
Two Dimensional Parameterized Matching

Richard Cole∗ Carmit Hazay† Moshe Lewenstein‡ Dekel Tsur§

Abstract

Two equal length strings, or two equal sized two-dimensional texts, parameterize
match (p-match) if there is a one-one mapping (relative to the alphabet) of their
characters. Two-dimensional parameterized matching is the task of finding all m×m
substrings of an n×n text that p-match an m×m pattern. This models searching for
color images with changing of color maps, for example. We present two algorithms that
solve the two-dimensional parameterized matching problem. The time complexities of
our algorithms are O(n2 log2m) and O(n2 + m2.5 polylog(m)). Our algorithms are
faster than the O(n2m log2m log logm) time algorithm for this problem of Amir et
al [2].

A key step in both of our algorithms is to count the number of distinct characters
in every m ×m substring of an n × n string. We show how to solve this problem in
O(n2) time. This result may be of independent interest.

1 Introduction

Let S and S ′ be two equal length strings. We say that S and S ′ parameterize match, or
p-match for short, if there is a bijection π from the alphabet of S to the alphabet of S ′ such
that S ′[i] = π(S[i]) for every index i. In the parameterized matching problem, introduced by
Baker [9,10], given an input comprising a text T and a pattern P , the goal is to find all the
substrings of T of length |P | that p-match P . Baker introduced parameterized matching for
applications that arise in software tools for analyzing source code. Other applications for
parameterized matching arise in image processing and computational biology (see [2]).

An optimal linear time algorithm for the parameterized matching problem when the
alphabet has constant size was given in [9, 10]; an optimal algorithm in the presence of an
unbounded size alphabet was given in [5]. In [9,10], the parameterized matching problem was
solved by constructing parameterized suffix trees, which also allows for online p-matching.

∗New York University, cole@cs.nyu.edu. This work was supported in part by NSF grants IIS-0414763,
CCF-0515127, and CCF-0830516.
†University of Arhus, carmit@cs.au.dk.
‡Bar-Ilan University, moshe@cs.biu.ac.il. ML was supported by an IBM faculty award grant.
§Ben-Gurion University of the Negev, dekelts@cs.bgu.ac.il.

1

The parameterized suffix tree was further explored by Kosaraju [17] and a faster construction
was given by Cole and Hariharan [13].

In [6], approximate parameterized matching was introduced and a solution for binary
alphabets was given. In [16], an O(nk1.5 +mk logm) time algorithm was given for approxi-
mate parameterized matching with k mismatches, and a strong relation was shown between
this problem and finding maximum matchings in bipartite graphs.

One of the interesting problems in web searching is searching for color images, see [4,8,18].
If the colors are fixed, this is exact two-dimensional pattern matching [3]. However, im-
ages can appear under different color maps: this maintains an unchanged partitioning of
pixels by color, but each set of equal-colored pixels may have received a changed color.
Two-dimensional parameterized search is precisely what is needed. An algorithm for two-
dimensional parameterized matching was given in [2]; its time complexity isO(n2m log2m log logm)
for an n× n text and an m×m pattern.

It is an open question whether a linear time algorithm for two-dimensional parameterized
matching exists. In this paper we show two new algorithms for the problem. The first
algorithm is almost linear in the input size, and the second algorithm is linear in the text
size, but with a higher cost for preprocessing the pattern. The first algorithm is a convolution-
based method that uses a novel reduction of the two-dimensional space to one dimension.
The second algorithm is a dueling based solution that uses properties of the two-dimensional
form of the problem. The first algorithm has time complexity O(n2 log2m), and the second
algorithm runs in time O(n2 +m2.5 polylog(m)).

A key step in both of our algorithms is to count the number of distinct characters in
every m×m substring of an n×n string. Amir et al. [4] gave an O(n2 logm) time algorithm
for this problem; we show how to solve it in O(n2) time. This result may be of independent
interest.

The rest of the paper is organized as follows. In Section 2, we start with some definitions
and other preliminaries. Next, in Section 3, we present the O(n2 log2m) time algorithm, and
in Section 4, the O(n2 + m2.5 polylog(m)) algorithm. Finally, in Section 5, we describe the
algorithm for substring character counting.

2 Preliminaries

Let S and S ′ be two-dimensional strings of equal size. We say that there is a function
matching from S to S ′ if there is a mapping f from the alphabet of S to the alphabet of
S ′ such that S ′[x, y] = f(S[x, y]) for all x and y. If the mapping f is one-to-one, we say
that S and S ′ parameterize match, or p-match for short. Note that the definition of function
matching is asymmetric whereas the definition of parameterized matching is symmetric. The
two-dimensional parameterized matching problem is defined as follows:

Input: An n× n text T and an m×m pattern P .
Output: All substrings of T of size m×m that p-match P .

Throughout the paper we assume that the alphabet of T is {1, . . . , n2} and the alphabet

2

of P is {1, . . . ,m2}.

Observation 1. There is a parameterized matching between S and S ′ if and only if there is
a function matching from S to S ′, and the number of distinct characters in S is equal to the
number of distinct characters in S ′.

Observation 1 allows our algorithms to have the following structure. In their first step,
our algorithms create a list L of m×m substrings of T such that:

1. Either there is a (separate) function matching from P to each string in L, or there is
a (separate) function matching from each string in L to P .

2. Every substring of T that p-matches P appears in L.

The second step computes the number of distinct characters in every m × m substring of
T . The strings in L that have the same number of distinct characters as P are precisely
the substrings of T that p-match P . This stage takes O(n2) time using the algorithm in
Section 5. Consequently, for each of our algorithms, which will be given in Sections 3 and 4
respectively, it suffices to describe the computation of the list L.

The left-to-right/top-to-bottom traversal order of a two-dimensional string is an ordering
of the locations inside the string obtained by traversing the first (topmost) row in left to
right order, then the second row from left to right, and so on. Other traversal orders are
defined analogously.

We let [a, b] × [c, d] denote the set of all pairs (x, y) of integers with a ≤ x ≤ b and
c ≤ y ≤ d. Such a set is called a rectangle. We let [a]× [c, d] denote [a, a]× [c, d] and [a, b]× [c]
denote [a, b]× [c, c]. For a rectangle R define R + (i, j) = {(x+ i, y + j) : (x, y) ∈ R}.

The usual array indexing is used for two-dimensional strings, namely the x coordinate in-
dexes rows, increasing from top to bottom, and the y coordinate indexes columns, increasing
from left to right.

Finally, we describe several exact matching problems, which will be used by our algo-
rithms. In the one-dimensional exact wildcard matching problem, the input is a pattern P
and a text T , both containing wildcard characters. The goal is to find all substrings of T of
length |P | that match P , where a wildcard character can match any character. The exact
wildcard matching problem can be solved using convolutions.

Lemma 1 (Cole and Hariharan [12], Clifford and Clifford [11]). The exact wildcard matching
problem can be solved in O(|T | log |P |) time.

In the two-dimensional exact wildcard matching problem, the pattern and text are two-
dimensional strings.

Lemma 2. The two-dimensional exact wildcard matching problem can be solved in O(|T | log |P |)
time.

Proof. Using standard technique, the two-dimensional problem can be reduced to the one-
dimensional problem, and the lemma follows from Lemma 1.

3

Next, we consider an extension of the previous problem, called two-dimensional exact
wildcard matching with witnesses. The input to this problem is a pattern P and a text T .
The goal is to find for each substring T ′ of T , whose size is the same as P and that doesn’t
match P , a witness to the mismatch, namely, a location (x, y) such that T ′[x, y] does not
match P [x, y].

