to the convergence ϕε → ϕ, pointwise almost
everywhere in QT , it is easy to see that we still have

mε(ϕε)F
′′
ε (ϕε)→ m(ϕ)F ′′(ϕ) , a.e. in QT . (2.10)

Moreover, there holds

|mε(s)F
′′
ε (s)| ≤ λ∞ + 6m(1− ε)

(
s− (1− ε)

)
χ[1−ε,+∞)(s)

+ 6m(−1 + ε)
∣∣s− (−1 + ε)

∣∣χ(−∞,−1+ε](s) , (2.11)

where λ∞ := ‖λ‖L∞(−1,1), and χE denotes the characteristic function of a set E ⊂ R. Since ϕε is
bounded in Lr(QT ), where r = 10/3 if d = 3, and r = 4 if d = 2, then, by Lebesgue’s theorem,
(2.10) and (2.11) entail that

mε(ϕε)F
′′
ε (ϕε)→ m(ϕ)F ′′(ϕ) , strongly in Lr(QT ) .

This strong convergence, together with the weak convergence ϕε ⇀ ϕ in L2(0, T ;V ), allows us to
pass to the limit in the term above.

Remark 2.7. It is worth pointing out that, to prove the existence of a weak solution (in the sense
of Definition 2.2), we do not need that the potential F has some singular behavior at the endpoints
s = ±1 (cf. (A1)–(A3)). Instead, the key role is played by the degenerate mobility, i.e., by
condition (M), with F being also C2(−1, 1). This is enough to ensure the crucial bound |ϕ| ≤ 1
almost everywhere in QT . However, concerning uniqueness and regularity results (see the following
sections), assumption (A4) is crucial, but it implies that F must have some singular behavior at
the endpoints, in the sense that, at least, F ′′(s)→∞, as s→ ±1.
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Remark 2.8. By combining (A1) with the definition of the function M , we can see that F and M
are not independent. Actually, in the statement of Theorem 2.3, F (ϕ0) ∈ L1(Ω) is a consequence
of M(ϕ0) ∈ L1(Ω). Moreover, if (A4) holds then the two conditions are equivalent (see [24]).

3. Strong solutions in two dimensions

Here we state and prove our main result: the existence of strong solutions to (1.1)–(1.6). Let us
introduce some preliminaries that we shall need in the proof. First of all, we observe that equations
(1.2)–(1.3) can formally be rewritten in the form

ϕt + u · ∇ϕ = ∆B(ϕ)− div
(
m(ϕ)(∇K ∗ ϕ)

)
, (3.1)

where we have set

B(s) =

∫ s

0
λ(σ)dσ , λ(s) = m(s)F ′′(s) , ∀s ∈ [−1, 1] . (3.2)

Notice that we have ∇B(ϕ) = λ(ϕ)∇ϕ . Hence, the boundary condition m(ϕ)∇µ · n = 0 can be
rewritten as [

∇B(ϕ)−m(ϕ)(∇K ∗ ϕ)
]
· n = 0 . (3.3)

Thus, the equivalent weak formulation of equations (1.2)–(1.3) is

〈ϕt, ψ〉V +

∫
Ω
∇B(ϕ) · ∇ψ dx−

∫
Ω
m(ϕ)(∇K ∗ ϕ) · ∇ψ dx = (uϕ,∇ψ) ,

for every ψ ∈ V and for almost any t ∈ (0, T ).
On account of this formulation, we can give our definition of strong solution if d = 2.

Definition 3.1. Let u0 ∈ Vdiv, ϕ0 ∈ V ∩ Cβ(Ω) for some β ∈ (0, 1), v ∈ L2(0, T ;Gdiv), and
0 < T < +∞ be given. A weak solution [u, ϕ] to (1.1)-(1.6) on [0, T ] corresponding to [u0, ϕ0] is
called strong solution if

u ∈ L∞ (0, T ;Vdiv) ∩ L2(0, T ;H2 (Ω)2) , ut ∈ L2 (0, T ;Gdiv) , (3.4)

ϕ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) , ϕt ∈ L2(0, T ;H) , (3.5)

ut − 2div (ν(ϕ)Du) + (u · ∇)u+∇π̃ = −(K ∗ ϕ)∇ϕ+ v ,

ϕt + u · ∇ϕ = ∆B(ϕ)− div
(
m(ϕ)(∇K ∗ ϕ)

)
,

div (u) = 0 ,

almost everywhere in Ω× (0, T ) with

u = 0 ,
[
∇B(ϕ)−m(ϕ)(∇K ∗ ϕ)

]
· n = 0 ,

almost everywhere on ∂Ω× (0, T ), and for some π̃ := π − F (ϕ) ∈ L2(0, T ;V ).

Remark 3.2. It is worth noting that, for a strong solution, the nonlocal Cahn-Hilliard equation
can also be written in the form

ϕt + u · ∇ϕ = div
(
m(ϕ)F ′′(ϕ)∇ϕ−m(ϕ)(∇K ∗ ϕ)

)
,

almost everywhere in Ω× (0, T ), while the boundary condition becomes[
m(ϕ)F ′′(ϕ)∇ϕ−m(ϕ)(∇K ∗ ϕ)

]
· n = 0 ,

almost everywhere on ∂Ω× (0, T ).

Then, we shall use the following lemma to handle the boundary condition (3.3).
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Lemma 3.3. Let ϕ,ψ ∈ H1/2(∂Ω) ∩ L∞(∂Ω). Then ϕψ ∈ H1/2(∂Ω) ∩ L∞(∂Ω) and

‖ϕψ‖H1/2(∂Ω) ≤ ‖ϕ‖L∞(∂Ω)‖ψ‖H1/2(∂Ω) + ‖ψ‖L∞(∂Ω)‖ϕ‖H1/2(∂Ω) . (3.6)

Proof. The proof is an immediate consequence of the definition of the space H1/2(∂Ω) with semi-
norm given by

[ϕ]2H1/2(∂Ω) =

∫
∂Ω

∫
∂Ω

|ϕ(x)− ϕ(y)|2

|x− y|2
dΓ(x)dΓ(y) , (3.7)

where dΓ(·) is the surface measure on ∂Ω (see, e.g., [15, Chapter IX, Section 18]). �

To establish the regularity of solutions, we shall also need the kernel K to be more regular than
W 1,1
loc . A possible assumption is that K ∈W 2,1

loc (R2). However, this assumption excludes physically
relevant classes of kernels like, e.g., Newtonian and Bessel potential kernels. This class can be
included by assuming that K is admissible, according to the following definition.

Definition 3.4. (see [9, Definition 1]) A kernel K ∈ W 1,1
loc (Rd) is admissible if the following con-

ditions are satisfied:

(K1): K ∈ C3(Rd\{0});
(K2): K is radially symmetric, K(x) = K̃(|x|) and K̃ is non-increasing;

(K3): K̃ ′′(r) and K̃ ′(r)/r are monotone on (0, r0) for some r0 > 0;
(K4): |D3K(x)| ≤ Cd|x|−d−1 for some C∗ > 0.

The advantage of working with admissible kernels is due to the following lemma.

Lemma 3.5. (cf. [9, Lemma 2]) Let K be admissible. Then, for every p ∈ (1,∞), there exists
Cp > 0 such that

‖∇v‖Lp(Ω)d×d ≤ Cp‖ψ‖Lp(Ω) , ∀ψ ∈ Lp(Ω) ,

where v = ∇K ∗ ψ. Here, Cp = C∗p for p ∈ [2,∞) and Cp = C∗p/ (p− 1) for p ∈ (1, 2), for some
constant C∗ > 0 independent of p.

Before stating our result, we need to replace (A1) with the following slightly stronger assumption.

(A1b): F ∈ C3(−1, 1) and λ := mF ′ ′ ∈ C1[−1, 1].

Our main theorem is as follows.

Theorem 3.6. Let the assumptions (K), (V), (M), (A1b), (A4) hold true, and assume that

K ∈W 2,1
loc (R2) or that K is admissible (d = 2). Let u0 ∈ Gdiv, ϕ0 ∈ V ∩L∞(Ω) with F (ϕ0) ∈ L1(Ω)

and M(ϕ0) ∈ L1(Ω), where M is defined as in Theorem 2.3. Let also v ∈ L2(0, T ;Gdiv). Then, for
every T > 0, problem (1.2)–(1.6) admits a weak solution [u, ϕ] on [0, T ] such that

u ∈ L∞ (0, T ;Gdiv) ∩ L2 (0, T ;Vdiv) , ut ∈ L2
(
0, T ;V ′div

)
, (3.8)

ϕ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) , ϕt ∈ L2(0, T ;H) . (3.9)

Assume in addition that u0 ∈ Vdiv and that ϕ0 ∈ V ∩ Cβ(Ω) for some β ∈ (0, 1). Then problem
(1.2)–(1.6) admits a (unique) strong solution satisfying (3.9) and

u ∈ L∞ (0, T ;Vdiv) ∩ L2(0, T ;H2 (Ω)2) , ut ∈ L2 (0, T ;Gdiv) . (3.10)

Finally, suppose that ϕ0 ∈ H2(Ω) and that the following compatibility condition is fulfilled:

∇B(ϕ0) · n = m(ϕ0)(∇K ∗ ϕ0) · n , a.e. on ∂Ω . (3.11)

Then the strong solution also satisfies

ϕ ∈ L∞(0, T ;H2(Ω)) , ϕt ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) . (3.12)
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Remark 3.7. We observe that uniqueness was already proved in [20, Theorem 7]. Actually, a
conditional weak-strong uniqueness was established by assuming the existence of a strong solution.
That result is no longer a conditional one.

4. Proof of Theorem 3.6

The proof is divided into three main steps. A brief description follows.

Step 1 Assuming that [u, ϕ] is a weak solution in the sense of Definition 2.2, we aim to show that
the second component belongs to the regularity class (3.5) provided that ϕ0 ∈ V ∩ L∞ (Ω).
We first introduce a regularized problem Pε which is constructed by replacing the singular
potential F by a regular one Fε, and the degenerate mobility m by a smooth nondegenerate
functionmε > 0. Then we deduce sufficiently strong a priori estimates for ϕε that are uniform
with respect to ε > 0. A time discretization scheme applied to the nonlocal Cahn-Hilliard
equation with a nondegenerate mobility mε and regular potential Fε shall be exploited in
order to develop a proof-rigorous strategy and all the necessary estimates independent of ε.

Step 2 With the improved regularity of ϕ from Step 1, we can then proceed to deduce higher-order
estimates for the velocity assuming that u0 ∈ Vdiv. This will be achieved by means of some
crucial arguments that were also exploited in [20] for a similar problem. In this step, the
Hölder continuity of ϕ is the main ingredient.

Step 3 We deduce bounds for ϕ in the regularity class (3.12), provided that ϕ0 ∈ H2 (Ω) satisfies
some compatibility conditions. This will be carried out by means of the same time dis-
cretization scheme as in Step 1, making use of the smoothness of the velocity obtained in
Step 2 (see also (3.10)).

Step 1. We first establish the L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) regularity for ϕ. For this pur-
pose, we need to carefully deduce higher-order estimates on the nonlocal Cahn-Hilliard equa-
tion in such a way that the only regularity which is exploited for u is the weak one, i.e., u ∈
L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv). Indeed, if the viscosity is nonconstant, we cannot directly apply
the classical regularity result [46, Theorem 3.10] for the incompressible Navier-Stokes system in
dimension two (which also requires a regularity assumption on the initial velocity u0 ∈ Vdiv) and
extend the arguments contained in [23].

The (formal) idea is to test (3.1) by B(ϕ)t = λ(ϕ)ϕt. In order to make the argument rigorous,
let us develop a suitable approximation scheme. We first approximate problem (3.1) and (3.3) with
the following one:

ϕt + u · ∇ϕ = ∆Bε(ϕ)− div
(
mε(ϕ)(∇K ∗Q(ϕ))

)
, (4.1)[

∇Bε(ϕ)−mε(ϕ)(∇K ∗Q(ϕ))
]
· n = 0 , (4.2)

where we have set

Bε(s) =

∫ s

0
λε(σ)dσ , λε(s) = mε(s)F

′′
ε (s) , ∀s ∈ R .

Here, the singular potential F is replaced by the regular potential Fε, ε ∈ (0, 1), such that

F ′′ε (s) =


F ′′(1− ε) , s ≥ 1− ε ,
F ′′(s) , |s| ≤ 1− ε ,
F ′′(−1 + ε) , s ≤ −1 + ε ,

(4.3)



TWO-DIMENSIONAL NONLOCAL CAHN-HILLIARD-NAVIER-STOKES SYSTEMS 11

with F
(k)
ε (0) = F (k)(0) for k = 0, 1. Moreover, the degenerate mobility m is replaced by

mε(s) =

 m(1− ε) , s ≥ 1− ε ,
m(s) , |s| ≤ 1− ε ,
m(−1 + ε) , s ≤ −1 + ε .

(4.4)

In the last term of (4.1), Q : R→ R is the truncation function defined as

Q(s) = max{−1,min{1, s}} , ∀s ∈ R .

Notice that, thanks to condition (A1), we have the bound |mε(s)F
′′
ε (s)| ≤ λ∞, for all s ∈ R and

for all ε ∈ (0, 1), where λ∞ := ‖λ‖L∞(−1,1). Also on account of condition (A4), there holds

0 < α0 ≤ λε(s) = mε(s)F
′′
ε (s) ≤ λ∞ , ∀s ∈ R . (4.5)

Moreover, observe that mε has the following properties:

0 < m̃ε ≤ mε(s) ≤ m∞ , ∀s ∈ R , (4.6)

|mε(s2)−mε(s1)| ≤ m ′∞ |s2 − s1| , ∀s1, s2 ∈ R , (4.7)

for some ε-dependent positive constant m̃ε, which, for ε small enough, is given by (cf. (M))

m̃ε = min{m(−1 + ε),m(1− ε)} ,
and for some ε-independent constants m∞, m ′∞ which, for all ε, are given by m∞ := ‖m‖L∞(−1,1),

m ′∞ := ‖m ′‖L∞(−1,1). Finally, due to (A1b), we have that

|λε(s2)− λε(s1)| ≤ λ ′∞ |s2 − s1| , ∀s1, s2 ∈ R , (4.8)

where λ ′∞ := ‖λ ′‖L∞(−1,1) is independent of ε.
We now prove that, for every fixed ε > 0, problem (4.1), (4.2) admits a solution

ϕ = ϕε ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) , ϕt ∈ L2(0, T ;H) .

In order to prove this regularity, the choice of the approximation argument is crucial. Indeed, we
point out that the use of the Faedo-Galerkin method is problematic. The reason is that testing
the projected (4.1) by ∂tB(ϕn) (here ϕn denotes a Faedo-Galerkin approximate solution) is not
allowed, since B(ϕn) does not belong, in general, to the subspace spanned by the first n elements
of the Faedo-Galerkin basis. The problem is the nonconstant mobility. On the other hand, testing
by ∂tϕn also leads to technical difficulties.

We shall therefore employ a different approximation approach. In particular, the proof will be
carried out by means of a time-discretization argument. For simplicity of notation, for the moment
we drop the indication of the approximation parameter ε. We fix N ∈ N and set τ = T/N . We
first introduce the following incremental-step problem: for k = 0, . . . , N − 1, given ϕk ∈ V , find
ϕk+1 ∈ V that solves

− τ∆B(ϕk+1) + ϕk+1 = ϕk − τUk · ∇ϕk+1 − τ div
(
m(ϕk)(∇K ∗Q(ϕk))

)
, (4.9)

∇B(ϕk+1) · n = m(ϕk)(∇K ∗Q(ϕk)) · n , a.e. on ∂Ω . (4.10)

Each Uk is given by

Uk :=
1

τ

∫ (k+1)τ

kτ
u(s) ds , k = 0, . . . , N − 1 .

We now claim that (4.9)-(4.10) admits for every ϕ0 ∈ V a solution (ϕ1, . . . , ϕN ) ∈ H2(Ω)N . First,
we introduce, for every k = 0, . . . , N − 1, the nonlinear operator Ak : V → V ′ defined by

〈Akϕ,ψ〉V := τ
(
∇B(ϕ),∇ψ) + (ϕ,ψ)− τ(Ukϕ,∇ψ) , ∀ϕ,ψ ∈ V . (4.11)
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Then let gk ∈ V ′ also be given by

〈gk, ψ〉V := (ϕk, ψ) + τ
(
m(ϕk)(∇K ∗Q(ϕk)),∇ψ

)
, ∀ψ ∈ V .

It follows that problem (4.9)-(4.10) can be written as

Akϕk+1 = gk, in V ′. (4.12)

We now observe that Ak is pseudomonotone and coercive on V . Indeed, writing the first term on the
right-hand side of (4.11) as τ(λ(ϕ)∇ϕ,∇ψ), it is straightforward to check that Ak satisfy all the as-
sumptions of the general results given by [42, Lemma 2.31 and Lemma 2.32] (for pseudomonotonic-
ity) and by [42, Lemma 2.35] (for coercivity). This can be seen by taking a(x, r, s) := τλ(r)s−τUkr,
b(x, r) := 0, and c(x, r, s) := r in [42, Lemma 2.31, Lemma 2.32 and Lemma 2.35]. Therefore, (4.12)
admits a solution ϕk+1 ∈ V (see [42, Theorem 2.6]; cf. also [11]).

Using a bootstrap argument, we find that ϕk+1 ∈ H2(Ω), for k = 0, . . . , N − 1. Indeed, owing
to (4.6)–(4.7), from (4.9) and (4.10) we deduce that ∆B(ϕk+1) ∈ L2−γ(Ω), for all 0 < γ ≤ 1, and

∇B(ϕk+1) ·n ∈ H1/2(∂Ω). By elliptic regularity theory, we then infer that B(ϕk+1) ∈W 2,2−γ(Ω).

Hence, we have ∇B(ϕk+1) ∈W 1,2−γ(Ω)2, for all 0 < γ ≤ 1. This fact, together with ∇B
(
ϕk+1

)
=

λ
(
ϕk+1

)
∇ϕk+1, implies that ∇ϕk+1 ∈ L4(Ω)2. Therefore, the right-hand side of (4.9) belongs to

L2(Ω) and, by applying elliptic regularity theory once again, we deduce that B(ϕk+1) ∈ H2(Ω).
Hence, ∇B(ϕk+1) ∈ H1(Ω)2 and, therefore thanks to (4.5) and (4.8), it is easy to check that we

also have ∇λ(ϕk+1) ∈ L4(Ω)2. Then, again using the fact that ∇B
(
ϕk+1

)
= λ

(
ϕk+1

)
∇ϕk+1, we

deduce that ∇ϕk+1 ∈ H1(Ω)2, whence ϕk+1 ∈ H2(Ω). Moreover, the following identity, which will
be useful later, holds true:

∂2
ijϕk+1 =

1

λ(ϕk+1)
∂2
ijB(ϕk+1)− 1

λ2(ϕk+1)
∂iλ(ϕk+1)∂jB(ϕk+1) . (4.13)

Let us now begin to establish the basic discrete estimates. We first test (4.9) by ϕk+1 and sum
over k from k = 0 to k = n, where n < N . By using the following elementary identity

n∑
k=0

(ϕk+1 − ϕk, ϕk+1) =
1

2

n∑
k=0

‖ϕk+1 − ϕk‖2 +
1

2
‖ϕn+1‖2 −

1

2
‖ϕ0‖2, (4.14)

and the fact that ∇B
(
ϕk+1

)
= λ

(
ϕk+1

)
∇ϕk+1, we get

1

2

n∑
k=0

‖ϕk+1 − ϕk‖2 +
1

2
‖ϕn+1‖2 + τ

n∑
k=0

(
λ(ϕk+1)∇ϕk+1,∇ϕk+1

)
=

1

2
‖ϕ0‖2 + τ

n∑
k=0

(
m(ϕk)(∇K ∗Q(ϕk)),∇ϕk+1) . (4.15)

Observe that

τ
∣∣∣ n∑
k=0

(
m(ϕk)(∇K ∗Q(ϕk)),∇ϕk+1

)∣∣∣ ≤ τδ n∑
k=0

‖∇ϕk+1‖2 + Cδ,m,K T . (4.16)

Henceforth, we shall denote by C, Cξ some positive constants that may depend on the global data
and on the quantities here denoted by ξ. The value of C, Cξ may change from line to line or even
within the same line. Moreover, Q≥ 0 will stand for a generic monotone nondecreasing continuous
function of all its arguments.
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Inserting estimate (4.16) into (4.15), using the lower bound in (4.5), and choosing δ > 0 small
enough (i.e., δ ≤ α0/2), we obtain the discrete inequality

n∑
k=0

‖ϕk+1 − ϕk‖2 + ‖ϕn+1‖2 + τα0

n∑
k=0

‖∇ϕk+1‖2 ≤ ‖ϕ0‖2 + Cm,K T , (4.17)

for n = 0, . . . , N − 1. The next step now consists in testing (4.9) by B(ϕk+1)−B(ϕk). We employ
the discrete relation (4.14) with ∇B(ϕk) in place of ϕk, the following discrete integration by parts
formula

τ

n∑
k=0

(
m(ϕk)(∇K ∗Q(ϕk)),∇(B(ϕk+1)−B(ϕk)

)
= τ

(
m(ϕn+1)(∇K ∗Q(ϕn+1)),∇B(ϕn+1)

)
− τ

n∑
k=0

(
m(ϕk+1)(∇K ∗Q(ϕk+1))−m(ϕk)(∇K ∗Q(ϕk)),∇B(ϕk+1)

)
− τ
(
m(ϕ0)(∇K ∗Q(ϕ0)),∇B(ϕ0)

)
,

and the lower bound in (4.5), to get the estimate

α0

τ

n∑
k=0

‖ϕk+1 − ϕk‖2 +
1

2
‖∇B(ϕn+1)‖2 +

1

2

n∑
k=0

‖∇(B(ϕk+1)−B(ϕk))‖2 (4.18)

≤ 1

2
‖∇B(ϕ0)‖2 +

(
m(ϕn+1)(∇K ∗Q(ϕn+1)),∇B(ϕn+1)

)
−

n∑
k=0

(
m(ϕk+1)(∇K ∗Q(ϕk+1))−m(ϕk)(∇K ∗Q(ϕk)),∇B(ϕk+1)

)
−
(
m(ϕ0)(∇K ∗Q(ϕ0)),∇B(ϕ0)

)
−

n∑
k=0

(
Uk · ∇ϕk+1, B(ϕk+1)−B(ϕk)

)
.

Let us now estimate individually the terms on the right-hand side of (4.18). We begin with the
easier ones. We have∣∣(m(ϕn+1)(∇K ∗Q(ϕn+1)),∇B(ϕn+1)

)∣∣ ≤ m∞ b |Ω|1/2‖∇B(ϕn+1)‖

≤ 1

4
‖∇B(ϕn+1)‖2 + Cm,K,Ω , (4.19)

∣∣ n∑
k=0

(
m(ϕk+1)(∇K ∗Q(ϕk+1))−m(ϕk)(∇K ∗Q(ϕk)),∇B(ϕk+1)

)∣∣
≤ (m ′∞|Ω|1/2 +m∞) b

n∑
k=0

‖ϕk+1 − ϕk‖‖∇B(ϕk+1)‖

≤ α0

4τ

n∑
k=0

‖ϕk+1 − ϕk‖2 + Cm,K,Ω,α0 τ
n∑
k=0

‖∇B(ϕk+1)‖2 . (4.20)
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The estimate for the last term on the right-hand side of (4.18) is more delicate. We first observe
that, by means of a direct computation, the following bounds can be deduced:

‖Un‖ ≤ ‖u‖L∞(0,T ;Gdiv) , τ

n∑
k=0

‖∇Uk‖2 ≤ ‖u‖2L2(0,T ;Vdiv) , n = 0, . . . , N − 1 . (4.21)

Then we observe that

∣∣∣ n∑
k=0

(
Uk · ∇ϕk+1, B(ϕk+1)−B(ϕk)

)∣∣∣ ≤ α0

4τ

n∑
k=0

‖ϕk+1 − ϕk‖2

+
λ2
∞τ

α0

n∑
k=0

‖Uk · ∇ϕk+1‖2 . (4.22)

On the other hand, we have that

λ2
∞τ

α0

n∑
k=0

‖Uk · ∇ϕk+1‖2 =
λ2
∞τ

α0

n∑
k=0

∥∥∥Uk ·
1

λ(ϕk+1)
∇B(ϕk+1)

∥∥∥2

≤ λ2
∞τ

α3
0

n∑
k=0

‖Uk‖2L4(Ω)2‖∇B(ϕk+1)‖2L4(Ω)2

≤ Cτ
n∑
k=0

‖Uk‖‖∇Uk‖‖∇B(ϕk+1)‖‖B(ϕk+1)‖H2(Ω)

≤ δτ
n∑
k=0

‖B(ϕk+1)‖2H2(Ω) + Cδτ
n∑
k=0

‖Uk‖2‖∇Uk‖2‖∇B(ϕk+1)‖2 . (4.23)

We proceed to estimate the term in the H2-norm of B(ϕk+1). By means of a classical elliptic
regularity estimate and by (4.9), we find that

δτ

n∑
k=0

‖B(ϕk+1)‖2H2(Ω)

≤ Cδτ
n∑
k=0

(
‖∆B(ϕk+1)‖2 + ‖B(ϕk+1)‖2V +

∥∥∥∇B(ϕk+1) · n
∥∥∥2

H1/2(∂Ω)

)
≤ Cδ

τ

n∑
k=0

‖ϕk+1 − ϕk‖2 + Cδτ

n∑
k=0

‖Uk · ∇ϕk+1‖2

+ Cδτ

n∑
k=0

‖div
(
m(ϕk)(∇K ∗Q(ϕk))

)
‖2 + Cδτ

n∑
k=0

‖B(ϕk+1)‖2V

+ Cδτ

n∑
k=0

∥∥∥∇B(ϕk+1) · n
∥∥∥2

H1/2(∂Ω)
. (4.24)
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As far as the boundary term in (4.24) is concerned, on account of (4.10), we have that

Cδτ
n∑
k=0

∥∥∥∇B(ϕk+1) · n
∥∥∥2

H1/2(∂Ω)

= Cδτ
n∑
k=0

‖m(ϕk)(∇K ∗Q(ϕk)) · n‖2H1/2(∂Ω)

≤ Cδτ
n∑
k=0

(
‖m(ϕk)‖2L∞(∂Ω)‖(∇K ∗Q(ϕk)) · n‖2H1/2(∂Ω)

+ ‖m(ϕk)‖2H1/2(∂Ω)
‖(∇K ∗Q(ϕk)) · n‖2L∞(∂Ω)

)
≤ Cδτ

n∑
k=0

m2
∞‖K ∗Q(ϕk)‖2H2(Ω) + C (Ω,K) δτ

n∑
k=0

(
m ′∞

2‖ϕk‖2H1/2(∂Ω)
+m2

∞|∂Ω|1
)

≤ CδT + Cδτ

n∑
k=0

‖ϕk‖2V

≤ CT δ(1 + ‖ϕ0‖2V ) . (4.25)

We break down the main points needed in the series of estimates for (4.25) as follows:

• We have employed Lemma 3.3, the classical trace theorem, and the definition of the space
H1/2(∂Ω), to estimate the term (cf. (3.7))

‖m(ϕk)‖2H1/2(∂Ω)
= ‖m(ϕk)‖2L2(∂Ω) + [m(ϕk)]

2
H1/2(∂Ω)

,

thanks to (4.7). Moreover, |∂Ω|1 denotes the one-dimensional measure of ∂Ω.
• Lemma 3.5 is used to estimate the term in the H2-norm if K is admissible; otherwise, if
K ∈W 2,1

loc

(
Rd
)
, one employs the Young convolution theorem and the fact that Q is bounded

(namely, |Q (s)| ≤ 1 for all s ∈ R) together with the uniform bound (4.17). Clearly, owing
to (4.6), mε is uniformly bounded in L∞ (∂Ω)-norm.
• The most crucial part of the estimate is the uniform control of the L∞(∂Ω)–norm1 of ∂iK ∗
Q(ϕk), for each i = 1, 2. We rely on the embedding W 1,p (Ω) ↪→ C

(
Ω
)
, where p > d = 2

is fixed, and observe that, owing to Lemma 3.5 (or the Young convolution theorem if K ∈
W 2,1

loc

(
R2
)
), we have, for each i = 1, 2,

‖∂iK ∗Q(ϕk)‖L∞(∂Ω) ≤ Cp,Ω ‖∂iK ∗Q(ϕk)‖W 1,p(Ω) (4.26)

≤ Cp,Ω,K ‖Q(ϕk)‖Lp(Ω)

≤ Cp,Ω,K ,

since |Q (ϕk)| ≤ 1 almost everywhere in Ω.

1Since ∂Ω is smooth, the normal vector n = n (x) is C1 (∂Ω) .
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The third and fourth terms on the right-hand side of (4.24) can be estimated as follows:

Cδτ
n∑
k=0

‖div
(
m(ϕk)(∇K ∗Q(ϕk))

)
‖2 ≤ Cδτ

n∑
k=0

(
2m2
∞‖K ∗Q(ϕk)‖2H2(Ω) + 2m ′∞

2
b2 ‖∇ϕk‖2

)
≤ CT δ(1 + ‖ϕ0‖2V ) , (4.27)

Cδτ
n∑
k=0

‖B(ϕk+1)‖2V ≤ C δτ
n∑
k=0

λ2
∞‖ϕk+1‖2V

≤ CT δ(1 + ‖ϕ0‖2) , (4.28)

where we have used again Lemma 3.5, (4.6)–(4.7), the basic discrete bound (4.17), and the fact
that ∇B

(
ϕk+1

)
= λ

(
ϕk+1

)
∇ϕk+1.

We now insert (4.25)–(4.28) into (4.24), and then we insert the resulting inequality into (4.23).
By fixing δ > 0 small enough, we obtain the estimate

λ2
∞τ

α0

n∑
k=0

‖Uk · ∇ϕk+1‖2 ≤
α0

4τ

n∑
k=0

‖ϕk+1 − ϕk‖2

+Cτ

n∑
k=0

‖Uk‖2‖∇Uk‖2‖∇B(ϕk+1)‖2 + CT (1 + ‖ϕ0‖2V ) . (4.29)

By employing (4.29), (4.19)–(4.20) and (4.22), from (4.18) we get

1

τ

n∑
k=0

‖ϕk+1 − ϕk‖2 + ‖∇B(ϕn+1)‖2 +
n∑
k=0

‖∇
(
B(ϕk+1)−B(ϕk)

)
‖2

≤ CT (1 + ‖ϕ0‖2V ) + C
n∑
k=0

(τ + τ‖Uk‖2‖∇Uk‖2)‖∇B(ϕk+1)‖2

≤ CT (1 + ‖ϕ0‖2V ) + C(τ + ‖u‖2L∞(0,T ;Gdiv)τ‖∇Un‖2)‖∇B(ϕn+1)‖2

+ C

n−1∑
k=0

(τ + τ‖Uk‖2‖∇Uk‖2)‖∇B(ϕk+1)‖2 . (4.30)

Observe now that

τ‖∇Un‖2 ≤
∫ (n+1)τ

nτ
‖∇u(s)‖2 ds .