Lemma 3. The two-dimensional exact wildcard matching with witnesses problem can be
solved in O(|T | polylog |P |) time.

Proof. The theorem follows from combining the algorithm of Alon and Naor [1] (see also [7])
with the algorithm of Lemma 1.

Next, we consider the following problem, which we call region matching with witnesses :
The input are two strings P1 and P2 with wildcard characters, and the goal is to compare
substrings of these strings of equal sizes and find witnesses to the mismatches. We consider
two variants of the problem: In the first variant, P1 and P2 are of size n × n, and the
substrings that are compared are P1[1 . . n− i, 1 . . n− j] and P2[i+ 1 . . n, j + 1 . . n] for all i
and j. In the second variant, P1 is of size (2n− 1)×n and P2 is of size n×m, where m ≤ n.
The substrings that are compared are all substrings of P1 and P2 of size n× n.

Lemma 4. The region matching with witnesses problem can be solved in O(|P2| polylog |P1|)
time.

Proof. The problem can be reduced to the exact wildcard matching with witnesses problem
as follows. For the first variant, construct a string P ′2 of size (2n− 1)× (2n− 1) by adding
n−1 rows and n−1 columns of wildcard characters to P2. More precisely, P ′2[x, y] = P2[x, y]
if x ≤ n and y ≤ n, and otherwise P ′2[x, y] is a wildcard. Now, P1[1 . . n− i, 1 . . n−j] matches
P2[i+ 1 . . n, j + 1 . . n] if and only if P1 matches P ′2[i+ 1 . . i+m, j + 1 . . j +m].

For the second variant, construct a string P ′2 from P2 by adding 2n−2 rows of wildcards,
where n−1 rows are added above the original rows of P2, and n−1 rows are added below the
original rows. The substring P1[i+1 . . i+n, 1 . . n] matches the substring P2[1 . . n, j+1 . . j+n]
if and only if P1 matches P ′2[1 . . n− i, j + 1 . . j + n].

3 An O(n2 log2m) algorithm

In this section we present our first algorithm for solving the two-dimensional parameterized
matching problem. The key idea of this algorithm is to encode the pattern and text by
replacing each character with the “distance” to other occurrences of the same character in
the pattern or text. Using this encoding, the parameterized matching problem is reduced to
exact wildcard matching. This approach was also used in the algorithm for one-dimensional
parameterized matching due to Amir et al [5]. However, the encoding in the two-dimensional
case is much more complex. We will begin this section with a description of the algorithm
of Amir et al. Then, we will give a simple inefficient extension of this approach to two
dimensions. Finally, we will describe our more efficient algorithm.

4

The algorithm of Amir et al. encodes each character of the pattern (or text) by the
distance to the nearest occurrence of the same character to the left, or by 0 if there is no such
occurrence. Except for the first occurrence of each character, a parameterized match in the
original text and pattern corresponds to a standard match in the recoded text and pattern.
The algorithm compares the encoded strings using a variant of the Knuth-Morris-Pratt
algorithm. For our purpose, consider the following less efficient variant of the algorithm.
Encode P and T into strings P2 and T2 as described above, except that a character in P
which has no occurrence of the same character to its left is encoded by φ. Treating φ as a
wildcard, it is now easy to see the following.

Lemma 5. For every substring T ′ of T of length |P |, and for the corresponding substring
T ′2 of T2,

1. If there is a parameterized matching between P and T ′ then there is an exact wildcard
matching between P2 and T ′2.

2. If there is an exact wildcard matching between P2 and T ′2 then there is a function
matching from P to T ′.

Example 1. Let P = abacb and T = yxyxxy. Then, P2 = φφ2φ3 and T2 = 002213. There
is a function matching from P to T [2 . . 6], and an exact wildcard matching between P2 and
T2[2 . . 6].

By Lemma 5, the one-dimensional parameterized matching problem can be solved by
solving the wildcard matching problem between P2 and T2 and computing the number of
distinct characters in P and in every substring of T of length |P |.

A straightforward extension of this algorithm into two dimensions is to encode each
character in the pattern or text using several characters. For each location (x, y) in the
pattern (or text) define 2m − 1 disjoint rectangles R(x,y),−(m−1), R(x,y),−(m−2), . . . , R(x,y),m−1,
where R(x,y),0 = [x] × [1, y − 1], and for i 6= 0, R(x,y),i = [x + i] × [1, y]. Note that if y = 1
the rectangle R(x,y),0 is empty. A rectangle in the pattern (resp., text) is active if it is non-
empty and all the locations of the rectangle fit inside the pattern (resp., text), namely, the
rectangle is contained in [1,m] × [1,m] (resp., [1, n] × [1, n]). The remaining rectangles are
said to be inactive. Each active rectangle is traversed from right to left so as to identify
the first location (x′, y′), if any, that contains the same character as (x, y). The location
(x′, y′) is called a neighbor of (x, y). The inactive rectangle will not generate neighbors. The
text and pattern are encoded as follows: Each location (x, y) in the pattern is encoded by a
sequence of 2m− 1 characters c1 · · · c2m−1. The character ci is induced by the i-th rectangle
of (x, y). If the i-th rectangle of (x, y) produces a neighbor (x′, y′), then ci is the rank of the
location (x′, y′) in the traversal order of the rectangle. If the i-th rectangle does not produce
a neighbor, then ci = φ. The text is encoded similarly, except that when a rectangle yields
no neighbor, ci = 0. Let P2 and T2 denote the encoded pattern and text. See Figure 1 for
an example.

We now prove that Lemma 5 also holds for the two-dimensional case. We first give some
definitions that will be used in the proof.

5

bb

b

a

a

a

aa

a

aaa

b

b b

b

b

b

b

b

b b

b

b

Figure 1: An example of the simple algorithm for a pattern of size 5×5 (left) and a text of size
8× 8 (right). Assume that in this example, P p-matches T ′ = T [3 . . 7, 2 . . 6] (the substring
T ′ is marked in the figure). The active rectangles for location (4, 4) in P and location
(6, 5) in T are shown (the active rectangles for these locations are R(4,4),−3, . . . , R(4,4),1 and
R(6,5),−4, . . . , R(6,5),2, respectively), and the selected neighbors in the active rectangles are
marked in bold. Location (4, 4) is encoded by φ2φ124φφφ, location (6, 5) is encoded by
125124000, and these two strings match. The neighbors of (4, 4) in P are aligned with the
neighbors of (6, 5) in T .

Definition 1 (linked locations). Two locations (x, y) and (x′, y′) in P (or T) are linked if
there is a series of locations (w0, z0) = (x, y), (w1, z1), (w2, z2), . . . , (wl, zl) = (x′, y′) such that
for all i, either (wi, zi) is a neighbor of (wi+1, zi+1), or (wi+1, zi+1) is a neighbor of (wi, zi)
(or possibly both).

Definition 2 (aligned neighbors). The neighbors of location (x, y) in P are aligned with
the neighbors of location (x + a, y + b) in T if for all i, if the i-th rectangle of (x, y) in P
produces a neighbor (x′, y′) then the i-th rectangle of (x+a, y+ b) in T produces the neighbor
(x′ + a, y′ + b).

Observation 2. Every two locations in P holding the same characters are linked.

Lemma 6. Let T ′ = T [a+ 1 . . a+m, b+ 1 . . b+m] be some substring of T .

1. If P p-matches T ′ then for every location (x, y) in P , the neighbors of (x, y) in P are
aligned with the neighbors of (x+ a, y + b) in T .

2. If for every location (x, y) in P , the neighbors of (x, y) in P are aligned with the
neighbors of (x+ a, y + b) in T , then there is a function matching from P to T ′.