Hence, for every η > 0, there exists some τη > 0, which only depends on η (and on u), such that
τ‖∇Un‖2 < η for all 0 < τ < τη and for all n < N . By using this fact, we can take τ small enough
in such a way that the third term on the right-hand side of the foregoing inequality (4.30) can be
absorbed into the term ‖∇B(ϕn+1)‖2 on the left-hand side. Therefore, on account of (4.21), by
applying the discrete Gronwall’s Lemma to the ensuing discrete inequality, we obtain from (4.30)
that

1

τ

n∑
k=0

‖ϕk+1 − ϕk‖2 + ‖∇B(ϕn+1)‖2 +
n∑
k=0

‖∇
(
B(ϕk+1)−B(ϕk)

)
‖2

≤ Q
(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
, n = 0, . . . , N − 1 . (4.31)
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We can now proceed to prove the L2(0, T ;H2 (Ω))-regularity for ϕ. Let us first notice that (4.24),
combined with (4.25)–(4.29), (4.21) and (4.31), implies that

τ
n∑
k=0

‖B(ϕk+1)‖2H2(Ω) ≤ Q
(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
, n = 0, . . . , N − 1 . (4.32)

This estimate yields, in particular, a control on the gradient of B(ϕk+1) in Lp (Ω), for 2 < p <∞.
Indeed, from (4.32) we have

τ
n∑
k=0

‖∇B(ϕk+1)‖2V ≤ Q
(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
.

This bound, together with (2.1) and (4.31), implies that

τ

n∑
k=0

‖∇B(ϕk+1)‖2p/(p−2)
Lp(Ω) ≤ Q

(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
. (4.33)

Clearly, thanks to ∇B(ϕk+1) = λ
(
ϕk+1

)
∇ϕk+1 and to the bound

‖∇λ(ϕk+1)‖Lp(Ω)2 ≤ λ ′∞‖∇ϕk+1‖Lp(Ω)2 ,

we can also conclude from (4.33) that

τ

n∑
k=0

‖∇ϕk+1‖
2p/(p−2)
Lp(Ω)2

+ τ

n∑
k=0

‖∇λ(ϕk+1)‖2p/(p−2)
Lp(Ω)2

(4.34)

≤ Q
(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
.

Thus, using (4.33), (4.34) (written for p = 4), and (4.32), we can infer from (4.13) the desired
bound

τ
n∑
k=0

‖ϕk+1‖2H2(Ω) ≤ Q
(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
, n = 0, . . . , N − 1 . (4.35)

We now need to introduce the functions ϕ̂N , ϕN , and ϕ̃N which interpolate the values ϕn piecewise
linearly, backward, and forward constantly, respectively, on the partition. Namely, we set ϕ̂N (t) := γn(t)ϕn + (1− γn(t))ϕn+1 , γn(t) := n+ 1− (t/τ) ,

ϕN (t) := ϕn+1 ,
ϕ̃N (t) := ϕn ,

for nτ < t < (n + 1)τ , n = 0, . . . , N − 1. As a consequence of the estimates (4.17), (4.31) and
(4.35), we find the estimate

‖ϕ̂ ′N‖2L2(0,T ;H) + ‖ϕ̂N‖2L∞(0,T ;V ) + ‖ϕN‖2L∞(0,T ;V ) + ‖ϕ̃N‖2L∞(0,T ;V ) + ‖ϕN‖2L2(0,T ;H2(Ω)) (4.36)

+
3

τ
‖ϕ̂N − ϕN‖2L2(0,T ;H) +

3

τ
‖ϕ̂N − ϕ̃N‖2L2(0,T ;H)

≤ Q
(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
.

Moreover, (4.17), (4.31) and (4.32) also yield that

‖B(ϕN )‖L∞(0,T ;V )+‖B(ϕN )‖L2(0,T ;H2(Ω)) ≤ Q
(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
. (4.37)

Problem (4.9)–(4.10) can be rewritten in terms of the interpolating functions ϕ̂N , ϕN , ϕ̃N as follows:

ϕ̂ ′N = ∆B(ϕN ) + uN · ∇ϕN − div
(
m(ϕ̃N )(∇K ∗Q(ϕ̃N ))

)
, (4.38)

∇B(ϕN ) · n = m(ϕ̃N )(∇K ∗Q(ϕ̃N )) · n a.e. on ∂Ω . (4.39)
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Here, each uN is defined by uN (t) := Un, for nτ < t < (n+ 1)τ , n = 0, . . . , N − 1. The variational
formulation for (4.38)–(4.39) then reads, for all ψ ∈ V,

〈ϕ̂ ′N , ψ〉V + (∇B(ϕN ),∇ψ) = −(uNϕN ,∇ψ) +
(
m(ϕ̃N )(∇K ∗Q(ϕ̃N )),∇ψ

)
. (4.40)

Owing to (4.36), and employing classical compactness results, we deduce that there exists ϕ ∈
L∞(0, T ;V )∩L2(0, T ;H2(Ω)) with ϕt ∈ L2(0, T ;H), such that, at least for a subsequence, we have

ϕ̂N ⇀ ϕ , weakly∗ in L∞(0, T ;V ) , (4.41)

ϕ̂ ′N ⇀ ϕt , weakly in L2(0, T ;H) , (4.42)

ϕ̂N → ϕ , strongly in C0([0, T ];Lq(Ω)) , 2 ≤ q <∞ , (4.43)

ϕN ⇀ ϕ , weakly∗ in L∞(0, T ;V ) , weakly in L2(0, T ;H2(Ω)) , (4.44)

ϕ̃N ⇀ ϕ , weakly∗ in L∞(0, T ;V ) , (4.45)

ϕN → ϕ , strongly in L2(0, T ;H) , (4.46)

ϕ̃N → ϕ , strongly in L2(0, T ;H) , (4.47)

B(ϕN ) ⇀ B(ϕ) , weakly∗ in L∞(0, T ;V ) , weakly in L2(0, T ;H2(Ω)) . (4.48)

Since ϕ̃N → ϕ pointwise almost everywhere in Ω × (0, T ), by virtue of the boundedness of the
functions m, Q, and by Lebesgue’s theorem, we also have that

m(ϕ̃N )→ m(ϕ) , Q(ϕ̃N )→ Q(ϕ) , strongly in Lq(Ω) , 2 ≤ q <∞ . (4.49)

Moreover,

uN → u , strongly in L2(0, T ;Vdiv) . (4.50)

Indeed, it easy to check that uN = PNu, where PN is the projector in L2(Vdiv) onto the subspace
SN := {v ∈ L2(0, T ;Vdiv) : v|(nτ,(n+1)τ) = vn, vn ∈ Vdiv, n = 0, . . . , N − 1}. Since ∪N≥1SN is

dense in L2(Vdiv), then (4.50) follows.
By means of the weak and strong convergences (4.41)–(4.50), we can now pass to the limit in

(4.40) in a standard fashion, and recover the weak formulation of problem (4.1)-(4.2). Notice that
we can also pass to the limit directly in (4.38)-(4.39) and prove that (4.1)-(4.2) are satisfied also
strongly almost everywhere in Ω× (0, T ) and on ∂Ω× (0, T ), respectively.

We thus have shown that, for every ε > 0, problem (4.1)-(4.2) admits a solution

ϕε ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) .

We can also see, by passing to the liminf in (4.36), that the sequence of ϕε is uniformly bounded
with respect to ε in these spaces (just recall that all constants in (4.5)-(4.8) are independent of ε).
Therefore, there exists a limit function, which we still denote by

ϕ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ,

such that, at least for a subsequence, the same convergences as (4.41)-(4.49) hold for the sequence of
ϕε to ϕ. These convergences allow us to pass to the limit in the variational formulation of problem
(4.1)-(4.2) and to recover the variational formulation of the following problem:

ϕt + u · ∇ϕ = ∆B(ϕ)− div
(
m(ϕ)(∇K ∗Q(ϕ))

)
, (4.51)[

∇B(ϕ)−m(ϕ)(∇K ∗Q(ϕ))
]
· n = 0 , on ∂Ω× (0, T ) . (4.52)

We now show that ϕ satisfies the bound |ϕ| ≤ 1, almost everywhere in Ω × (0, T ). This allows us
to remove the function Q in problem (4.51)-(4.52) and to conclude that indeed the limit solution
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ϕ solves problem (3.1) and (3.3). To this end, we recall that we have just established that ϕ = ϕε
also satisfies the weak formulation (cf. Definition 2.2) associated with the problem

ϕt + u · ∇ϕ = div(mε(ϕ)∇µ) , (4.53)

µ = −K ∗Q(ϕ) + F ′ε (ϕ) , (4.54)

mε(ϕ)∇µ · n = 0 , on ∂Ω× (0, T ) . (4.55)

We can therefore argue as in [24, Proof of Theorem 2]. More precisely, we introduce the C2 function
Mε defined by mε(s)M

′ ′
ε (s) = 1, for all s ∈ R, Mε(0) = M ′

ε (0) = 0, and we test (4.53) by M ′
ε (ϕε).

This gives the estimate

d

dt

∫
Ω
Mε(ϕε) +

c0

2
‖∇ϕε‖2 ≤ Q

(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
,

where c0 = α0/m∞. Thus, on account of the fact that for ε small enough we have Mε(s) ≤ M(s)
for all s ∈ (−1, 1) (cf. (M)), and recalling that M(ϕ0) ∈ L1(Ω), we deduce the bound

‖Mε(ϕε)‖L∞(0,T ;L1(Ω)) ≤ Q
(
‖ϕ0‖V , ‖u‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv)

)
.

We can now follow the same lines of [24, Proof of Theorem 2], which rely on an argument devised
in [16, Proof of Theorem 1] (see also [12, Proof of Theorem 2.3]), to deduce the desired claim. This
concludes the proof of the first part of the theorem. Namely, there exists a weak solution such that
ϕ is a bit smoother in the regularity class of (3.9). This concludes Step 1.

Step 2. We now establish the L∞(0, T ;Vdiv) ∩L2(0, T ;H2(Ω)2)-regularity for u, assuming that
u0 ∈ Vdiv and ϕ0 ∈ V ∩ Cβ(Ω) for some β ∈ (0, 1). The argument, which (formally) consists in
testing the Navier-Stokes equations (1.1) by ut, follows exactly the lines of [20, Proof of Theorem 5,
Step 2]. The key tool is a regularity result for the inhomogeneous Stokes system in non-divergence
form, namely,  −ω (x) ∆u+∇π = f (x) , in Ω ,

div (u) = 0 , in Ω ,
u = 0 , on ∂Ω ,

(4.56)

taken from [45]. We report this result here, for the reader’s convenience (see also [4] as an alternative
route to the H2−regularity in the case of a variable viscosity in the Stokes equations).

Proposition 4.1. [45, Proposition 2.1] Let f ∈ L2 (Ω)2 and ω ∈ Cδ
(
Ω
)
, for some δ ∈ (0, 1), such

that 0 < λ0 ≤ ω (x) ≤ λ1 <∞ for all x ∈ Ω. Then any solution [u, π] ∈ H2 (Ω)2×H1 (Ω) of (4.56)
satisfies the estimate

‖u‖H2(Ω)2 + ‖π‖H1(Ω) ≤ C
(
‖f‖L2(Ω)2 + ‖π‖L2(Ω)

)
,

for some constant C = C(λ0, λ1,Ω, ‖ω‖Cδ(Ω)) > 0.

This result is applied to the Navier-Stokes system (1.1) after writing it in the form

−ν(ϕ)∆u+∇π̂ = f , (4.57)

where

f := (−K ∗ ϕ)∇ϕ+ v − (u · ∇)u− ut + 2ν ′(ϕ)Du∇ϕ , π̂ := π − F (ϕ) . (4.58)

This procedure effectively allows to bound the H2-norm of u as a function of the L2-norm of ut. The
only remaining ingredient is the Hölder regularity for ϕ (this, in turn, implies Hölder regularity
for ν(ϕ), which is required in order to apply Proposition 4.1). We therefore need to suitably
extend the argument of [20, Lemma 2], where the Hölder regularity for a bounded weak solution to
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the convective nonlocal Cahn-Hilliard equation with constant mobility and regular potential was
proved. This can be done thanks to assumptions (A1) and (A4). More precisely, we can prove
the following result.

Lemma 4.2. Let d = 2, and assume (A1) and (A4). Let u ∈ L∞(T ′, T ;Gdiv) ∩ L2(T ′, T ;Vdiv),
for some T > T ′ ≥ 0 and let ϕ be a bounded weak solution to (1.2), (1.3), (1.5)2. Then there exist
constants C > 0 and α ∈ (0, 1) depending on ‖ϕ‖L∞(QT ′,T ) and on ‖u‖L4(QT ′,T ), respectively, such

that

|ϕ(x, t)− ϕ(y, s)| ≤ C(|x− y|α + |t− s|α/2) ,

for every (x, t), (y, s) ∈ Q̄T ′,T := Ω× [T ′, T ].

Proof. Following the lines of [20, Proof of Lemma 2] (cf. also [40]), let k ∈ R and η = η (x, t) ∈
[0, 1] be a continuous piecewise-smooth function which is supported on the space-time cylinders
Qt0,t0+τ (r) := Br (x0)× (t0, t0 + τ), where Br (x0) denotes the (open) ball centered at x0 of radius
r > 0. As usual for the interior Hölder regularity, one takes x0 ∈ Ω, while x0 ∈ ∂Ω for the
corresponding boundary estimate, and then exploits a standard compactness argument, in which
Ω may be covered by a finite number of such balls. We thus multiply (1.2), (1.3), which can be
written as

ϕt + u · ∇ϕ = div (λ(ϕ)∇ϕ+ κ) , κ(x, t) := −m(ϕ) (∇K ∗ ϕ) ,

by η2ϕ+
k , where ϕ+

k := max {0, ϕ− k} , integrate the resulting identity over Qt0,t := Ω × (t0, t),
where T ′ ≤ t0 < t < t0 + τ ≤ T , to deduce that∫

Qt0,t

ϕtη
2ϕ+

k dxdt+

∫
Qt0,t

λ(ϕ)∇ϕ+
k · ∇

(
η2ϕ+

k

)
dxdt

=

∫
Qt0,t

uϕ · ∇
(
η2ϕ+

k

)
dxdt+

∫
Qt0,t

κ (x, t) · ∇
(
η2ϕ+

k

)
dxdt . (4.59)

Since we have ∇ϕ+
k ·∇

(
η2ϕ+

k

)
=
∣∣∇ (ηϕ+

k

)∣∣2−|∇η|2 (ϕ+
k

)2
, we obtain from (4.59) and the assump-

tion (A4) that

1

2
sup

s∈(t0,t)

∫
Ω

(
ηϕ+

k

)2
(s) dx+ α0

∫
Qt0,t

∣∣∇ (ηϕ+
k

)∣∣2 dxdt
≤ 1

2

∫
Ω

(
ηϕ+

k

)2
(t0) dx+

∫
Qt0,t

(
ϕ+
k

)2 |ηηt| dxdt
+ λ∞

∫
Qt0,t

(
ϕ+
k

)2 |∇η|2 dxdt+

∫
Qt0,t

uϕ · ∇
(
η2ϕ+

k

)
dxdt

+

∫
Qt0,t

κ (x, t) · ∇
(
η2ϕ+

k

)
dxdt . (4.60)

The fourth term on the right-hand side of (4.60) can still be estimated in the same fashion as in
[45, Proof of Lemma 3.2], using the fact that u ∈ L4

(
QT ′,T

)
is divergence free. Arguing by the

elementary Hölder’s and Young’s inequalities, we find that∣∣∣∣∣
∫
Qt0,t

uϕ · ∇
(
η2ϕ+

k

)
dxdt

∣∣∣∣∣
≤ 1

4

∥∥ηϕ+
k

∥∥2

L∞(t0,t;H)
+

1

4
α0

∥∥∇ (ηϕ+
k

)∥∥2

L2(Qt0,t)
+ C0

∥∥∇ηϕ+
k

∥∥2

L2(Qt0,t)
, (4.61)
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where C0 > 0 depends on α0 and the L4
(
QT ′,T

)
−norm of u only. For the final term on the

right-hand side of (4.60), we employ Hölder’s and Young’s inequalities again to deduce that∣∣∣∣∣
∫
Qt0,t

κ (x, t) · ∇
(
η2ϕ+

k

)
dxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫
Qt0,t

(
κ (x, t) · ϕ+

k η∇η + ηκ (x, t) · ∇
(
ηϕ+

k

))
dxdt

∣∣∣∣∣
≤ C1

∫
Qt0,t

|η|2 dxdt+
1

2

∫
Qt0,t

(
ϕ+
k

)2 |∇η|2 dxdt
+
α0

4

∫
Qt0,t

∣∣∇ (ηϕ+
k

)∣∣2 dxdt , (4.62)

where C1 > 0 depends only on α0 and the L∞
(
QT ′,T

)
-norm of κ. Inserting the estimates (4.61) and

(4.62) into the right-hand side of (4.60), we infer the existence of a constant C2 = C2 (C0, C1, λ∞) >
0 such that

1

2
sup

s∈(t0,t)

∫
Ω

(
ηϕ+

k

)2
(s) dx+ α0

∫
Qt0,t

∣∣∇ (ηϕ+
k

)∣∣2 dxdt ≤ ∫
Ω

(
ηϕ+

k

)2
(t0) dx

+ C2

(∫
Qt0,t

(
ϕ+
k

)2 |ηηt| dxdt+

∫
Qt0,t

(
ϕ+
k

)2 |∇η|2 dxdt+

∫
Qt0,t

|η|2 dxdt

)
. (4.63)

Arguing in a similar fashion, inequality (4.63) also holds with ϕ replaced by −ϕ. In particular,
these inequalities imply that ϕ is an element of the class B2

(
QT ′,T , 1, γ, 4, 1, 1

)
in the sense of

[40, Chapter II, Section 7 ], for some γ = γ (C2), cf. inequality (7.5) of [40, Chapter II, Section
7, Remark 7.2]. Therefore, on account of [40, Chapter II, Section 7, Theorem 7.1], the Hölder
continuity of ϕ follows. This ends the proof. �

The approximation argument that can be employed to show that

u ∈ L∞(0, T ;Vdiv) ∩ L2(0, T ;H2(Ω)2)

is the same as the one of [20, Proof of Theorem 5, Step 3], to which we refer for the details. We
briefly recall the main points:

(a) ϕ is suitably mollified in the viscosity term of the Navier-Stokes equation only, namely, the
following problem is considered:

ut − 2div (ν(ϕδ)Du) + (u · ∇)u+∇π = (−K ∗ ϕ)∇ϕ+ v , (4.64)

div(uδ) = 0 , (4.65)

with initial condition uδ(0) = u0 and no-slip boundary condition. Notice that, owing to the
bound |ϕ| ≤ 1, the approximation ϕδ of [20, Proof of Theorem 5, Step 3] satisfies |ϕδ| ≤ 1;

(b) The result of [1, Theorem 8] is then applied to get a strong local in time solution uδ to
(4.64)-(4.65), such that

uδ ∈ H1(0, Tδ;Gdiv) ∩ L2(0, Tδ;H
2(Ω)2) ∩ L∞(0, Tδ;Vdiv) ,

for some Tδ ≤ T ;
(c) Thanks to Lemma 4.2, we have ν(ϕδ) ∈ Cγ,γ/2(Ω × [0, T ]), for some 0 < γ ≤ min{α, β},

and this allows us to apply Proposition 4.1 to (4.57)-(4.58) (written with uδ and ϕδ in place
of u and ϕ, respectively). Arguing as in [20, Proof of Theorem 5, Step 2], we test the
Navier-Stokes equations (4.64) by ∂tuδ. It is then easy to deduce a differential inequality of
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the form

d

dt

∫
Ω
ν(ϕδ)|Duδ|2 +

1

8
‖∂tuδ‖2 ≤ C

(
‖lδ‖2 + ‖v‖2 + ‖∇ϕδ‖

2
)

+ C(‖uδ‖2‖∇uδ‖2 + ‖∇ϕδ‖
4
L4 + ‖∂tϕδ‖

2)‖Duδ‖2, (4.66)

where

lδ := −(K ∗ ϕδ)∇ϕδ + v .

We recall here below the main arguments of [20, Proof of Theorem 5, Step 2].
• One can exploit (4.66), assumption (V) and the improved regularity for ϕ obtained

in Step 1, as well as the fact that we have ϕ ∈ L4(0, T ;W 1,4(Ω)). These regular-
ity properties yield that ∂tϕδ is bounded in L2(0, T ;H) and that ϕδ is bounded in
L4(0, T ;W 1,4(Ω)) uniformly with respect to δ.
• We can exploit the uniform with respect to δ bound of uδ in the space L∞(0, T ;Gdiv)∩
L2(0, T ;Vdiv), which stems from the energy identity obtained by testing (4.64) by uδ
in Gdiv, and the fact that u0 ∈ Vdiv.
• Using Gronwall’s lemma and Proposition 4.1, we can prove that uδ is bounded in
L∞(0, Tδ;Vdiv) ∩ H1(0, Tδ;Gdiv) uniformly with respect to δ, and, by comparison in
(4.64), that uδ is uniformly bounded in L2(0, Tδ;H

2(Ω)2). These estimates entail, in
particular, that uδ can be extended to any time interval (0, T ), for all T > 0;

(d) The passage to the limit in (4.64)-(4.65), as δ → 0, is performed, by employing compactness
arguments and the strong convergence ϕδ(t)→ ϕ in V , for almost any t ∈ (0, T ). This gives
a strong solution ũ to the same problem solved by the weak solution u. Finally, the limit
velocity field satisfies ũ = u, on account of the uniqueness for the Navier-Stokes equation
with a given (nonconstant) viscosity. Therefore, the existence of a strong solution satisfying
(3.9) and (3.10) is proved. The uniqueness of this strong solution follows from [20, Theorem
7]. This concludes the proof of the second part of Theorem 3.6.

Step 3. In order to prove the last regularity part in (3.12), the idea is to differentiate (3.1)
with respect to time and to test the resulting equation by ϕt. To make the argument rigorous, we
employ the same time-discretization scheme of Step 1, taking the improved regularity for u (cf.
Step 2) into account. Therefore, for k = 1, . . . , N − 1, we consider problem (4.9)-(4.10) (where,
in (4.9), the discrete time derivative (ϕk+1 − ϕk)/τ is made explicit) at step k and at step k − 1.
Taking the difference between the two equations (4.9) written for these steps, testing the resulting
identity by (ϕk+1−ϕk)/τ , and summing over k = 1, . . . , n, with n ≤ N − 1, we obtain the identity

n∑
k=1

(ϕk+1 − ϕk
τ

−
ϕk − ϕk−1

τ
,
ϕk+1 − ϕk

τ

)
= −

n∑
k=1

(
∇
(
B(ϕk+1)−B(ϕk)

)
,∇
(ϕk+1 − ϕk

τ

))
−

n∑
k=1

(
Uk · ∇ϕk+1 −Uk−1 · ∇ϕk ,

ϕk+1 − ϕk
τ

)
+

n∑
k=1

(
m(ϕk)

(
∇K ∗Q(ϕk)

)
−m(ϕk−1)

(
∇K ∗Q(ϕk−1)

)
,∇
(ϕk+1 − ϕk

τ

))
, (4.67)

where, again, for simplicity of notation, the explicit indication of the parameter ε is omitted.



TWO-DIMENSIONAL NONLOCAL CAHN-HILLIARD-NAVIER-STOKES SYSTEMS 23

Let us now estimate the terms on the right-hand side of (4.67). As far as the first term is
concerned, we obtain that

n∑
k=1

(
∇
(
B(ϕk+1)−B(ϕk)

)
,∇
(ϕk+1 − ϕk

τ

))
(4.68)

= τ
n∑
k=1

(
λ(ϕk+1)∇

(ϕk+1 − ϕk
τ

)
,∇
(ϕk+1 − ϕk

τ

))
+

n∑
k=1

((
λ(ϕk+1)− λ(ϕk)

)
∇ϕk ,∇

(ϕk+1 − ϕk
τ

))
≥ 1

2
α0τ

n∑
k=1

∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥2

− τ

2α0

n∑
k=1

∥∥∥λ(ϕk+1)− λ(ϕk)

τ
∇ϕk

∥∥∥2
.

On the other hand, in light of (4.8), (4.31) and the fact that ∇B (ϕ) = λ (ϕ)∇ϕ, we have that

∥∥∥λ(ϕk+1)− λ(ϕk)

τ
∇ϕk

∥∥∥2

≤ λ ′∞
2
∥∥∥ϕk+1 − ϕk

τ

∥∥∥2

L4(Ω)
‖∇ϕk‖2L4(Ω)2

≤ C
(∥∥∥ϕk+1 − ϕk

τ

∥∥∥2
+
∥∥∥ϕk+1 − ϕk

τ

∥∥∥
×
∥∥∥∇(ϕk+1 − ϕk

τ

)∥∥∥)∥∥∥∇B(ϕk)

λ(ϕk)

∥∥∥2

L4(Ω)2
(4.69)

≤ α0

2

∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥2
(4.70)

+ C‖B(ϕk)‖2H2(Ω)

∥∥∥ϕk+1 − ϕk
τ

∥∥∥2
+ C

∥∥∥ϕk+1 − ϕk
τ

∥∥∥2
.

Therefore, we conclude the estimate

n∑
k=1

(
∇
(
B(ϕk+1)−B(ϕk)

)
,∇
(ϕk+1 − ϕk

τ

))
≥ α0τ

4

n∑
k=1

∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥2

− Cτ
n∑
k=1

‖B(ϕk)‖2H2(Ω)

∥∥∥ϕk+1 − ϕk
τ

∥∥∥2

− C τ
n∑
k=1

∥∥∥ϕk+1 − ϕk
τ

∥∥∥2
. (4.71)
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Regarding the second term on the right-hand side of (4.67), we have

n∑
k=1

(
Uk · ∇ϕk+1 −Uk−1 · ∇ϕk ,

ϕk+1 − ϕk
τ

)
= τ

n∑
k=1

(Uk −Uk−1

τ
· ∇ϕk ,

ϕk+1 − ϕk
τ

)
≤ τ

n∑
k=1

∥∥∥Uk −Uk−1

τ

∥∥∥∥∥∥ϕk+1 − ϕk
τ

∥∥∥
L4(Ω)

∥∥∥∇B(ϕk)

λ(ϕk)

∥∥∥
L4(Ω)2

≤ τ C
n∑
k=1

∥∥∥Uk −Uk−1

τ

∥∥∥(∥∥∥ϕk+1 − ϕk
τ

∥∥∥
+
∥∥∥ϕk+1 − ϕk

τ

∥∥∥1/2∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥1/2)
‖B(ϕk)‖

1/2
H2(Ω)

≤ δτ
n∑
k=1

∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥2
+ Cδ τ

n∑
k=1

∥∥∥Uk −Uk−1

τ

∥∥∥2

+ Cδ τ

n∑
k=1

‖B(ϕk)‖2H2(Ω)

∥∥∥ϕk+1 − ϕk
τ

∥∥∥2
+ Cδ τ

n∑
k=1

∥∥∥ϕk+1 − ϕk
τ

∥∥∥2
, (4.72)

where δ > 0 will be fixed later. Finally, the last term on the right-hand side of (4.67) is estimated
as follows:

n∑
k=1

(
m(ϕk)

(
∇K ∗Q(ϕk)

)
−m(ϕk−1)

(
∇K ∗Q(ϕk−1)

)
,∇
(ϕk+1 − ϕk

τ

))
≤ (m∞ +m ′∞) b τ

n∑
k=1

∥∥∥ϕk − ϕk−1

τ

∥∥∥∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥
≤ δτ

n∑
k=1

∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥2
+ Cδ τ

n∑
k=1

∥∥∥ϕk − ϕk−1

τ

∥∥∥2
. (4.73)

By applying (4.14) (with (ϕk − ϕk−1)/τ in place of ϕk) to the left-hand side of (4.67), inserting
estimates (4.71)–(4.73) into the right-hand side, choosing δ small enough, and taking (4.31) into
account, we obtain that

1

2

∥∥∥ϕn+1 − ϕn
τ

∥∥∥2
+

1

2

n∑
k=1

∥∥∥ϕk+1 − ϕk
τ

−
ϕk − ϕk−1

τ

∥∥∥2
(4.74)

+
1

8
α0τ

n∑
k=1

∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥2

≤ 1

2

∥∥∥ϕ1 − ϕ0

τ

∥∥∥2
+ C τ

n∑
k=1

‖B(ϕk)‖2H2(Ω)

∥∥∥ϕk+1 − ϕk
τ

∥∥∥2

+ C τ
n∑
k=1

∥∥∥Uk −Uk−1

τ

∥∥∥2
+ C .
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Observe now that we have (cf. (4.24)–(4.29) and (4.31))

τ‖B(ϕk)‖2H2(Ω) ≤
C

τ
‖ϕk − ϕk−1‖2 + Cτ ,

where here the constant C depends on the norm of u in L∞(0, T ;Gdiv)∩L2(0, T ;Vdiv). Therefore,
we can infer from (4.74) that

1

2

∥∥∥ϕn+1 − ϕn
τ

∥∥∥2
+

1

2

n∑
k=1

∥∥∥ϕk+1 − ϕk
τ

−
ϕk − ϕk−1

τ

∥∥∥2

+
1

8
α0τ

n∑
k=1

∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥2

≤ 1

2

∥∥∥ϕ1 − ϕ0

τ

∥∥∥2
+ C

n−1∑
k=0

1

τ
‖ϕk+2 − ϕk+1‖2

∥∥∥ϕk+1 − ϕk
τ

∥∥∥2

+
C

τ

n∑
k=1

‖ϕk+1 − ϕk‖2 + C τ

n∑
k=1

∥∥∥Uk −Uk−1

τ

∥∥∥2
+ C . (4.75)

The delicate point is now the control of the L2-norm of the quotient (ϕ1 − ϕ0)/τ on the right-
hand side. To this goal, let us first point out a remarkable consequence we have from the improved
regularity of the velocity field obtained in Step 2, which concerns the solvability of the incremental-
step problem (4.9)-(4.10). Indeed, for a given ϕk ∈ V , k = 0, . . . , N − 1, let us introduce the
nonlinear operator Bk : D(Bk) ⊂ H → H, defined by

Bkϕ := −∆B(ϕ) +Uk · ∇ϕ+ div
(
m(ϕk)(∇K ∗Q(ϕk))

)
,

D(Bk) :=
{
ϕ ∈ H2(Ω) : ∇B(ϕ) · n = m(ϕk)(∇K ∗Q(ϕk)) · n , a.e. on ∂Ω

}
.

We prove that there exists some τ0 = τ0(u) > 0 such that

‖(ϕ2 − ϕ1) + τ(Bkϕ2 − Bkϕ1)‖ ≥ α0

2λ∞
‖ϕ2 − ϕ1‖ , ∀ϕ1, ϕ2 ∈ D(Bk) , 0 < τ ≤ τ0 . (4.76)

This estimate, in particular, implies that the solution to each incremental-step problem (4.9)-(4.10),
for k = 0, . . . , N − 1, is unique.