Proof. Part 1 of the observation follows from the construction. To prove Part 2, consider
two locations (x1, y1) and (x2, y2) in P with P [x1, y1] = P [x2, y2]. By Observation 2, (x1, y1)
is linked with (x2, y2) in P . Due to the assumption that the neighbors of a location (x, y)
in P are aligned with the neighbors of (x + a, y + b) in T for every (x, y), it follows that
(x1+a, y1+b) is linked with (x2+a, y2+b) in T . In particular, T [x1+a, y1+b] = T [x2+a, y2+b].
Since this holds for every two locations in P that contain the same character, we conclude
that there is a function matching from P to T ′.

6

b

a

a

b

ba

b

a

b

Figure 2: An example of using rectangles of height 2. The pattern P is shown on left and
the text T on the right. Suppose that P p-matches T [3 . . 7, 2 . . 6]. The rectangles of location
(4, 4) in P are [0, 1]× [1, 4], [2, 3]× [1, 4], [4]× [1, 3], [5, 6]× [1, 4], [7, 8]× [1, 4], where only the
second and third rectangles are active. Location (4, 4) is encoded by φ4φφφ, and location
(6, 5) in T is encoded by 14000. The first rectangle of (4, 4) cannot be active, otherwise
it would generate the neighbor (1, 3). However, the first rectangle of (6, 5) generates the
neighbor (2, 5), and therefore, the neighbors of (4, 4) would not be aligned with the neighbors
of (6, 5).

We note that the converse of Part 1 of the lemma does not hold, namely, if P p-matches
T ′ then the neighbors of a location (x + a, y + b) in T ′ need not be aligned with neighbors
of (x, y) in P . For example, in Figure 1, location (6, 5) in T has a neighbor (4, 1) which has
no corresponding neighbor in P .

The correctness of Lemma 5 now follows directly from Lemma 6. The encoded pattern
P2 and the encoded text T2 have sizes O(m3) and O(mn2), respectively. Thus, by Lemma 2,
solving the wildcard matching problem on P2 and T2 takes O(mn2 logm) time.

How can the above algorithm be improved? Since the time complexity depends on
the number of neighbors chosen for each location, a natural improvement is to replace the
rectangles of height 1 by taller rectangle, say of height 2. Each active rectangle will be
scanned in a top-to-bottom/right-to-left order. Recall that a non-empty rectangle is active
if all the locations of the rectangle fit inside the pattern. This is essential as otherwise
Lemma 6 will not hold (see Figure 2). However, this creates another problem, as two
locations in P holding the same character are not necessarily linked (namely, Observation 2
does not hold), as shown in Figure 3. Note that this happens when the leftmost location
is near the boundary of the pattern. To overcome this problem, we need a better choice of
rectangles that ensures the linked characters property.

Our solution has the following form. Let t = dlog2me. For each location (x, y) in the
pattern we define 4t+ 4 disjoint rectangles. This construction is illustrated in Figure 4. The
first four rectangles comprise row x and column y partitioned at location (x, y), i.e., the
rectangles are [x]× [y + 1,m], [x]× [1, y − 1], [x+ 1,m]× [y], and [1, x− 1]× [y]. Next, we
define t disjoint rectangles R(x,y),0, . . . , R(x,y),t−1 that cover the quadrant below and to the

7

a

a

b

c

Figure 3: An example showing that using rectangles of height 2 does not ensure that locations
holding the same character are linked. In the pattern P (left), the locations (1, 3) and (4, 4)
are not linked as the rectangle of (4, 4) that contains (1, 3) is not active. Thus, the character
of this rectangle is φ. Assuming that the non-shown characters of T ′ = T [3 . . 7, 2 . . 6] are
equal to the corresponding characters of P , the encoded string P2 matches the substring of
T2 corresponding to T ′, while there is no function matching from P to T ′.

right of (x, y). For i = 0, . . . , t− 2,

R(x,y),i = [x+m− 2i+1 + 1, x+m− 2i]× [y + 1,m]

and
R(x,y),t−1 = [x+ 1, x+m− 2t−1]× [y + 1,m].

For the quadrant above and to the left of (x, y) we define the rectangles

S(x,y),i = [x−m+ 2i, x−m+ 2i+1 − 1]× [1, y − 1]

for i = 0, . . . , t− 2, and

S(x,y),t−1 = [x−m+ 2t−1, x− 1]× [1, y − 1].

Analogous rectangles are defined for the remaining two quadrants.
The rectangles of a location (x, y) in the text are defined similarly. The only difference

is that the rectangles that are to the right of column y now extend until column n, and the
rectangle in column y below x now extends to row n. Note that the number of rectangles
and their rows are still defined in terms of m.

We now define the scan order of the rectangles. Each active rectangle is traversed in
a direction away from (x, y) until the first occurrence of P [x, y] is found. More precisely,
the traversal order is top-to-bottom/left-to-right in the rectangles to the right of column y,
top-to-bottom/right-to-left in the rectangles to the left of column y, top-to-bottom in the
rectangle [x+ 1,m]× [y], and bottom-to-top in the rectangle [1, x− 1]× [y].

The following lemma shows that our construction has the linked characters property.

Lemma 7. Let (x, y) and (x′, y′) be two locations in the pattern both containing the same
character. Then these two locations are linked.

8

a

a

a

a

a

a a

aaa

a

a

a

a

a

a

a a

aaa

a

a

a

Figure 4: An example of neighbor selection for a pattern of size 8 × 8 (left) and a text of
size 11 × 11 (right). The neighbors of (3, 4) in P and T are marked in bold. The active
rectangles for location (3, 4) in P and T are shown in the figure. The rectangles for location
(3, 4) in P in the bottom-right quadrant are R(3,4),0 = [10] × [5, 8], R(3,4),1 = [8, 9] × [5, 8],
and R(3,4),2 = [4, 7] × [5, 8]. Only the last rectangle is active. The corresponding rectangles
for location (3, 4) in T are [10]× [5, 12], [8, 9]× [5, 12], and [4, 7]× [5, 12]. All these rectangles
are active. In this example P p-matches T [1 . . 8, 1 . . 8], so by Lemma 6, the neighbors of
(3, 4) in P are aligned with the neighbors of (3, 4) in T .

Proof. Clearly, if x = x′ then there is a series of locations along row x linking the locations
(x, y) and (x′, y′). Similarly, these two locations are linked if y = y′. We now consider the
case that x 6= x′ and y 6= y′. W.l.o.g. suppose that x < x′ and y < y′.

We claim that either (x, y) lies in one of the active rectangles of (x′, y′) or (x′, y′) lies in
one of the active rectangles of (x, y) (or possibly both).

W.l.o.g. suppose that x ≤ m/2 (otherwise the roles of the two locations can be ex-
changed). If (x′, y′) is inside one the active rectangles of (x, y) then the claim holds. Other-
wise, there must be at least one inactive rectangle among R(x,y),0, . . . , R(x,y),t−1. Let R(x,y),j

be the topmost inactive rectangle. As x ≤ m/2, it follows that R(x,y),t−1 is active, so j ≤ t−2.
The location (x′, y′) must be inside R(x,y),j (since the index of the last row of R(x,y),j is larger
than m). As easy calculation shows that (x, y) is inside S(x′,y′),j also.

Now we will show that S(x′,y′),j is active. Since (x′, y′) ∈ R(x,y),j, x
′ ≥ x + m− 2j+1 + 1.

Moreover, the fact that R(x,y),j does not fit inside the pattern implies that x+m− 2j > m,
namely that x > 2j. Thus, x′ > 2j + m − 2j+1 + 1 = m − 2j + 1, so x′ −m + 2j > 1. The
last inequality implies that the rectangle S(x′,y′),j is active. This shows that (x, y) is inside
an active rectangle of (x′, y′).