In order to show (4.76), we first observe that, for all ϕ1, ϕ2 ∈ D(Bk), we have(
ϕ2 − ϕ1 + τ(Bkϕ2 − Bkϕ1), B(ϕ2)−B(ϕ1)

)
≥ α0‖ϕ2 − ϕ1‖2

+ τ‖∇
(
B(ϕ2)−B(ϕ1)

)
‖2 − τ

(
Uk · (ϕ2 − ϕ1),∇

(
B(ϕ2)−B(ϕ1)

))
. (4.77)

Thanks to the improved regularity (3.10), it holds that

‖Uk‖Vdiv ≤ ‖u‖L∞(0,T ;Vdiv) , ‖Uk‖H2(Ω)2 ≤
1√
τ
‖u‖L2(0,T ;H2(Ω)2) . (4.78)
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Hence, by means of (4.78)2 and by Agmon’s inequality (2.2), the last term on the right-hand side
of (4.77) can be estimated as follows:

τ
∣∣(Uk · (ϕ2 − ϕ1),∇

(
B(ϕ2)−B(ϕ1)

))∣∣
≤ τ‖Uk‖L∞(Ω)2‖ϕ2 − ϕ1‖‖∇

(
B(ϕ2)−B(ϕ1)

)
‖

≤ τ

2
‖∇
(
B(ϕ2)−B(ϕ1)

)
‖2 +

τ

2
Ĉ2

3 ‖Uk‖‖Uk‖H2(Ω)2‖ϕ2 − ϕ1‖2

≤ τ

2
‖∇
(
B(ϕ2)−B(ϕ1)

)
‖2 +

√
τ

2
Ĉ2

3 ‖u‖L∞(0,T ;Gdiv)‖u‖L2(0,T ;H2(Ω)2)‖ϕ2 − ϕ1‖2 . (4.79)

Therefore, taking 0 < τ ≤ τ0 with τ0 given by

τ0 :=
α2

0

Ĉ4
3‖u‖2L∞(0,T ;Gdiv)‖u‖

2
L2(0,T ;H2(Ω)2)

,

the right-hand side of (4.77) can be bounded from below by

α0

2
‖ϕ2 − ϕ1‖2 +

τ

2
‖∇
(
B(ϕ2)−B(ϕ1)

)
‖2 . (4.80)

On the other hand, due to (4.5), we have that(
ϕ2 − ϕ1 + τ(Bkϕ2 − Bkϕ1), B(ϕ2)−B(ϕ1)

)
≤ λ∞‖ϕ2 − ϕ1 + τ(Bkϕ2 − Bkϕ1)‖‖ϕ2 − ϕ1‖

≤ α0

4
‖ϕ2 − ϕ1‖2 +

λ2
∞
α0
‖ϕ2 − ϕ1 + τ(Bkϕ2 − Bkϕ1)‖2 . (4.81)

Hence, from (4.77), (4.80), and (4.81), we get the estimate

λ2
∞
α0
‖ϕ2 − ϕ1 + τ(Bkϕ2 − Bkϕ1)‖2 ≥ α0

4
‖ϕ2 − ϕ1‖2 +

τ

2
‖∇
(
B(ϕ2)−B(ϕ1)

)
‖2 .

This proves the desired claim (4.76). Therefore, for 0 < τ ≤ τ0 and for every k = 0, . . . , N − 1,
the resolvent operator Jk,τ := (I + τBk)−1 is single-valued and Lipschitz continuous from H to H.
Indeed, it holds

‖Jk,τψ2 − Jk,τψ1‖ ≤
2λ∞
α0
‖ψ2 − ψ1‖ , ∀ψ1, ψ2 ∈ H , 0 < τ ≤ τ0 . (4.82)

Notice that, if the first term ϕk on the right-hand side of (4.9) is assumed in H, then the solvability
of problem (4.9)-(4.10) still holds true, arguing as at the beginning of Step 1. Indeed, the nonlinear
operator Ak is the same and we still have gk ∈ V ′.

Let us now go back to the problem of controlling the L2-norm of the quotient (ϕ1 − ϕ0)/τ .
By employing (4.82) for k = 0, using the assumption on ϕ0 which yields that ϕ0 ∈ D(B0), and
assuming that 0 < τ ≤ τ0, we find that∥∥∥ϕ1 − ϕ0

τ

∥∥∥ =
∥∥∥J0,τϕ0 − J0,τ (I + τB0)ϕ0

τ

∥∥∥ (4.83)

≤ 2λ∞
α0
‖B0ϕ0‖

≤ C
(
‖∆B(ϕ0)‖+ ‖u‖L∞(0,T ;Vdiv)‖ϕ0‖H2(Ω) + ‖ϕ0‖V + 1

)
,

where we have also used the first of (4.78).
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Finally, there remains to bound the last summand on the right-hand side of (4.74). To this end,
we can first observe that the following estimate holds true:

‖u(kτ)−Uk‖2 ≤
τ

3

∫ (k+1)τ

kτ
‖ut(s)‖2 ds .

This estimate and a simple computation yield that

1

τ

n∑
k=1

‖Uk −Uk−1‖2 ≤ c‖ut‖2L2(0,T ;Gdiv) , (4.84)

where the constant c > 0 can be given by c = 10/3.
We can now apply the discrete Gronwall’s Lemma to (4.74), taking (4.31), (4.83) and (4.84) into

account, to obtain the estimate∥∥∥ϕn+1 − ϕn
τ

∥∥∥2
+ τ

n∑
k=1

∥∥∥∇(ϕk+1 − ϕk
τ

)∥∥∥2
(4.85)

≤ Q
(
‖ϕ0‖H2(Ω), ‖u‖L∞(0,T ;Vdiv)∩H1(0,T ;Gdiv)

)
.

From this discrete estimate, we get a new bound for the approximate solutions ϕ̂N , ϕN introduced
in Step 1. Namely, we have

‖ϕ̂ ′N‖2L∞(0,T ;H) + ‖ϕ̂ ′N‖2L2(0,T ;V ) ≤ Q
(
‖ϕ0‖H2(Ω), ‖u‖L∞(0,T ;Vdiv)∩H1(0,T ;Gdiv)

)
.

Therefore, in addition to (4.41)-(4.48), we also have, at least for a subsequence, that

ϕ̂ ′N ⇀ ϕt , weakly-star in L∞(0, T ;H) , weakly in L2(0, T ;V ) .

This proves the second part of (3.12). Moreover, since we have (cf. (4.24)-(4.29) and (4.31))

‖B(ϕn+1)‖2H2(Ω) ≤ C
∥∥∥ϕn+1 − ϕn

τ

∥∥∥2
+ C ,

then, thanks to (4.85), we also get the bound

‖B(ϕN )‖L∞(0,T ;H2(Ω)) ≤ Q
(
‖ϕ0‖H2(Ω), ‖u‖L∞(0,T ;Vdiv)∩H1(0,T ;Gdiv)

)
.

This obviously implies that

‖ϕN‖L∞(0,T ;W 1,p(Ω)) + ‖B(ϕN )‖L∞(0,T ;W 1,p(Ω)) + ‖λ(ϕN )‖L∞(0,T ;W 1,p(Ω)) (4.86)

≤ Q
(
‖ϕ0‖H2(Ω), ‖u‖L∞(0,T ;Vdiv)∩H1(0,T ;Gdiv)

)
.

Hence, recalling (4.13) (written in terms of the approximate solutions ϕN ), and using (4.86), we
infer that

‖ϕN‖L∞(0,T ;H2(Ω)) ≤ Q
(
‖ϕ0‖H2(Ω), ‖u‖L∞(0,T ;Vdiv)∩H1(0,T ;Gdiv)

)
. (4.87)

Therefore, at least for a subsequence, we have that

ϕN ⇀ ϕ , weakly-star in L∞(0, T ;H2(Ω)) ,

whence we get the first part of (3.12). The argument to pass to the limit in (4.38)-(4.39), and also
to prove the pointwise bound |ϕ| ≤ 1, is the same as in Step 1 (indeed, here we can even rely on
stronger convergence results). The proof of Theorem 3.6 is finished.

Remark 4.3. It is not known whether a strong solution according to Definition 3.1 also satisfies
equations (1.2)-(1.3) and the related boundary condition in a strong sense. This occurs if we can
guarantee the validity of a strict separation property, namely, the fact that ϕ stays uniformly away
from the pure phases (see, e.g., [38, 39] for a slightly different version of a nonlocal Cahn-Hilliard
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equation). An intermediate situation holds if F ′(ϕ0) ∈ H (see [24, Theorem 3]). In this case, the
weak formulation where µ ∈ L2(0, T ;V ) appears explicitly can be recovered (cf. [24, Definition 1]).

Remark 4.4. If ν is constant, then the argument to get the existence of strong solutions to (1.1)-
(1.5) can be simplified. Indeed, one may exploit the classical regularity result of [46, Theorem
3.10] for the two-dimensional Navier-Stokes system. This was the strategy followed in [23, Proof of
Theorem 2]. Notice first that (1.1) can be rewritten in the form

ut − ν∆u+ (u · ∇)u+∇π̂ = (aϕ−K ∗ ϕ)∇ϕ+ v , (4.88)

where the modified pressure π̂ := π−F (ϕ) has been introduced. Thanks to the regularity properties
of the weak solution (cf., in particular, the bound |ϕ| ≤ 1) and to the assumption on v, we see
that the right-hand side of (4.88) belongs to L2(0, T ;L2(Ω)2). Hence, under the assumption that
u0 ∈ Vdiv, the regularity (3.8) for the velocity field u immediately follows from applying [46,
Theorem 3.10] to (4.88). Once (3.8) is available, we can devise an easier argument in Step 1, by
using (4.22) and the second part of (4.78), to estimate the last term on the right-hand side of (4.18)
as follows:∣∣∣ n∑

k=0

(
Uk · ∇ϕk+1, B(·, ϕk+1)−B(·, ϕk)

)∣∣∣ ≤ α0

4τ

n∑
k=0

‖ϕk+1 − ϕk‖2

+ Cλ∞
2‖u‖2L2(0,T ;H2(Ω)2)

n∑
k=0

‖∇ϕk+1‖2 . (4.89)

This estimate, together with (4.19) and (4.20), still yields a discrete Gronwall’s inequality from
(4.18) (cf. (4.30)) and thus allows to obtain the regularity ϕ ∈ L∞(0, T ;V ), ϕt ∈ L2(0, T ;H).

Notice that the assumption that K ∈W 2,1
loc or that K is admissible is not required in this argument

(only (K) is enough). This regularity assumption on the kernel is needed only in Step 3, in order
to prove that ϕ ∈ L2(0, T ;H2(Ω)) and, provided ϕ0 ∈ H2(Ω) satisfies (3.11), that (3.12) holds.

Remark 4.5. Assume that u0 ∈ Vdiv and that ϕ0 ∈ H2(Ω) satisfies (3.11). By integrating (4.66) in
time, and by passing to the liminf in (4.36), (4.87), we can also prove that there exists a continuous
and nondecreasing function Q : [0,∞)→ [0,+∞) which only depends on the data F , m, K, ν, Ω,
T , u0 and ϕ0, such that

‖u‖L∞([0,T ];Vdiv)∩L2(0,T ;H2(Ω)2) + ‖ut‖L2([0,T ];Gdiv) + ‖ϕ‖L∞([0,T ];H2(Ω)) (4.90)

+ ‖ϕt‖L∞([0,T ];H)∩L2(0,T ;V )

≤ Q
(
‖v‖L2(0,T ;Gdiv)

)
.

Remark 4.6. We point out that the estimates in the proof of Theorem 3.6 rely essentially on:

(a) the boundedness and Lipschitz continuity properties of the nonlinear functions λ, m, given
by (4.5)-(4.8);

(b) the fact that ϕ is bounded (cf. the control of the boundary term in (4.25)).

Therefore, the whole strategy developed in the proof of Theorem 3.6 also applies for other classes of
mobilities and double-well potentials, provided that the previous two points are valid. An example
is given by a nondegenerate mobility and a regular potential defined instead on R, satisfying the
assumptions of [23, Theorem 2]. The boundedness of ϕ follows from a strategy based on a Moser
iteration argument (see [8, Theorem 2.1]). More precisely, in this case the uniform L∞(Ω)-bound
of ϕk+1 (cf. Step I of the proof of Theorem 3.6) will be given below (cf. the proof of Theorem
6.1). Incidentally, we point out that the present strategy is an example of how the argument used
in the proof [23, Theorem 5] can be made rigorous.
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5. Uniform estimates

In this section, we establish some uniform in time regularization estimates. To this aim, we shall
first formally deduce the same kind of higher-order bounds which were derived rigorously in the
context of the time-discretization scheme in the proof of Theorem 3.6. These will be the basis for
constructing uniform in time estimates. As a consequence, we establish a regularity property for
the global attractor of the dynamical system generated by (1.1)–(1.6), the existence of which was
proven in [24]. We point out that the argument of Proposition 5.1 below can be made rigorous
by means of time discretization combined with a discrete variant of the uniform Gronwall’s lemma
(see [43, Lemma 3]). Thus, we proceed formally, just for the sake of brevity.

Proposition 5.1. Suppose that assumptions (K), (V), (M), (A1b), (A4) are satisfied, and

suppose that K ∈ W 2,1
loc (R2) or that K is admissible (d = 2). Let u0 ∈ Gdiv, ϕ0 ∈ V ∩ L∞(Ω)

with F (ϕ0) ∈ L1(Ω) and M(ϕ0) ∈ L1(Ω), where M is defined as in Theorem 2.3. Let also v ∈
L2
tb(0,∞;Gdiv). Then there exists a weak solution [u, ϕ] to system (1.2)–(1.6) such that

u ∈ L∞ (0,∞;Gdiv) ∩ L2
tb (0,∞;Vdiv) , ut ∈ L2

tb

(
0,∞;V ′div

)
, (5.1)

ϕ ∈ L∞(0,∞;V ) ∩ L2
tb(0,∞;H2(Ω)) , ϕt ∈ L2

tb(0,∞;H) . (5.2)

If, in addition, u0 ∈ Vdiv and ϕ0 ∈ V ∩Cβ(Ω) for some β ∈ (0, 1), then the (unique) strong solution
given by Theorem 3.6 satisfies (5.2) and

u ∈ L∞ (0,∞;Vdiv) ∩ L2
tb(0,∞;H2(Ω)2) , ut ∈ L2

tb (0,∞;Gdiv) . (5.3)

Finally, suppose that ϕ0 ∈ H2(Ω) satisfies (3.11). Then the strong solution also enjoys the following
properties:

ϕ ∈ L∞(0,∞;H2(Ω)) , ϕt ∈ L∞(0,∞;H) ∩ L2
tb(0, T ;V ) . (5.4)

Moreover, there exists a constant Γ = Γ(κ), depending on κ ∈ [0, 1], on ‖v‖L2
tb(0,∞;Gdiv) (and on

F , m, K, ν, Ω), such that, for every initial data [u0, ϕ0] ∈ Vdiv × H2(Ω), with ϕ0 satisfying
(3.11), F (ϕ0),M(ϕ0) ∈ L1(Ω) (hence |ϕ0| ≤ 1 almost everywhere in Ω), and |ϕ0| ≤ κ, there exists
a time t1 = t1

(
E(u0, ϕ0)

)
≥ 0, where E(u0, ϕ0) is given by (5.9), such that the strong solution

corresponding to [u0, ϕ0] satisfies the dissipative estimate

‖u(t)‖2Vdiv +

∫ t+1

t
‖u(s)‖2H2(Ω)2 ds+ ‖ϕ(t)‖2H2(Ω) ≤ Γ(k) , ∀t ≥ t1 . (5.5)

Proof. First we observe that, by arguing as in [24, Proof of Proposition 2], from (2.3) we can deduce
the differential inequality

d

dt

(
‖u‖2 + ‖ϕ ‖2

)
+ α0 ‖∇ϕ‖2 + ν1‖∇u‖2 ≤ Ĉ +

1

ν1λ1
‖v‖2 . (5.6)

Moreover, again by arguing as in [24, Proof of Proposition 2] (see also [14, Proof of Corollary 2]),
we infer from (5.6) the dissipative estimate

‖u(t)‖2 + ‖ϕ(t)‖2 ≤
(
‖u0‖2 + ‖ϕ0‖2

)
e−` t + L , ∀t ≥ 0 , (5.7)

where the positive constant L depends on ϕ0 and on ‖v‖L2
tb(0;∞;Gdiv). This, in particular, entails

that u ∈ L∞(0,∞;Gdiv). Let us now integrate (5.6) between t and t+ 1. We get

‖u(t+ 1)‖2 + ‖ϕ(t+ 1) ‖2 + α0

∫ t+1

t
‖∇ϕ(s)‖2ds+ ν1

∫ t+1

t
‖∇u(s)‖2ds

≤ ‖u(t)‖2 + ‖ϕ(t) ‖2 + Ĉ +
1

ν1λ1

∫ t+1

t
‖v(s)‖2ds , ∀t ≥ 0 . (5.8)
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Hence, (5.7) and (5.8) yield that

α0

2

∫ t+1

t
‖∇ϕ(s)‖2ds+

ν1

2

∫ t+1

t
‖∇u(s)‖2ds ≤ E(u0, ϕ0)e−` t + Γ0 , ∀t ≥ 0 ,

where we have set

E(u0, ϕ0) :=
1

2

(
‖u0‖2 + ‖ϕ0‖2

)
, (5.9)

and where Γ0 = Q(κ, ‖v‖L2
tb(0,∞;Gdiv)), with κ ∈ [0, 1] such that |ϕ0| ≤ κ. In particular, this gives

u ∈ L2
tb(R+;Vdiv) , ϕ ∈ L2

tb(R+;V ) .