We have shown that either (x, y) lies in one of the active rectangles of (x′, y′), or (x′, y′)
lies in one of the active rectangles of (x, y). W.l.o.g. suppose that the latter occurs. It need
not be that (x′, y′) is a neighbor of (x, y), however. Nonetheless, by induction on y′ − y, we
show that they are linked. The base case, with y = y′, has already been demonstrated. Let

9

(x′′, y′′) denote the neighbor of (x, y) in the rectangle containing (x′, y′). Then y < y′′ ≤ y′.
By induction, (x′′, y′′) and (x′, y′) are linked and the inductive claim follows.

Using the new neighbor selection scheme, the algorithm constructs strings P2 and T2 as
described above. The sizes of these strings are O(m2 logm) and O(n2 logm), respectively.
Thus, by Lemma 2, the wildcard matching problem on P2 and T2 can be solved in time
O(n2 log2m).

It remains to show how to identify the neighbors. This is readily done in O(m2 log2m)
time in the pattern and O(n2 log2m) time in the text. We describe the approach for the
pattern. The method for the text is the same.

Finding the neighbors in the rectangles [x] × [y + 1,m], [x] × [1, y − 1], [x + 1,m] × [y],
and [1, x− 1]× [y] for all locations (x, y) is done by means of simple scans of the rows and
columns of the pattern.

Next, we describe how to find the neighbors in the remaining rectangles. The idea is
to maintain, for each character c, windows w1, . . . , wt−1 over the pattern. Window wi has
a width of m columns and a height of 2i rows (except for window wt−1 which has height
m−2t−1). For each i, window wi is slid down the pattern, row by row. During the movement
of wi, the occurrences of c inside wi are kept in a balanced search tree in top-to-bottom/left-
to-right order. Let (x, y) be a location in P that contains the character c. Its neighbor in
rectangle R(x,y),i is found when the window wi covers the rows of R(x,y),i, by searching the
binary search tree for wi.

Each search takes O(logm) time. Thus, over all characters and neighbors, the searches
take O(m2 log2m) time. To slide a window one row down entails deleting some character
instances and adding others. This takes time O(logm) per change, and as each charac-
ter instance is added once and deleted once from a window of each size, this takes time
O(m2 log2m) over all characters and windows.

We have shown:

Theorem 8. There is an algorithm for two-dimensional parameterized matching that runs
in time O(n2 log2m) on an n× n text and an m×m pattern.

4 An O(n2 + m2.5 polylog(m)) algorithm

In this section we present another algorithm for parameterized matching which follows the
“duel-and-sweep” paradigm. This paradigm appeared in [3], where it was named “consis-
tency and verification” and was used for two-dimensional exact matching; it is based on the
dueling technique [19,20].

We begin by giving an overview of the “duel-and-sweep” algorithm for two-dimensional
exact matching. The algorithm maintains a list of candidates that initially contains all m×m
substrings of T . The list is pruned in two stages, called the dueling stage and the sweeping
stage, after which the list will contain exactly those substrings of T that match P .

The following notation will be helpful. Tx,y denotes T [x . . x+m− 1, y . . y +m− 1], the
m×m substring of T with top left corner at location (x, y), also called its start location.

10

Consider two overlapping candidate substrings T1 = Tx,y and T2 = Tx+a,y+b, with a ≥ 0.

• If both candidates match P it follows that when P is aligned with itself with offset
(a, b), the overlapping areas in the two copies of P match. In other words, P1 =
P [a+ 1 . .m, b+ 1 . .m] matches P2 = P [1 . .m− a, 1 . .m− b].

• If P1 does not match P2, then T1 and T2 cannot both match P . If T1 matches, P1

matches when aligned with T1’s bottom right corner, and if T2 matches, P2 matches
when aligned with T2’s top left corner.

So if P1 and P2 do not match, at least one of the candidates T1 and T2 can be ruled out.
This is done in constant time using the following process, called dueling.

Let (x′, y′) be a location in P1 such that P1[x
′, y′] 6= P2[x

′, y′]. The location (x′, y′)
is called a witness for (a, b). Let c = T [x + a + x′ − 1, y + b + y′ − 1]. Clearly, either
c = P1[x

′, y′], c = P2[x
′, y′], or neither of these equalities hold, but both equalities cannot

hold. In the first case c 6= P2[x
′, y′] = P [x′, y′], so T2 does not match P . In the second case

c 6= P1[x
′, y′] = P [x′ + a, y′ + b], so T1 does not match P . In the last case, neither T1 nor T2

match P .
In order to perform duels between candidates, the algorithm precomputes a witness table

that contains a witness for every mismatch offset (a, b). After performing all possible duels
between the candidates, the remaining candidates are pairwise consistent. Amir et al. [3]
showed how to perform the duels in O(n2) time. The dueling stage of Amir et al. relies on
a transitivity property of the consistency relation, which follows from the fact that exact
matching is a transitive relation. We note that parameterized matching is also transitive;
this fact allows us to use the dueling stage of Amir et al. in our algorithm.

In the sweeping stage, the algorithm checks for each remaining candidate whether it
matches the pattern. By using the fact that the candidates are pairwise consistent, this
stage too can be implemented in O(n2) time.

As in many pattern matching algorithms, we assume w.l.o.g. that n = 2m. Larger texts
can be cut into overlapping pieces of size 2m× 2m which are handled independently, where
successive pieces overlap in m− 1 rows or columns.

In the next sections we describe how to adapt the “duel-and-sweep” algorithm to two-
dimensional parameterized matching. In Section 4.1 we describe the dueling stage, and in
Section 4.2 we describe the sweeping stage. In Sections 4.3 and 4.4 we describe preprocessing
stages that are required for the sweeping stage and dueling stage, respectively.

4.1 Dueling stage

In this section we describe the dueling stage of our algorithm. In exact matching a witness is
simply a location with a mismatch between the two aligned copies of the pattern. However,
in parameterized matching two locations are needed to rule out a match, as specified in the
following definitions. See figure 5.

11

a

a

a

c

a

a

a

a

b

a

b

a

a

a

c

a

a

a

a

c

a

a

a

a

b

a

b

a

a

a

c

a

a

a

a

c

a

a

a

a

b

a

b

a

a

a

c

a

Figure 5: An example of mismatch offset and witnesses. For the pattern P on the left, the
offset (1, 2) is a mismatch offset. The alignment of P with itself with this offset is shown
on the right. The pair (2, 1), (1, 2) is a type 1 witness for (1, 2) as P [2, 1] = P [1, 2] and
P [3, 3] 6= P [2, 4]. The pair (1, 1), (2, 1) is a type 2 witness for (1, 2).

Definition 3 (mismatch offset). Let P be a pattern of size m × m. An offset (a, b) with
b ≥ 0 is called a mismatch offset of P if when P is aligned with itself with offset (a, b), the
overlapping areas in the two copies of P do not p-match (in other words, if a ≥ 0 then (a, b)
is a mismatch offset if P [1 . .m − a, 1 . .m − b] does not p-match P [a + 1 . .m, b + 1 . .m],
and if a < 0 then (a, b) is a mismatch offset if P [a + 1 . .m, 1 . .m − b] does not p-match
P [1 . .m− a, b+ 1 . .m].)