Moreover, there exists a time t0 = t0
(
E(u0, ϕ0)

)
> 0, which can be given by t0 = 1

` logE(u0, ϕ0),
such that

α0

2

∫ t+1

t
‖∇ϕ(s)‖2ds+

ν1

2

∫ t+1

t
‖∇u(s)‖2ds ≤ Γ0 + 1 , ∀t ≥ t0 . (5.10)

Let us now begin with the higher-order estimates. We test (3.1) by B(ϕ)t = λ(ϕ)ϕt. On account
of (3.3), we obtain the identity

1

2

d

dt
‖∇B(ϕ)‖2 +

∫
Ω
λ(ϕ)ϕ2

t +
(
u · ∇ϕ, λ(ϕ)ϕt

)
=
(
m(ϕ)(∇K ∗ ϕ),∇B(ϕ)t

)
. (5.11)

Observe that

∇B(ϕ)t = λ(ϕ)∇ϕt + λ′(ϕ)∇ϕϕt . (5.12)

The term on the right-hand side of (5.11) can be written as follows:(
m(ϕ)(∇K ∗ ϕ),∇B(ϕ)t

)
=

d

dt

(
m(ϕ)(∇K ∗ ϕ), λ(ϕ)∇ϕ

)
−
(
m′(ϕ)ϕt(∇K ∗ ϕ), λ(ϕ)∇ϕ

)
−
(
m(ϕ)(∇K ∗ ϕt), λ(ϕ)∇ϕ

)
. (5.13)

Therefore, plugging (5.13) in the differential identity (5.11), we get

1

2

dΦ

dt
+

∫
Ω
λ(ϕ)ϕ2

t +
(
u · ∇ϕ, λ(ϕ)ϕt

)
(5.14)

= −
(
m′(ϕ)ϕt(∇K ∗ ϕ), λ(ϕ)∇ϕ

)
−
(
m(ϕ)(∇K ∗ ϕt), λ(ϕ)∇ϕ

)
,

where we have set

Φ := ‖∇B(ϕ)‖2 − 2
(
m(ϕ)(∇K ∗ ϕ), λ(ϕ)∇ϕ

)
.

On account of assumptions (A1), (A4), which ensure that α0 ≤ λ(s) ≤ λ∞ , for all s ∈ [−1, 1] , it
is immediate to see that the right-hand side of (5.14) can be bounded from above by

α0

4
‖ϕt‖2 + Cm,λ,K‖∇ϕ‖2 + Cm,K .

As far as the advective term on the left-hand side of (5.14) is concerned, since ∇B (ϕ) = λ (ϕ)∇ϕ,
we have that

|
(
u · ∇ϕ, λ(ϕ)ϕt

)
| = |(u · ∇B(ϕ), ϕt)|
≤ ‖u‖L4(Ω)2‖∇B (ϕ) ‖L4(Ω)2‖ϕt‖

≤ C‖u‖1/2‖∇u‖1/2‖∇B (ϕ) ‖1/2‖B (ϕ) ‖1/2
H2(Ω)

‖ϕt‖ . (5.15)
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Let us now control the H2-norm of B(ϕ) in terms of the L2-norm of ϕt. To this end, we first
employ elliptic regularity, namely

‖B(ϕ)‖H2(Ω) ≤ C
(
‖∆B(ϕ)‖+ ‖B(ϕ)‖V + ‖∇B(ϕ) · n‖H1/2(∂Ω)

)
. (5.16)

Then we estimate the boundary term on the right-hand side by taking (3.3) into account. Arguing
in a similar way as in the time discrete version (4.25), we find that

‖∇B(ϕ) · n‖H1/2(∂Ω) = ‖m(ϕ)(∇K ∗ ϕ) · n‖H1/2(∂Ω)

≤ ‖m(ϕ)‖L∞(∂Ω)‖(∇K ∗ ϕ) · n‖H1/2(∂Ω) + ‖(∇K ∗ ϕ) · n‖L∞(∂Ω)‖m(ϕ)‖H1/2(∂Ω)

≤ m∞CΩ ‖K ∗ ϕ ‖H2(Ω) + CK,Ωm
′
∞‖ϕ‖H1/2(∂Ω)+CK,Ωm∞|∂Ω|1/21

≤ Cm,K,Ω (‖∇B(ϕ)‖+ 1) , (5.17)

thanks to the fact that |ϕ| ≤ 1 almost everywhere in QT . Therefore, on account of (3.1) and (5.17),
from (5.16) we obtain that

‖B(ϕ)‖H2(Ω) ≤ C (‖∆B(ϕ)‖+ ‖∇B(ϕ)‖+ 1)

≤ C (‖ϕt‖+ ‖u · ∇ϕ‖+ ‖div (m(ϕ)(∇K ∗ ϕ))‖+ ‖∇B (ϕ) ‖+ 1)

≤ C
(
‖ϕt‖+

∥∥∥∥u · 1

λ
∇B(ϕ)

∥∥∥∥+ ‖∇B(ϕ)‖+ 1

)
≤ C

(
‖ϕt‖+ ‖u‖L4(Ω)2 ‖∇B(ϕ)‖L4(Ω)2 + ‖∇B(ϕ)‖+ 1

)
≤ C

(
‖ϕt‖+ ‖u‖1/2 ‖∇u‖1/2 ‖∇B (ϕ) ‖1/2‖B (ϕ) ‖1/2

H2(Ω)
+ ‖∇B (ϕ)‖+ 1

)
. (5.18)

Thanks to Young’s inequality, (5.18) entails the desired estimate

‖B(ϕ)‖H2(Ω) ≤ C (‖ϕt‖+ ‖u‖ ‖∇u‖ ‖∇B(ϕ)‖+ ‖∇B(ϕ)‖+ 1) . (5.19)

Estimating the term in the H2-norm of B in (5.15) by means of (5.19), we get

|
(
u · ∇ϕ, λ(ϕ)ϕt

)
| ≤ α0

4
‖ϕt‖2 + C

(
‖u‖2‖∇u‖2‖∇B(ϕ)‖2+‖∇B(ϕ)‖2 + 1

)
. (5.20)

Therefore, estimating the advective term in (5.14) through (5.20), the other terms as done above,
we are led to the differential inequality

dΦ

dt
+ α0‖ϕt‖2 ≤ Cm,λ,K

(
1 + ‖u‖2‖∇u‖2

) (
1 + ‖∇ϕ‖2

)
. (5.21)

On the other hand, it is easy to see that there are two constants K1,K2 > 0, depending on m, λ
and K, such that

K1

(
‖∇ϕ(t)‖2 − 1

)
≤ Φ(t) ≤ K2

(
‖∇ϕ(t)‖2 + 1

)
. (5.22)

Therefore, on account of (5.10) and the fact that u ∈ L∞(0,∞;Gdiv), by applying the uniform
Gronwall’s Lemma, from (5.21) and (5.22), we can find a time t1 = t0 + 1 such that

‖ϕ(t)‖2V ≤ Γ1(κ) , ∀t ≥ t1 . (5.23)

Moreover, by integrating (5.21) between t and t+ 1, for all t ≥ t1, we also get that

α0

∫ t+1

t
‖ϕt(s)‖2ds ≤ Γ2(κ) , ∀t ≥ t1 . (5.24)

In summary, we have shown that

ϕ ∈ L∞(R+;V ) , ϕt ∈ L2
tb(R+;H) . (5.25)
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We now prove that ϕ ∈ L2
tb(R+;H2(Ω)). First, from (5.10), (5.24), (5.23), and (5.19), we infer that∫ t+1

t
‖B(ϕ(s))‖2H2(Ω) ds ≤ Γ3(κ) , ∀t ≥ t1 , (5.26)

whence B(ϕ) ∈ L2
tb(R+;H2(Ω)). This bound, together with the Gagliardo-Nirenberg inequality

(2.1) and (5.23), implies that (cf. (4.33))∫ t+1

t
‖∇ϕ(s)‖2p/(p−2)

Lp(Ω)2
ds+

∫ t+1

t
‖∇B(ϕ(s))‖2p/(p−2)

Lp(Ω)2
ds+

∫ t+1

t
‖∇λ(ϕ(s))‖2p/(p−2)

Lp(Ω)2
ds

≤ Γ4(κ) , (5.27)

for all t ≥ t1 and 2 < p <∞ . Thus, we have

ϕ, B(ϕ), λ(ϕ) ∈ L2p/(p−2)
tb (R+;W 1,p(Ω)).

Notice that we have used the identity ∇λ(ϕ) = λ′ (ϕ)∇ϕ. As far as the second spatial derivatives
∂2
ijϕ are concerned, recall that we have the identity (cf. (4.13))

∂2
ijϕ =

1

λ(ϕ)
∂2
ijB(ϕ)− 1

λ2(ϕ)
∂iλ(ϕ)∂jB(ϕ). (5.28)

Combining this with (5.26) and (5.27) (when p = 4), we obtain that∫ t+1

t
‖ϕ(s)‖2H2(Ω)ds ≤ Γ5(κ) , ∀t ≥ t1 ,

so that ϕ ∈ L2
tb(R+;H2(Ω)). This concludes the proof of the first part of the theorem.

Let us now assume that u0 ∈ Vdiv and that ϕ0 ∈ V ∩ Cβ(Ω). On account of (5.10), assumption
(V), (5.24) and (5.27) (when p = 4), the application of the uniform Gronwall’s Lemma to (4.66)
gives

‖u(t)‖Vdiv ≤ Γ6(κ) , ∀t ≥ t1 , (5.29)

namely, u ∈ L∞(R+;Vdiv). By integrating (4.66) between t and t + 1, and using Proposition 4.1,
(4.57)-(4.58), it is not difficult to conclude that∫ t+1

t
‖ut(s)‖2ds+

∫ t+1

t
‖u(s)‖2H2(Ω)2ds ≤ Γ7(κ) , ∀t ≥ t1 . (5.30)

Thus, we infer that

ut ∈ L2
tb(R+;Gdiv) and u ∈ L2

tb(R+;H2(Ω)2).

In order to prove (5.4), we take the time derivative of (3.1) and test the resulting equation by ϕt.
By using the boundary condition (3.3), we obtain the following identity:

1

2

d

dt
‖ϕt‖2 + (∇B(ϕ)t,∇ϕt)

= − (ut · ∇ϕ,ϕt) +
(
m ′(ϕ)ϕt (∇K ∗ ϕ) ,∇ϕt

)
+ (m(ϕ) (∇K ∗ ϕt) ,∇ϕt) . (5.31)

Owing to the fact that ∇B (ϕ) = λ (ϕ)∇ϕ, and recalling (4.5), we find that

(∇B(ϕ)t,∇ϕt) ≥ α0‖∇ϕt‖2 +
(
λ′(ϕ)∇ϕϕt,∇ϕt

)
≥ α0

2
‖∇ϕt‖2 −

λ ′∞
2

2α0
‖ϕt∇ϕ‖2 . (5.32)
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As far as the last term in (5.32) is concerned, we have

‖ϕt∇ϕ‖2 ≤ ‖ϕt‖2L4(Ω)‖∇ϕ‖
2
L4(Ω)2

≤ C
(
‖ϕt‖2 + ‖ϕt‖‖∇ϕt‖

) ∥∥λ−1∇B(ϕ)
∥∥2

L4(Ω)2

≤ C
(
‖ϕt‖2 + ‖ϕt‖‖∇ϕt‖

)
‖∇B(ϕ)‖‖B(ϕ)‖H2(Ω)

≤ δ‖∇ϕt‖2 + Cδ‖ϕt‖2‖B(ϕ)‖2H2(Ω) + C‖ϕt‖2 ,

for all δ > 0, where the first of (5.25) has been taken into account, as well as the fact that
B(ϕ) ∈ L∞(0,∞;V ). Hence, combining this estimate with (5.32) and choosing δ > 0 small enough,
we obtain the bound

(∇B(ϕ)t,∇ϕt) ≥
α0

4
‖∇ϕt‖2 − C‖ϕt‖2‖B(ϕ)‖2H2(Ω) − C‖ϕt‖

2 . (5.33)

The H2-norm of B(ϕ) can be expressed in terms of the L2-norm of ϕt by arguing as above (cf.
(5.16)–(5.18)), i.e., by first using elliptic regularity theory and then by estimating the boundary
term, to get (5.19). From (5.19), on account of the improved regularity of the first of (5.25) and
(5.29), we get that

‖B(ϕ)‖H2(Ω) ≤ C (‖ϕt‖+ 1) . (5.34)

Let us now estimate the terms on the right-hand side of (5.31). For the first term, on account of
the first regularity of (5.25) and (5.34), we have

|− (ut · ∇ϕ,ϕt)|

≤ C‖ut‖‖ϕt‖L4(Ω)

∥∥∥∥ 1

λ (ϕ)
∇B(ϕ)

∥∥∥∥
L4(Ω)2

≤ C‖ut‖
(
‖ϕt‖+ ‖ϕt‖

1/2 ‖∇ϕt‖
1/2
)
‖∇B(ϕ)‖1/2 ‖B(ϕ)‖1/2

H2(Ω)

≤ C‖ut‖
(
‖ϕt‖+ ‖ϕt‖

1/2 ‖∇ϕt‖
1/2
)(
‖ϕt‖

1/2 + 1
)

≤ 3δ‖∇ϕt‖2 + Cδ
(
‖ϕt‖4 + ‖ut‖2 + 1

)
. (5.35)

As far as the remaining terms on the right-hand side of (5.31) are concerned, they can simply be
controlled by

δ‖∇ϕt‖2 + Cδ‖ϕt‖2 . (5.36)

Therefore, collecting (5.33)-(5.36) into (5.31), we deduce the differential inequality

d

dt
‖ϕt‖2 +

α0

4
‖∇ϕt‖2 ≤ C

(
‖ϕt‖4 + ‖ϕt‖2 + ‖ut‖2 + 1

)
. (5.37)

Then, using (5.24), (5.30) and the uniform Gronwall’s Lemma, we obtain that

‖ϕt(t)‖2 ≤ Γ8(κ) , ∀t ≥ t1 , (5.38)

whence we have ϕt ∈ L∞(R+;H). By integrating (5.37) between t and t+ 1, for t ≥ t1, we also get∫ t+1

t
‖∇ϕt(s)‖2ds ≤ Γ9(κ) , ∀t ≥ t1 ,

so that ϕt ∈ L2
tb(R+;V ). Finally, we prove that ϕ ∈ L∞(R+;H2(Ω)). First, notice that (5.34) and

(5.38) entail that ‖B(ϕ(t))‖H2(Ω) ≤ Γ10(κ), for all t ≥ t1. Then we have

‖ϕ(t)‖W 1,p(Ω) + ‖B(ϕ(t))‖W 1,p(Ω) + ‖λ(ϕ(t))‖W 1,p(Ω) ≤ Γ11(κ) , ∀t ≥ t1 , (5.39)
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for any p ∈ (2,∞), whence

ϕ, B(ϕ), λ(ϕ) ∈ L∞
(
R+;W 1,p (Ω)

)
.

Therefore, recalling (5.28) and employing (5.39), we deduce that

‖ϕ(t)‖H2(Ω) ≤ Γ12(κ) , ∀t ≥ t1 ,
which is the final desired claim. The proof is complete. �

Remark 5.2. Assume that u0 ∈ Vdiv, ϕ0 ∈ H2(Ω), and that the compatibility condition (3.11) is
satisfied. Moreover, assume also that

(M1b): The mobility satisfies (M) and also m ∈ C2[−1, 1].
(A1t): F ∈ C4(−1, 1) and λ := mF ′′ ∈ C2[−1, 1].

Then the following time continuity properties for the strong solution of Theorem 3.6 hold true:

u ∈ C0([0, T ];Vdiv) , ϕ ∈ C0
(
[0, T ];H2(Ω)

)
∩ C1([0, T ];H) . (5.40)

Let us sketch the argument for proving (5.40), omitting some details. The time continuity of the
velocity field (see the first of (5.40)) is a consequence of the fact that u ∈ Cw([0, T ];Vdiv) and of
the differential identity

1

2

d

dt
‖∇u‖2 −

(
ν(ϕ)∆u, Su

)
− 2
(
ν ′(ϕ)∇ϕ ·Du, Su

)
+ (Bu, Su)

=
(
(−K ∗ ϕ)∇ϕ, Su

)
+ (v, Su) ,

which is deduced by testing (4.57) and (4.58) by Su (recall that S := −P∆ is the Stokes operator,
cf. Section 2). In order to show the second of (5.40) , we first observe that from (5.31), and from
the regularity properties (3.10), (3.9), it is not difficult to see that ‖ϕt(·)‖2 ∈ C0[0, T ]. More-
over, (3.12) implies that ϕ ∈ C0([0, T ];V ). From this, we infer that B(ϕ) ∈ C0([0, T ];V ). Since
ϕ, B(ϕ) ∈ L∞(0, T ;H2(Ω)), we then have ϕ, B(ϕ) ∈ Cw([0, T ];H2(Ω)). Also, recalling that u ∈
C0([0, T ];L4(Ω)) and ∇ϕ ∈ Cw([0, T ];L4(Ω)), we have that u · ∇ϕ ∈ Cw([0, T ];H). It is also easy
to see that div(m(ϕ)(∇K ∗ ϕ)) ∈ C0([0, T ];H). Hence, (3.1) yields ϕt ∈ Cw([0, T ];H). This weak
in time continuity, together with the L2-norm continuity for ϕt, implies that ϕt ∈ C0([0, T ];H). On
the other hand, we also have ϕ ∈ C0([0, T ];Hs(Ω)), for 1 ≤ s < 2, whence ∇ϕ ∈ C0([0, T ];L4(Ω)).
Therefore, u ·∇ϕ ∈ C0([0, T ];H), and, from (3.1) once again, we infer that ∆B(ϕ) ∈ C0([0, T ];H).
We now employ the estimate

‖ϕ2 − ϕ1‖H2(Ω) + ‖B(ϕ2)−B(ϕ1)‖H2(Ω) (5.41)

≤ C‖∆(B(ϕ2)−B(ϕ1))‖+ C‖ϕ1 − ϕ2‖V ,

which requires slightly stronger assumptions than (M) and (A1), that is, (M1b) and (A1t) above.
By means of (5.41), we eventually get that ϕ, B(ϕ) ∈ C0([0, T ];H2(Ω)).

Let us now assume that the forcing function v is time independent, i.e., v ∈ Gdiv. Following [24,
Section 5], for κ ∈ [0, 1] fixed, we introduce the metric space Xκ defined by

Xκ := Gdiv × Yκ ,
with Yκ given by

Yκ :=
{
ϕ ∈ L∞(Ω) : |ϕ| ≤ 1 a.e. in Ω , F (ϕ),M(ϕ) ∈ L1(Ω), |ϕ| ≤ κ

}
. (5.42)

The metric on Xκ is

dXκ(z2, z1) := ‖u2 − u1‖+ ‖ϕ2 − ϕ1‖ ,
for every z1 := [u1, ϕ1] and z2 := [u2, ϕ2] in Xκ.
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Suppose that (K), (V), (M), (A1)-(A4) are satisfied. Then we know that the set Gκ of all weak
solutions to (1.1)–(1.6) from [0,∞) to Xk (cf. Definition 2.2 and Theorem 2.3), corresponding to all
initial data z0 = [u0, ϕ0] ∈ Xκ, is a generalized semiflow on Xκ (in the sense of [6]), which possesses
a (unique) global attractor Aκ (see [24, Section 5]). Notice that in [24, Section 5] the viscosity ν
was assumed to be constant, for simplicity. However, the arguments therein can easily be adapted
also to the case of nonconstant viscosity satisfying (V). We also remark that uniqueness of weak
solutions is not known, in general. However, if ν is constant, then, thanks to the uniqueness result
of [20, Theorem 4] (cf. (2.5)), the generalized semiflow becomes a semigroup of closed operators on
Xκ, and the global attractor is connected.

Assume now that the assumptions of Proposition 5.1 are satisfied. Take z0 ∈ Xκ and consider
a weak solution z := [u, ϕ] ∈ C0([0,∞);Xκ) corresponding to z0. By integrating (5.6) in time
between 0 and τ > 0, we can deduce that, for every τ > 0, there exists some tτ ∈ (0, τ ] such that
z(tτ ) ∈ Vdiv × V . We now consider (5.21) in [tτ ,∞). By integrating this differential inequality
between tτ and t > tτ , we can see that there exists some sτ ∈ (tτ , t] such that ϕt(sτ ) ∈ H. This,
assuming also that u(sτ ) ∈ Vdiv and ϕ(sτ ) ∈ V , owing to (5.19) and (5.28), implies that ϕ(sτ ) ∈
H2(Ω). Moreover, since the boundary condition (3.3) holds almost everywhere on ∂Ω× (0, T ), we
can suppose that (3.11) holds in sτ (i.e., with ϕ0 replaced by ϕ(sτ )). Therefore, we can apply the
last statement of Theorem 3.6 with initial time sτ . Let us then consider the metric space

Wκ := Vdiv ×Zk ,

where

Zκ :=
{
ϕ ∈ H2(Ω) : ∇B(ϕ) · n = m(ϕ)(∇K ∗ ϕ) · n , a.e. on ∂Ω ,

|ϕ| ≤ 1 a.e. in Ω , F (ϕ),M(ϕ) ∈ L1(Ω) , |ϕ| ≤ κ
}
, (5.43)

endowed with the metric

dWκ(z2, z1) := ‖u2 − u1‖Vdiv + ‖ϕ2 − ϕ1‖H2(Ω) , z1, z2 ∈ Wκ .

Then, for every τ > 0, there exists sτ ∈ (0, τ ] such that z(sτ ) ∈ Wκ, and starting from the time
sτ , the weak solution corresponding to z0 becomes a (unique) strong solution z ∈ C0([sτ ,∞);Wκ)
(cf. Remark 5.2). Furthermore, from sτ on, this solution satisfies the dissipative estimate (5.5),
namely, there exists a time t̃1 = t̃1(E(z0)) ≥ sτ such that z satisfies (5.5) for all t ≥ t̃1.

Let us now consider a subset B ⊂ Xk, bounded in the metric of Xk. We can choose τ = 1 for
every z0 ∈ B, and then infer that every weak solution starting from z0 becomes (at some time
s1 ∈ (0, 1], which depends on z0 and on the weak solution considered from z0) a strong solution
satisfying (5.5) for all t ≥ t∗1, with t∗1 = t∗1(R) ≥ 1, where R > 0 is such that dXκ(w,0) ≤ R, for all
w ∈ B. Therefore, we deduce that there exists a time t∗1(B) ≥ 1 such that

z(t) ∈ BWκ

(
Λ(k)

)
, ∀t ≥ t∗1 ,

where Λ(k) := Γ1/2(κ), and where BWκ

(
Λ(k)

)
is the closed ball in Wκ given by

BWκ

(
Λ(k)

)
:= {w ∈ Wκ : dWκ(w,0) ≤ Λ(k)} .

Thanks to the full invariance property of the global attractor Aκ, we immediately deduce that
Aκ ⊂ BWκ

(
Λ(k)

)
. In conclusion, we have proven the following regularity result for the global

attractor.

Theorem 5.3. Let (K), (V), (M), (A1b), (A4) be satisfied, assume that K ∈W 2,1
loc (R2) or that

K is admissible (d = 2), and that v ∈ Gdiv is independent of time. Then the global attractor Ak of
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the generalized semiflow Gk associated with the nonlocal two-phase fluid system (1.1)-(1.6) is such
that

Aκ ⊂ BWκ

(
Λ(k)

)
.

Remark 5.4 (Corrigendum for [23]). Similarly to (3.11) of Theorem 3.6, also in [23, Theorem 2
and Proposition 1] a compatibility condition, associated with the assumption ϕ0 ∈ H2(Ω), must be
required. More precisely, setting µ0 := aϕ0− J ∗ϕ0 +F ′(ϕ0) (in [23], J stands for the convolution
kernel), the missing condition is ∇µ0 · n = 0 almost everywhere on ∂Ω. Consequently, the metric
space Y1

m, for m ≥ 0 fixed, introduced before the result on existence of the global attractor (see
[23, Theorem 3]) must be defined as follows:

Y1
m :=

{
ϕ ∈ H2(Ω) : ∇µ · n = 0 a.e. on ∂Ω , µ = ϕ− J ∗ ϕ+ F ′(ϕ) , |(ϕ, 1)| ≤ m

}
.

This observation also applies to [20, Theorem 5], to the definition of the space Kη in [20, Theorem
10]), and to [25, Theorem 2.3].

6. The convective nonlocal CH equation

The results of the previous sections can essentially be established for the nonlocal Cahn-Hilliard
equation with degenerate mobility and with a prescribed (divergent-free) velocity field u. We shall
consider both the cases d = 2, 3. However, when it comes to the regularity properties for ϕ in
dimension d = 3, the results are not as strong as in the case d = 2 (cf. Remark 6.3).

Theorem 6.1. Suppose that assumptions (K), (M), (A1b), (A4) are satisfied, and suppose

that K ∈ W 2,1
loc (R2) or that K is admissible. Let ϕ0 ∈ V ∩ L∞(Ω) with F (ϕ0) ∈ L1(Ω) and

M(ϕ0) ∈ L1(Ω), where M is defined as in Theorem 2.3. Assume also that u is given and

u ∈ L2r/(r−d)(0, T ;Lrdiv(Ω)d) , d < r ≤ ∞ . (6.1)

Then, for every T > 0, problem (1.2), (1.3), (1.5)2, (1.6)2 admits a strong solution ϕ on [0, T ] such
that

ϕ ∈ L∞(0, T ;V ) ∩H1(0, T ;H) , (6.2)

ϕ ∈ L2(0, T ;H2(Ω)) . (6.3)

This solution is also unique provided that r =∞ when d = 3. If d = 2 and u satisfies the additional
regularity

u ∈ Ls(0, T ;L∞(Ω)2) ∩ L∞(0, T ;Lσ(Ω)2) , s , σ > 2 , ut ∈ L2(0, T ;Gdiv) , (6.4)

and ϕ0 ∈ H2(Ω) satisfies (3.11), then the (unique) strong solution also satisfies

ϕ ∈ L∞(0, T ;H2(Ω)) , ϕt ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) . (6.5)

Proof. Part (a). Since the argument follows the same lines of the time-discretization scheme of
Step 1 and Step 3 in the proof of Theorem 3.6, we only briefly highlight the main points. The
approximate problem (4.1)-(4.2) is considered, and, by applying time-discretization, we are led to
formulate the incremental-step problem (4.9)-(4.10).

In view of (6.1), the bootstrap argument to prove that, for ϕ0 ∈ V , the solution to this problem
satisfies (ϕ1, . . . , ϕN ) ∈ H2(Ω)N , is now a bit more delicate. Let us sketch this argument only for
the case d = 3. By comparison in (4.9)-(4.10), we first see that we have ∆B(ϕk+1) ∈ Lp1(Ω), where

p1 = 2r/(r + 2), and ∇B(ϕk+1) · n ∈ H1/2(∂Ω). By elliptic regularity theory, we then infer that

B(ϕk+1) ∈W 2,p1(Ω). Hence, on account of the fact that ∇B(ϕk+1) = λ
(
ϕk+1

)
∇ϕk+1, we further

infer that ∇B(ϕk+1) ∈ W 1,p1(Ω) and ∇ϕk+1 ∈ W 1,p1(Ω). Thus, by Sobolev embedding, we get
an improved regularity for the convective term Uk · ∇ϕk+1, which, by means of elliptic regularity
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again, implies that B(ϕk+1) ∈W 2,p2(Ω), with 1/p2 = 1/p1−1/3+1/r. By repeating this argument
n times, we get B(ϕk+1) ∈ W 2,pn(Ω), where 1/pn+1 = 1/pn − 1/3 + 1/r. This recursive relation
can be made explicit by giving

pn =
p1

1− (n− 1)σp1
, σ :=

1

3
− 1

r
.

Therefore, after n steps, with n big enough, we have pn ≥ 2. The bootstrap argument then leads to
B(ϕk+1) ∈ H2(Ω) such that by (4.13), we also have ϕk+1 ∈ H2(Ω) (actually, one could also push
the regularity for ϕk+1 further; however the H2-regularity is enough for our purpose).

Let us now consider the discrete estimates that can be derived from the incremental-step problem
(4.9)-(4.10). The basic estimate (4.17) still holds. As far as the estimates (4.18)-(4.20) and (4.22)
are concerned, these can be repeated. However, the contribution coming from the convective term
Uk · ∇ϕk+1 in (4.22), instead of being estimated as in (4.23), is now controlled as follows (let us
consider just the case d = 3, and estimate only the main part of this contribution, recalling (4.5)):

τ
n∑
k=0

‖Uk · ∇B(ϕk+1)‖2 ≤ τ
n∑
k=0

‖Uk‖2Lr(Ω)3‖∇B(ϕk+1)‖2
L2r/(r−2)(Ω)3

≤ τ
n∑
k=0

‖Uk‖2Lr(Ω)3‖∇B(ϕk+1)‖2−
6
r ‖∇B(ϕk+1)‖

6
r
V

≤ δτ
n∑
k=0

‖B(ϕk+1)‖2H2(Ω) + Cδ τ
n∑
k=0

‖Uk‖
2r
r−3

Lr(Ω)3
‖∇B(ϕk+1)‖2 , (6.6)

where δ > 0 is to be fixed later. Here, the Gagliardo-Nirenberg inequality has been used. It is easy
to see that

τ
n∑
k=0

‖Uk‖
2r
r−3

Lr(Ω)3
≤ ‖u‖

2r
r−3

L
2r
r−3 (0,T ;Lr(Ω)3)

. (6.7)

Therefore, taking (4.24)-(4.28) into account, from the discrete Gronwall’s Lemma and from (6.1),
(6.7), we can recover estimate (4.31) (the constant Q now depends on the norm of u on the right-
hand side of (6.7)). This allows us to deduce (6.2).

Next, as far as the regularity (6.3) is concerned, let us consider the two cases d = 2, 3 separately.
In the case d = 2, we can argue exactly as in Step 1 in the proof of Theorem 3.6, by using estimate
(4.32), which can now be written in the form

τ

n∑
k=0

‖B(ϕk+1)‖2H2(Ω) ≤ Q
(
‖ϕ0‖V , ‖u‖L2r/(r−d)(0,T ;Lr(Ω)d)

)
, (6.8)

and which is derived from (4.24), combined with (4.25)-(4.28), (4.31), (6.1), (6.6) and (6.7). If d = 3,
the argument requires some further care. The first step is to prove a bound in L4(0, T ;L4(Ω)3) for
the sequence of ∇B(ϕ̄N ), namely,

τ

n∑
k=0

‖∇B(ϕk+1)‖4L4(Ω)3 ≤ Q
(
‖ϕ0‖V , ‖u‖L2r/(r−3)(0,T ;Lr(Ω)3)

)
, n = 0, . . . , N − 1 . (6.9)

This bound is a consequence of (6.8) and of the following Gagliardo-Nirenberg inequality (which
holds for every dimension d, see, e.g., [17, 18, 41])

‖∇B(ϕk+1)‖L4(Ω)3 ≤ C‖B(ϕk+1)‖1/2L∞(Ω)‖B(ϕk+1)‖1/2
H2(Ω)

, (6.10)
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provided that we prove a uniform bound in L∞(Ω) for the time discrete solutions ϕk+1 to the
incremental-step problem (4.9)-(4.10), namely,

sup
0≤k≤n

‖ϕk+1‖L∞(Ω) ≤ C
(
‖ϕ0‖L∞(Ω)

)
, n = 0, . . . , N − 1 . (6.11)

Once we have (6.11), we also find a bound for ∇ϕ̄N and for ∇λ(ϕ̄N ) in L4(0, T ;L4(Ω)3). Moreover,
since we know that ϕk+1 ∈ H2(Ω), then (4.13) holds. From this identity, we deduce the bound for
ϕ̄N in L2(0, T ;H2(Ω)), which yields (6.3).