Definition 4 (witness). Let (a, b) be a mismatch offset of pattern P . A witness for (a, b) is
a pair of locations (x, y), (x′, y′) such that one of the following holds:

1. P [x, y] = P [x′, y′] and P [x+ a, y + b] 6= P [x′ + a, y′ + b].

2. P [x, y] 6= P [x′, y′] and P [x+ a, y + b] = P [x′ + a, y′ + b].

The witness is called a type 1 witness if the first condition holds, and otherwise it is a type 2
witness.

Given a witness table for P , the dueling stage for parameterized matching is performed
by using the dueling algorithm of Amir et al. [3]. In Section 4.4 we explain how to construct
the witness table for P .

4.2 Sweeping stage

After the dueling stage, we are left with a list of candidate locations in T that are pairwise
consistent, namely for every two candidates Tx,y and Tx′,y′ with x ≥ x′, the offset (x−x′, y−y′)
is not a mismatch offset. The goal of the sweeping stage is to check for each candidate Tx,y,
whether there is a function matching from P to Tx,y. Checking one candidate can be trivially
done in O(m2) time, but the number of candidates can be Θ(n2), so in order to obtain O(n2)
time for this stage, we need to design a way to check all candidates in parallel.

The main ideas of this step are as follows. First, we handle each character of the alphabet
separately. That is, for every character c, we check for each candidate Tx,y whether if has
the following property, which we call consistency w.r.t. c: For all locations (x′, y′) inside the

12

candidate (i.e., locations of T inside the rectangle [x, x+m− 1]× [y, y+m− 1]) holding the
character c, the corresponding locations (x′−x+ 1, y′− y+ 1) in P hold the same character.
There is a function matching from P to Tx,y if and only if Tx,y has the consistency property
w.r.t. every character c.

Fix a character c. If we consider a single candidate Tx1,y1 , we can check whether the
candidate has the consistency property w.r.t. c by arbitrarily selecting an ordering of all
locations holding c inside Tx1,y1 , and then for each two consecutive locations (x′1, y

′
1) and

(x′2, y
′
2) in the ordering, check whether the corresponding locations (x′1 − x1 + 1, y′1 − y1 + 1)

and (x′2− x1 + 1, y′2− y1 + 1) in P hold the same character. Now, in order to check whether
another candidate Tx2,y2 has the consistency w.r.t. c property, we need to perform character
equality tests for pairs of locations in P corresponding to pairs of locations holding c inside
Tx2,y2 . If the candidates Tx1,y1 and Tx2,y2 overlap, the equality tests due to pairs inside the
overlapping area are the same (assuming the ordering selected for the locations holding c
in these two candidate are consistent), and thus can be performed only once. In case of an
inequality in one of the tests, both Tx1,y1 and Tx2,y2 can be ruled out.

Now suppose that we want to check all candidates for consistency w.r.t. c. We extend the
idea presented above by using a partition of the text into strips of width m, and ordering all
locations holding c inside a strip according to a left-to-right/top-to-bottom traversal order.
For each two consecutive locations holding c in the strip, we will perform a character equality
test in P , and in case of an inequality, we will rule out the candidates containing the two
locations.

We now formalized the ideas described above.

Definition 5 (strip). Let T be an n×n text. Strip i of T is the rectangle [1, n]× [i, i+m−1].

Definition 6 (predecessor). Let T be an n × n text, S a strip of T , and (x, y) a location
inside S. The predecessor of (x, y) w.r.t. S, if any, holds the same character as T [x, y] and
is the first such location encountered when traversing S in right-to-left/bottom-to-top order
starting from (x, y).

See Figure 6 for an example illustrating the above definitions. A location and its pre-
decessor in T will be called a location-predecessor pair, or a predecessor-location pair if the
predecessor is listed first. Recall that a candidate is an m×m substring of T that survived
the dueling stage. We note that candidate Tx,y is contained in Strip y.

Definition 7 (mismatch pair). Let Tx,y be a candidate. A mismatch pair for Tx,y is a pair
of locations (x1, y1), (x2, y2) contained in Tx,y, such that T [x1, y1] = T [x2, y2] and P [x1− x+
1, y1 − y + 1] 6= P [x2 − x+ 1, y2 − y + 1].

Observation 3. 1. If P p-matches Tx,y then there are no mismatch pairs for Tx,y.

2. If there is no predecessor-location pair w.r.t. Strip y that is a mismatch pair for Tx,y
then there is a function matching from Tx,y to P .

13

a

a

a

a

a

a

a

aa

a

Figure 6: An example for the definition of predecessor. Here m = 4 and n = 8, so Strip 1
of T is the rectangle [1, 8] × [1, 4]. The predecessors w.r.t. Strip 1 of the locations that
contain the character ‘a’ are shown in the figure ((8, 1) is the predecessor of (8, 4), (7, 3) is
the predecessor of (8, 1) etc.).

A surviving candidate is a candidate that wasn’t ruled out previously by the algo-
rithm. By Observation 3, it suffices to check for each surviving candidate Tx,y whether
the predecessor-location pairs it contains (w.r.t. to Strip y) are mismatch pairs for Tx,y.
The candidates produced by the dueling stage are pairwise consistent. Therefore, for each
predecessor-location pair w.r.t. Strip y, the pair either is a mismatch pair for every candidate
(contained in Strip y or in some other strip) that contains the pair, or is a mismatch pair
for no such candidate. Thus, for each predecessor-location pair w.r.t. Strip y it suffices to
check just two characters in P , and if there is a mismatch this rules out all the surviving
candidates containing the pair. By processing the pairs in an appropriate order, on finding a
mismatch it will be enough to rule out the candidates with start location in columns y′ ≥ y
(and, in fact, these will be all the surviving candidates containing the pair).

First, we explain how to compute all predecessor-location pairs. This is done by means
of a sweep across T ’s strips from left to right. For the current strip, for each character value
c, the algorithm maintains a doubly linked list of locations in the current strip than contain
c, ordered by the predecessor relation. Predecessor-location pairs are simply list neighbors.
Computing the predecessor of every location in the first strip takes O(m2) time. Going
from Strip (y − 1) to Strip y creates at most 3n = 6m new predecessor-location pairs of the
following types:

(1) Every location in column y +m− 1 and its predecessor, if any, form a new pair.

(2) Similarly, every location in column y+m−1 and its successor, if any, form a new pair.

(3) The Strip (y − 1) predecessor and successor of a location in column y − 1, if both are
present, may form a new predecessor-location pair.

After a preprocessing step on T that will be described in Section 4.3, all the new predecessor-
location pairs for Strip y are found in O(m) time. Over all strips, this takes O(m2) time.

14

To find mismatch pairs for the current strip, it suffices to check those predecessor-location
pairs which are new (i.e., did not appear in the previous strip), as the old pairs were already
checked in previous iterations. Let (x1, y1), (x2, y2) be a new predecessor-location pair for
Strip y. As noted above, (x1, y1), (x2, y2) is either a mismatch pair for all the candidates
that contain the pair, or for none. Therefore, it suffices to find just one candidate Tx′,y′ that
contains the pair. Then checking whether P [x1−x′+1, y1−y′+1] = P [x2−x′+1, y2−y′+1]
suffices. If these two characters are not equal, then Tx′,y′ cannot be a match, and moreover,
no candidate that contains the pair (x1, y1), (x2, y2) can be a match.

We need to handle two issues: how to find a candidate that contains the pair (x1, y1), (x2, y2),
and in the event of a mismatch, how to rule out the candidates starting in the corresponding
rectangle.

First, we explain how to find a candidate. The following lemma gives the possible start
locations of the candidates that we need to consider when handling some predecessor-location
pair.

Lemma 9. Let (x1, y1), (x2, y2) be a predecessor-location pair in Strip y, which is not a
predecessor-location pair in Strip (y − 1). Let Tx′,y′ be a surviving candidate such that
(x1, y1), (x2, y2) is a mismatch pair for Tx′,y′. Then, (x′, y′) ∈ [x2−m+1, x1]×[y,min(y1, y2)].

Proof. The rectangle of Tx′,y′ is [x′, x′ +m− 1]× [y′, y′ +m− 1]. Therefore, the fact Tx′,y′

contains both (x1, y1) and (x2, y2) implies that (x′, y′) ∈ [max(x1, x2)−m+ 1,min(x1, x2)]×
[max(y1, y2)−m+1,min(y1, y2)]. From the definition of a predecessor-successor pair, x1 ≤ x2,
so [max(x1, x2)−m+ 1,min(x1, x2)] = [x2 −m+ 1, x1].

To finish the proof of the lemma, we argue that y′ ≥ y. For if the pair (x1, y1), (x2, y2)
was created by (1) or (2) above, then max{y1, y2} = y + m − 1 and the claim follows as it
was shown above that y′ ≥ max(y1, y2)−m + 1. If the pair was created by (3) and y′ < y,
then, in Strip (y − 1), at least one of the predecessor-location pairs including (x1, y1) or
(x2, y2) would have been a mismatch pair for candidate Tx′,y′ , which would therefore have
been eliminated as a candidate already.

In order to find a surviving candidate that contains a predecessor-location pair (x1, y1), (x2, y2),
we use Lemma 9. Among all the candidates that survived the dueling stage with start lo-
cations inside the rectangle [x2 − m + 1, 2m] × [y,min(y1, y2)], we find a candidate Tx′,y′

that minimizes x′ (ties are broken arbitrarily). Clearly, if no such candidate exists, or if the
candidate Tx′,y′ exists but does not contain the predecessor-location pair (that is, if x′ > x1),
then there are no candidates for which the pair could be a mismatch pair, and we can con-
tinue to the next predecessor-location pair. Note that Tx′,y′ may have been already ruled
out during the sweeping stage, but we can still use this candidate to check whether the
predecessor-location pair is a mismatch pair for the surviving candidates that contain it.

Next, we describe how to find the candidate Tx′,y′ in constant time. This process uses a
2m×2m array A, where A[i, j] is the smallest integer r ≥ i such that (r, j) is the start location
of a candidate. If there is no such integer then A[i, j] = 2m. The array A is computed at
the beginning of the sweeping stage by scanning the text column by column, from bottom to
top (for the candidates are already at hand and can be associated with their start locations

15

a

a

(a) T

8

8

8

8

8

8

8

8

3

3

3

5

5

8

8

8

2

2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

1

4

4

4

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

(b) The array A

Figure 7: An example for selecting a candidate containing a predecessor-location pair. The
text T is shown in Figure (a), and the start locations of the candidates generated by the
dueling stage are marked with black squares. The array A is shown in Figure (b). Suppose
that the current strip is Strip 2, and the algorithm handles the predecessor-location pair
(4, 4), (5, 5). To find a candidate containing the pair, the algorithm computes the minimum
value in the subrow A[2, 2 . . 4], which is 2. This value corresponds to the candidate T2,3.

in the text). Thus, given a predecessor-location pair (x1, y1), (x2, y2), the candidate (x′, y′)
can be obtained by finding the minimum value in the subrow A[x2−m+ 1, y . . min(y1, y2)].
This amounts to a range minima query [15], so after preprocessing each row of A in O(m)
time per row, the minimum element in a subrow of A can be found in constant time. The
candidate that generates the minimum value is the candidate Tx′,y′ (see Figure 7).

We turn to the problem of eliminating candidates. As discussed above, the algorithm
finds mismatch pairs, and for each mismatch pair (x1, y1), (x2, y2) it eliminates the candidates
that contain this pair. These candidates are precisely the candidates whose start locations
are inside the rectangle [x2 −m+ 1, x1]× [y,min(y1, y2)]. Instead of eliminating candidates
at the time such a rectangle is discovered, the rectangle is added to a list L, and after all
the rectangles are found, a separate stage is used for candidate elimination.

In the candidate elimination stage, the algorithm needs to remove each candidate whose
start location lies in some rectangle in L. Again, the algorithm sweeps across the columns
of T from left to right. It will maintain two vectors B and C, where B[i] (resp., C[i]) is
the number of rectangles in L that intersect the current sweep line, and whose top (resp.,
bottom) row is i. Using these vectors, it is straightforward to compute, for each location on
the sweep line, the number of rectangles in L that contain it, and if the location is contained
in at least one rectangle, to eliminate the corresponding candidate. This takes O(1) time per
location and O(1) time per rectangle. Since there is at most one rectangle per predecessor-
location pair, and there are at most 6m2 such pairs, it follows that the time complexity of
this stage is O(m2).

16

a

a

a

a

a

a

a

aa

a

Figure 8: An example for the definition of left predecessor. Location (6, 5) is the left prede-
cessor of (6, 7), and location (4, 4) is the left predecessor of (6, 5) and (5, 6). Location (4, 8)
does not have a left predecessor.

4.3 Text Preprocessing

In this section, we show how to compute an array of pointers, called left predecessors, that
will be used to maintain the predecessor of every location w.r.t. the current strip (as describe
in Section 4.2). The predecessor and successor pointers for the current strip form a collection
of doubly linked lists, one per character, which are stored in place in T , i.e., each location
holds its predecessor and successor pointers. The left predecessors are used in updating these
lists when moving from Strip (y − 1) to Strip y, as follows. First, each location (x, y − 1) in
column y−1, in top-to bottom order say, is removed from its list by connecting its neighbors.
Second, in top-to-bottom order, each location (x, y + m− 1) is inserted to its correct place
in the list of locations that contain the same character as (x, y + m − 1). If (x, y + m − 1)
has a left predecessor, (x, y + m − 1) is inserted right after its left predecessor; otherwise
(x, y +m− 1) becomes the head of the list.

We now give the definition of left predecessor.

Definition 8 (left predecessor). For a location (x, z) in T with z > m, the left predecessor
of (x, z) is the predecessor of location (x, z) w.r.t. Strip (z −m+ 1).

See Figure 8 for an example of left predecessor. Next, we explain how the algorithm
computes the left predecessor for each location (x, z) in T with z > m. First, for each
character c, it forms a list L1

c of candidate left predecessors (see Figure 9(a)). This consists
of the locations of c in right-to-left/bottom-to-top order except that in each row only the
following locations are kept: the rightmost location containing c in columns 1 to m, together
with those locations containing c in columns m+ 1 to 2m. Next, the algorithm traverses L1

c .
It maintains a second list L2

c which holds locations (x, z) with z > m which were traversed in
L1
c , and for which the left predecessor has not yet been traversed. The order of the locations

in L2
c is according to the traversal order (see Figure 9(b)). Our implementation of this process

uses the following two properties of the L2
c lists.

Lemma 10. If (x, z) and (x′, z′) are two locations in L2
c, where (x, z) precedes (x′, z′) in L2

c,
then x > x′ and z < z′.

17

a

a

a

a

a

a

a

aa

a

(a) L1
a

a

a

a

a

a

a

a

aa

a

(b) L2
a

Figure 9: An example of the algorithm for computing the left predecessor. Figure (a) shows
the list L1

a. Figure (b) shows the list L2
a when the traversal of L1

a has reached location
(4, 8). At this point, out of the 6 traversed locations of L1

a, the locations (8, 4) and (7, 3)
are in columns at most m = 4, and the left predecessor of location (6, 7) has been traversed.
Thus, L2

a contains the remaining 3 locations: (6, 5), (5, 6), and (4, 8). The next step of the
algorithm is to assign (4, 4) as the left predecessor of (6, 5) and (5, 6), and remove (6, 5) and
(5, 6) from L2

a.