Part (b). Let us prove (6.11). This is achieved through a Moser-Alikakos iteration argument
performed on (4.9)-(4.10). Let us begin with an elementary identity that can be obtained from
2(a − b)a = a2 − b2 + (a − b)2, by multiplying it by a2, then by multiplying the resulting identity
by a4, and iterating this procedure j ≥ 1 times. We obtain that

(a− b)a2j−1 =
1

2j
a2j − 1

2j
b2
j

+Aj(a, b) , (6.12)

where Aj(a, b) ≥ 0 is some polynomial function of order 2j which we do not write explicitly, since

it is not essential. We now set pj := 2j , multiply (4.9) by ϕ
pj−1
k+1 , integrate over Ω (taking the

boundary condition (4.10) and the incompressibility condition for Uk into account), and sum the
resulting identity over k, for k = 0, . . . , n, with 0 ≤ n ≤ N − 1. By means of (6.12), we easily get
the estimate

1

pj

∫
Ω
ϕ
pj
n+1dx+

4α0

pj p ′j
τ

n∑
k=0

∫
Ω

∣∣∇(ϕpj/2k+1

)∣∣2dx (6.13)

≤ 1

pj

∫
Ω
ϕ
pj
0 dx+ τ

n∑
k=0

(
m(ϕk)(∇K ∗Q(ϕk)),∇(ϕ

pj−1
k+1 )) ,

where p ′j is the conjugate exponent to pj . Let us estimate the term on the right-hand side of (6.13).
We have

τ
∣∣∣ n∑
k=0

(
m(ϕk)(∇K ∗Q(ϕk)),∇(ϕ

pj−1
k+1 )

∣∣∣
≤ α0

pjp ′j
τ

n∑
k=0

∫
Ω
|∇(ϕ

pj/2
k+1 )|2dx+

m2
∞b

2

α0p ′j
pjτ

n∑
k=0

∫
Ω

( 1

p ′j−1

|ϕpj/2k+1 |
2dx+

2

pj

)
. (6.14)

By means of this estimate, and setting ψ
(j)
k := ϕ

pj/2
k , (6.13) yields that∫

Ω
|ψ(j)
n+1|

2dx+
α0

p ′j
τ

n∑
k=0

∫
Ω

∣∣∇ψ(j)
k+1

∣∣2dx (6.15)

≤
∫

Ω
|ψ(j)

0 |
2dx+ Cp2

jτ

n∑
k=0

∫
Ω
|ψ(j)
k+1|

2dx+ Cpj ,

where C > 0 shall henceforth denote some positive constant which may depend on the mobility
m, and on K, α0, Ω and T , but are independent of the index j and of N . Using the following 3D
Gagliardo-Nirenberg inequality,

‖ψ(j)
k+1‖

2 ≤ C
(
‖ψ(j)

k+1‖
4/5
L1(Ω)

‖∇ψ(j)
k+1‖

6/5 + ‖ψ(j)
k+1‖

2
L1(Ω)

)
, (6.16)
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and Young’s inequality in (6.15), we obtain that∫
Ω
|ψ(j)
n+1|

2dx+
α0

2p ′j
τ

n∑
k=0

∫
Ω

∣∣∇ψ(j)
k+1

∣∣2dx ≤ ∫
Ω
|ψ(j)

0 |
2dx+ Cp5

jτ
n∑
k=0

‖ψ(j)
k+1‖

2
L1(Ω) .

The last inequality implies that∫
Ω
ϕ
pj
n+1dx

≤
∫

Ω
ϕ
pj
0 dx+ Cp5

jτ
n∑
k=0

(∫
Ω
|ϕk+1|pj−1dx

)2

≤
∫

Ω
ϕ
pj
0 + Cp5

jT max
0≤k≤n

(∫
Ω
|ϕk+1|pj−1dx

)2

≤ Cp5
j

(
max

0≤k≤N−1

{
1,

∫
Ω
|ϕk+1|pj−1dx

})2
, (6.17)

where we have used the fact that ‖ϕ0‖L∞(Ω) ≤ 1, and where the constant C > 0 depends on
‖ϕ0‖L∞(Ω). Setting

Ej := max
0≤k≤N−1

{
1,

∫
Ω
|ϕk+1|pjdx

}
, ∀j ≥ 0 ,

we obtain from (6.17) the recursive relation

Ej ≤ C p5
jE

2
j−1 , j ≥ 1 ,

so that

Ej ≤ C
∑j−1
l=0 2l

j−1∏
l=0

p5·2l
j−l E

2j

0 .

Consequently,

max
0≤k≤N−1

‖ϕk+1‖Lpj (Ω) ≤ C2
5
∑j
`=1

`

2` E0 (6.18)

≤ C max
0≤k≤N−1

{
1,

∫
Ω
|ϕk+1|dx

}
≤ C

(
‖ϕ0‖L∞(Ω)

)
,

where (4.17) has been taken into account in the last estimate. Letting j →∞, and using the fact
that the constant C depends neither on the index j nor on N , we conclude (6.11) from (6.18).

Part (c). We now prove uniqueness of the strong solution satisfying (6.2)-(6.3). Let us start with
the case d = 2. We take the difference of (3.1) and (3.3), written for two solutions, and multiply
the resulting identity by ϕ := ϕ2 − ϕ1 in H. We then get

1

2

d

dt
‖ϕ‖2 +

(
∇(B(ϕ2)−B(ϕ1)),∇ϕ

)
(6.19)

=
(
(m(ϕ2)−m(ϕ1))(∇K ∗ ϕ2),∇ϕ

)
+
(
m(ϕ1)(∇K ∗ ϕ),∇ϕ

)
.

Thanks to (A4), we can deduce that(
∇(B(ϕ2)−B(ϕ1)),∇ϕ

)
≥ α0‖∇ϕ‖2 +

(
(λ(ϕ2)− λ(ϕ1))∇ϕ2,∇ϕ

)
, (6.20)
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and, due to the regularity estimate (6.2) for ϕ2, we have that∣∣((λ(ϕ2)− λ(ϕ1))∇ϕ2,∇ϕ
)∣∣

≤ C(‖ϕ‖+ ‖ϕ‖1/2‖∇ϕ‖1/2)‖∇ϕ2‖1/2‖ϕ2‖
1/2
H2(Ω)

‖∇ϕ‖

≤ α0

6
‖∇ϕ‖2 + C(1 + ‖ϕ2‖2H2(Ω))‖ϕ‖

2 .

The estimates of the two terms on the right-hand side of (6.19) being straightforward, we are led
to

d

dt
‖ϕ‖2 + α0‖∇ϕ‖2 ≤ C(1 + ‖ϕ2‖2H2(Ω))‖ϕ‖

2 .

Uniqueness, and also a continuous dependence estimate, then follow from applying Gronwall’s
lemma, owing once again to (6.3) for ϕ2.

For d = 3, the test by ϕ does not work for uniqueness (the difficulty lies in the estimate of
the term

(
(λ(ϕ2) − λ(ϕ1))∇ϕ2,∇ϕ

)
). The test by (−∆N )−1ϕ works (−∆N being the Laplace

operator with homogeneous Neumann boundary condition), provided that u ∈ L2(0, T ;L∞(Ω)3).
Uniqueness then follows by arguing as in [24, Proposition 4].

Part (d). Let us now prove the last part of the theorem. If d = 2 then we can argue as in Step 3
of the proof of Theorem 3.6. Identity (4.67) and estimates (4.68)-(4.73) can be rewritten in such a
way that the discrete inequality (4.75) holds, where the constant C now depends on the norm of u
on the right-hand side of (6.7). Also the argument for the control of (ϕ1 − ϕ0)/τ in L2 still works,
with only one difference. More precisely, instead of (4.78), we now have, as a consequence of the
first of (6.4),

‖Uk‖L∞(Ω)2 ≤
1

τ1/s
‖u‖Ls(0,T ;L∞(Ω)2) .

Hence, instead of using Agmon’s inequality in (4.79), we deduce that

τ
∣∣(Uk · (ϕ2 − ϕ1),∇

(
B(ϕ2)−B(ϕ1)

))∣∣
≤ τ‖Uk‖L∞(Ω)2‖ϕ2 − ϕ1‖‖∇

(
B(ϕ2)−B(ϕ1)

)
‖

≤ τ

2
‖∇
(
B(ϕ2)−B(ϕ1)

)
‖2 +

1

2
τ1− 2

s ‖u‖2Ls(0,T ;L∞(Ω)2) ‖ϕ2 − ϕ1‖2 .

Since s > 2, we can choose 0 < τ ≤ τ1, with τ1 small enough (and depending on the norm of u on
the right-hand side of (6.7)), and still obtain (4.82), yielding the desired control for the quotient
(ϕ1 − ϕ0)/τ . Owing to this control and to the second property of (6.4) and (4.84), we still get
(4.85) from (4.75) , which allows to obtain the second part of (6.5).

Finally, in order to deduce the first part of (6.5), we can argue as in Step 1 of the proof of
Theorem 3.6, first estimating the H2-norm of B(ϕk+1) by elliptic regularity and then using (4.9) (cf.
(4.24)). The L2-norm of the advective term, which essentially amounts to control Uk · ∇B(ϕk+1),
on account of the first of (6.4), can now be estimated as follows:

‖Uk · ∇B(ϕk+1)‖ ≤ ‖Uk‖Lσ(Ω)2‖∇B(ϕk+1)‖L2σ/(σ−2)(Ω)2

≤ C‖u‖L∞(0,T ;Lσ(Ω)2)‖∇B(ϕk+1)‖1−2/σ‖B(ϕk+1)‖2/σ
H2(Ω)

≤ δ‖B(ϕk+1)‖H2(Ω) + Qδ

(
‖ϕ0‖V , ‖u‖L∞(0,T ;Lσ(Ω)2), ‖u‖L2r/(r−2)(0,T ;Lr(Ω)2)

)
.

Therefore, choosing δ > 0 small enough, we get

‖B(ϕ̄N )‖H2(Ω) ≤ Q
(
‖ϕ0‖V , ‖u‖L∞(0,T ;Lσ(Ω)2)∩L2r/(r−2)(0,T ;Lr(Ω)2)

)(
‖ϕ̂ ′N‖+ 1

)
.



TWO-DIMENSIONAL NONLOCAL CAHN-HILLIARD-NAVIER-STOKES SYSTEMS 41

Owing now to the uniform bound for ϕ̂ ′N ∈ L∞(0, T ;H), the foregoing estimate yields a bound for
B(ϕ̄N ) in L∞(0, T ;H2(Ω)); henceforth, we also have

∇B(ϕ̄N ) , ∇ϕ̄N , ∇λ(ϕ̄N ) ∈ L∞(0, T ;Lp(Ω)2) , for all p <∞ .

Thus, on account of (4.13), we find the desired bound for ϕ̄N in L∞(0, T ;H2(Ω)). Hence, the first
part of (6.5) is proven and the proof of the theorem is finished. �

Remark 6.2. The bound (6.11) obviously also holds for d = 2. Therefore, the argument relying on
(6.10) can be employed, both in Theorem 3.6 and in Theorem 6.1, to deduce the L2(0, T ;H2(Ω))
regularity for ϕ in two dimensions as well. However, we point out that, in the case d = 2, this
regularity can be established without using (6.11).

Remark 6.3. If d = 3 the regularity (6.5) is open unless we assume λ := mF ′′ constant (in
this case (6.4) is still required). It is worth observing that these assumptions are basically the
ones considered in [31]) whose regularity was discussed in [39]. Moreover, if λ is constant then
uniqueness of the strong solution satisfying (6.2)-(6.3) holds for d = 3, also under the more general
condition (6.1) (without the need to assume r = ∞). Indeed, the second term on the right-hand
side of (6.20) vanishes.

Analogous to Proposition 5.1, we may employ the uniform Gronwall’s lemma (or, more precisely,
its discrete variant, see [43, Lemma 3]), to establish uniform in time regularity estimates for the
convective nonlocal Cahn-Hilliard equation with a prescribed (divergent-free) velocity. We can
therefore deduce from Theorem 6.1 another result obtained by working with translation bounded
functions and providing also a dissipative estimate for ϕ (cf. (5.5)). We omit the statement of this
theorem and its proof, since they can be deduced in a straightforward way. Moreover (cf. Remark
6.3), if d = 3 and

mF ′′ = λ0 (λ0 is a positive constant), (6.21)

then it follows that ϕ ∈ L∞(R+;H2(Ω)) and ϕt ∈ L∞(R+;H) ∩ L2
tb(R+;V ), provided ϕ0 ∈ H2(Ω)

satisfies (3.11) and u satisfies (6.4) in the corresponding translation bounded spaces.
As far as the time continuity property of (5.40) is concerned, assume that all the conditions

of Theorem 6.1 and, in addition, suppose that (M1b), (A1b) are fulfilled. By arguing as in
the second part of Remark 5.2, we can easily see that the second of (5.40) still holds, under the
further regularity u ∈ C0([0, T ];Lσ(Ω)d), for some σ > d, and, if d = 3, provided that (6.21)
holds. Suppose now that assumptions (K), (M), (A1)-(A4) are satisfied and that u ∈ L∞(Ω)d is
independent of time. Then we know from [24, Section 6] that (1.2), (1.3), (1.5)2 and (1.6)2 generates
a semigroup of closed operators {Sκ(t)}t≥0, with κ ∈ [0, 1] fixed, on the phase space Yκ, defined as
in (5.42) and endowed with the metric induced by the L2-norm. Namely, ϕ ∈ C0([0,∞),Yκ) given
by ϕ(t) := Sκ(t)ϕ0, for all t ≥ 0, is the (unique) weak solution to (1.2), (1.3), (1.5)2 and (1.6)2

corresponding to ϕ0 ∈ Yκ. According to [24, Theorem 5], this semigroup possesses a connected

global attractor Ãκ.
Assume now, in addition, that the (M1b) and (A1t) are fulfilled, and, for d = 3, that (6.21)

holds. It is then easy to check that the argument devised at the end of Section 5 to prove the
regularity of the global attractor for (1.2)-(1.6), can be adapted to the present situation. This
yields the following result.

Theorem 6.4. Suppose that assumptions (K), (M1b), (A1t), (A4) are satisfied, that K ∈
W 2,1
loc (Rd) or that K is admissible, and that u ∈ L∞(Ω)d, d = 2, 3, is independent of time. More-

over, if d = 3, assume that (6.21) holds. Then the global attractor Ãk of the dynamical system
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Yk, {Sκ(t)}t≥0

)
generated by (1.2), (1.3), (1.5)2, (1.6)2 is such that

Ãκ ⊂ BZκ
(
Λ(k)

)
,

where BZκ
(
Λ(k)

)
is the closed ball in the metric space Zk (cf. (5.43)), endowed with the metric

induced by the H2-norm, having radius Λ(k), for some Λ(k) > 0.
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[39] S.-O. Londen, H. Petzeltová, Regularity and separation from potential barriers for a non-local phase-field system,

J. Math. Anal. Appl. 379 (2011), 724-735.
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