Proof. Suppose, for a contradiction, that either x ≤ x′ or z ≥ z′. From the fact that (x, z)
appears before (x′, z′) in the right-to-left/bottom-to-top scan we have that either (1) x = x′

and z > z′, or (2) x > x′ and z ≥ z′. Since |z − z′| < m (this follows from the inequalities
m < z ≤ 2m and m < z′ ≤ 2m), in both cases (x′, z′) is the left predecessor of (x, z). Thus
L2
c cannot contain both (x, z) and (x′, z′), yielding a contradiction.

Lemma 11. Suppose that the traversal of L1
c has reached location (x, z). Let (x1, z1), . . . , (xs, zs)

be the locations in L2
c in list order. The location (x, z) is either the left predecessor of

(x1, z1), . . . , (xf , zf) for some 1 ≤ f ≤ s, the left predecessor of (xg, zg), . . . , (xs, zs) for some
1 < g ≤ s, or the left predecessor of none of these locations.

Proof. There are three cases.

1. If z > zs or if z ≤ z1 −m then (x, z) is the left predecessor of none of the locations in
L2
c .

2. If z1 ≤ z ≤ zs then let g be the minimum integer such that z ≤ zg. Then, (x, z) is the
left predecessor of (xg, zg), . . . , (xs, zs).

3. If neither case 1 nor 2 occurs, then z1 − m + 1 ≤ z < z1. Let f be the maxi-
mum integer such that zf −m + 1 ≤ z. In this case, (x, z) is the left predecessor of
(x1, z1), . . . , (xf , zf).

Lemma 11 leads to the following algorithm for computing left predecessors. Suppose that
currently L2

c = (x1, z1), (x2, z2), . . . , (xs, zs), and that (x, z) is the location being traversed.
Then:

18

Case 1 z < z1. Make (x, z) the left predecessor of all of (x1, z1), . . . , (xf , zf), where f is
the largest index such that zf − z < m. Then remove all of (x1, z1), . . . , (xf , zf) from L2

c .

Case 2 z > zm. Add (x, z) to the right end of L2
c .

Case 3 z1 ≤ z ≤ zm. Make (x, z) the left predecessor of all of (xg, zg), . . . , (xm, zm), where
g is the least index such that z ≤ zg. Then remove all of (xg, zg), . . . , (xm, zm) from L2

c and
finally add (x, z) to the right end of L2

c .

Clearly, the time complexity for computing the left predecessors is O(m2).

4.4 Pattern Preprocessing

In this section we show how to compute the witness table for the pattern, namely how to
compute a witness for every mismatch offset (a, b). The main idea is similar to the algorithm
in Section 3: The algorithm selects neighbors for each location in P and then compare the
neighbors of regions of P by solving exact wildcard matching problems. However, there are
several important aspects in which the algorithm of this section differs from the algorithm
of Section 3. Throughout this section we will discuss these aspects.

To illustrate the main ideas of this stage, we begin by describing an inefficient algorithm
for constructing the witness table. For each location (x, y) in the pattern define 2m − 1
disjoint rectangles R(x,y),−(m−1), R(x,y),−(m−2), . . . , R(x,y),m−1, where R(x,y),0 = [x] × [1, y − 1],
and for i 6= 0, R(x,y),i = [x−m+i]× [1, y]. Each active rectangle is traversed from right to left
and may generate a neighbor. Then create two strings P1 and P2 as follows. The string P1 is
obtained by replacing each location (x, y) in the pattern with a sequence of 2m−1 characters
c1 · · · c2m−1, corresponding to the rectangles of (x, y), as described in Section 3. If the i-th
rectangle does not produce a neighbor, ci = φ. The string P2 is obtained similarly, except
that when an active rectangle yields no neighbor, ci = 0 (note that if the i-th rectangle is
inactive, ci = φ). Now, let (a, b) be some mismatch offset, and suppose that it has at least
one type 1 witness. In this case, the string P ′1 = P1[1 . .m− a, 1 . . (m− b)(2m− 1)] does not
match P ′2 = P2[a + 1 . . a + m, b(2m − 1) + 1 . . (b + m)(2m − 1)]. Moreover, we can find a
witness to the mismatch of P ′1 and P ′2, and obtain from it a witness for the offset (a, b). An
example is given in Figure 10.

What about type 2 witnesses? As shown in Figure 11, if an offset has only type 2
witnesses, the algorithm described above may not find a witness to the offset. Thus, we
need to handle the type 1 and type 2 witnesses separately. Handling type 2 witnesses is
done in an analogous way: For each location (x, y) in the pattern define 2m − 1 disjoint
rectangles R̂(x,y),−(m−1), R̂(x,y),−(m−2), . . . , R̂(x,y),m−1, where R̂(x,y),0 = [x]× [y + 1,m], and for

i 6= 0, R̂(x,y),i = [x−m+ i]× [y,m]. These rectangles are used to construct strings P̂1 and P̂2.

As before, finding mismatches between corresponding substrings of P̂1 and P̂2 and witnesses
to these mismatches yields witnesses for mismatch offsets that have type 2 witnesses.

The algorithm described above defines Θ(m) rectangles for each location in the pattern,
and thus its time complexity is Ω(m3). To reduce the time complexity, we will use “horizon-

19

a

a

a

b

c

a

a

c

a φφφ11 φφ122 φφ131

φ1φ1φ φφφφφ φφ1φφ

11φφφ φφφφφ 132φφ

φφφ11 φφ122 φφ131

φ1φ1φ φ000φ φ010φ

11φφφ 000φφ 132φφ

Figure 10: An example of the simple algorithm for witness computation. The pattern P
is shown on the left, and the strings P1 and P2 are shown on the middle and on the right,
respectively. The offset (1, 1) is a mismatch offset, and the strings P ′1 = P1[1 . . 2, 1 . . 10]
and P ′2 = P2[2 . . 3, 6 . . 15] do not match. A witness to this mismatch is, for example, (1, 9)
as P ′1[1, 9] does not match P ′2[1, 9]. The character P ′1[1, 9] was generated from the rectangle
R(1,2),1, and the value ‘2’ of the character is due to the neighbor (2, 1) selected in this
rectangle. Thus, (1, 2), (2, 1) is a type 1 witness for the offset (1, 1). Other witnesses for the
mismatch of P ′1 and P ′2 are (1, 4) and (2, 2), and each generates a type 1 witness for (1, 1).

a

a

a

a

a

b

a

a

a φφφ11 φφφφφ φφ211

φ1φ1φ φ211φ φ111φ

11φφφ 211φφ 111φφ

φφφ11 φφ000 φφ211

φ1φ1φ φ211φ φ111φ

11φφφ 211φφ 111φφ

Figure 11: An example showing that type 2 witnesses require special handling. In this
example, the offset (1, 1) is a mismatch offset whose witnesses are all of type 2. The substrings
P ′1 = P1[1 . . 2, 1 . . 10] and P ′2 = P2[2 . . 3, 6 . . 15] match.

20

tal” rectangles of height more than one, as in Section 3. We will also use “vertical” rectangles
of width more than one. In order to be able to detect some type 1 witness, we need its two
locations to be linked. As shown in Section 3 (in Figure 3), when using a rectangles scheme
in which the rectangles have heights and widths greater than one, the two locations of a
witness may not necessarily be linked. In the rectangles scheme of this section, which will
be described below, this can occur in two cases: (1) when one location is near the upper left
corner of the pattern, or (2) when the two locations are near the bottom and right bound-
aries of the relevant region of the pattern (the region [1,m− a]× [1,m− b] when computing
a witness for a mismatch offset (a, b)). We will, therefore, use several rectangles schemes,
each designed to find witnesses of different types. We will first describe the easy case which
handles witnesses whose locations do not satisfy one of the two cases above. Such witnesses
are called simple. Afterward, we will show how to handle the non-simple witnesses.

We note that the rectangles scheme of Section 3 does not work here due to the following
differences between the problems.

1. Here we need to find witnesses to mismatches of regions of P of various sizes, whereas
in Section 3 the goal was to find mismatches between corresponding strings of fixed
size m×m.

2. The scheme of Section 3 uses four types of rectangles which we characterize as left,
up, right, and down. The characterization is according to the scan order of the rect-
angle: top-to-bottom/right-to-left, left-to-right/bottom-to-top, top-to-bottom/left-to-
right, and left-to-right/top-to-bottom, respectively. When finding type 1 witnesses, we
can only use left and up rectangles.

We now give a detailed description of the algorithm. Let (a, b) be a mismatch offset.
There are two cases to consider: when a ≥ 0 and when a < 0. In the following, we will
handle the former case. The latter case is symmetrical, and thus omitted. Let l = b

√
mc.

We will assume throughout this section that a < m − 4l and b < m − 4l. At the end of
this section we will show how to handle mismatch offsets (a, b) with either a ≥ m − 4l or
b ≥ m− 4l.

Let Da,b = [1,m − a] × [1,m − b] be the set of locations in the overlap area when P is
aligned with itself with offset (a, b). We partition Da,b into subregions (see Figure 12): Da,b

1 ,
Da,b

3 , Da,b
7 , and Da,b

9 are the l× l squares in the corners of Da,b. Da,b
2 , Da,b

4 , Da,b
6 , and Da,b

8 are
the rectangles of width or height l forming the borders of Da,b excluding the corners, and
Da,b

5 is the remaining part of Da,b. Formally,

Da,b
1 = [1, l]× [1, l],

Da,b
2 = [1, l]× [l + 1,m− b− l],

Da,b
3 = [1, l]× [m− b− l + 1,m− b],

and so on. We define Da,b[i1, i2, . . . , ik] = Da,b
i1
∪Da,b

i2
∪ · · · ∪Da,b

ik
.

We say that a witness w for (a, b) is non-simple if it satisfies one of the following conditions
(see Figure 13):

21

Figure 12: The subsets of Da,b.

Figure 13: The four conditions in the definition of non-simple witness. In each condition,
one of the locations of the witness is in the light gray area, and the other location is in the
dark gray area.

22

1. w is of type 1, one of the locations of w is in Da,b[1], and the other location is in
Da,b[5, 6, 8, 9].

2. w is of type 2, one of the locations of w is in Da,b[9], and the other location is in
Da,b[1, 2, 4, 5].

3. w is of type 1, one of the locations of w is in Da,b[3, 6] and the other location is in
Da,b[7, 8].

4. w is of type 2, one of the locations of w is in Da,b[2, 3] and the other location is in
Da,b[4, 7].

If a witness w does not satisfy any of the above conditions, it is called simple. The algorithm
is comprised of three stages:

1. Find simple witnesses.

2. Find non-simple witnesses that satisfy Conditions 1 or 2 above.

3. Find non-simple witnesses that satisfy Conditions 3 or 4 above.

The three stages of the algorithm are described in the rest of this section. We design each
stage in a way that guarantees that it finds a witness for every mismatch offset that has a
witness of the specified type and no witness for this offset has been found in the previous
stages. We note that the witness found for the offset may not be of the specified type.
Moreover, even if a mismatch offset does not have a witness of the specified type, the stage
may find a witness for the offset.

In the following stages, we will describe only how to find witnesses of type 1, as handling
the witnesses of type 2 is symmetrical.

Stage 1

Stage 1 is based on choosing 4dm
l
e + 4l − 4 neighbors for each location (x, y) in P . Similar

to Section 3, we define rectangles for each location in P , where each rectangle can provide
one neighbor (note that here the rectangles are not disjoint).

For a location (x, y) we define the following rectangles (see Figure 14 for an example).
For i = −dm

l
e, . . . , dm

l
e − 1, let

H1
(x,y),i = [x+ il, x+ (i+ 1)l − 1]× [1, y − 1]

and

V 1
(x,y),i = [1, x− 1]× [y + il, y + (i+ 1)l − 1].

Furthermore, for i = −l + 1, . . . , l − 1, we define H2
(x,y),i = [x + i] × [1, y − 1] and V 2

(x,y),i =

[1, x−1]×[y+i]. Recall that a non-empty rectangle is active if it is contained in [1,m]×[1,m].

23

Figure 14: The active rectangles of location (3, 4) in an 8 × 8 pattern, where l = 2. The
rectangle V 1

(3,4),2 = [1, 2]× [8, 9] is not active as its rightmost column is 9.

Every active rectangle of (x, y) is scanned in a direction away from (x, y), namely, the
scan order of H1

(x,y),i is top-to-bottom/right-to-left, and the scan order of V 1
(x,y),i is left-

to-right/bottom-to-top. The first occurrence of the character T [x, y] in a rectangle is the
neighbor generated by the rectangle.

In Section 3 we gave the definition of linked locations, and our goal was to design rect-
angles ensuring that all locations holding the same character are linked. Here, the linked
locations property does not suffice. To see why, consider some mismatch offset (a, b), and
a type 1 witness (x, y), (x′, y′) with x < m − a − l, x′ = m − a, and y′ < y. Suppose that
(x′, y′) is the neighbor selected in a rectangle H1

(x,y),i, and the last row of this rectangle is

row m − a + 1. Clearly, (x, y) and (x′, y′) are linked. However, the rectangle H1
(x+a,y+b),i

of (x, y) is not active, as its last row is row m + 1. Thus, the corresponding character of
(x′, y′) is φ, and this character matches the character of (x, y) when comparing the respected
substrings of P1 and P2. Therefore, we need a definition of a new property which will be
used instead of the linked locations property.

Definition 9 (Da,b-neighbor). A location (x′, y′) is a Da,b-neighbor of location (x, y) if (x′, y′)
is a neighbor that is generated by an active rectangle of (x, y) that is contained in Da,b.

Definition 10 (Da,b-linked). Two locations (x, y) and (x′, y′) in Da,b are Da,b-linked if there
is a series of locations (w0, z0) = (x, y), (w1, z1), . . . , (wl, zl), (wl+1, zl+1) = (x′, y′) such that
for all i, at least one of the locations (wi, zi) and (wi+1, zi+1) is a Da,b-neighbor of the other
location.

We will shortly show that the rectangles we have defined will be sufficient for obtaining
the desired for Stage 1. In the next stages we will need to define additional rectangles
for locations in P . The definitions of Da,b-neighbor and Da,b-linked will also apply to the
neighbors generated by these rectangles.

While in Section 3 all locations holding the same character were linked, here for each
choice of a and b, only some of the locations are Da,b-linked. This does not cause a problem,
as this stage only needs to find simple witnesses. The following lemma describes the Da,b-
linked locations property.

24

Lemma 12. Let (a, b) be an offset. Let (x, y) and (x′, y′) be two locations inside Da,b con-
taining the same character. Suppose that neither of the following conditions hold

• One of the locations is in Da,b[1] and the other location is in Da,b[5, 6, 8, 9].

• One of the locations is in Da,b[3, 6] and the other location is in Da,b[7, 8].

Then (x, y) and (x′, y′) are Da,b-linked.

Proof. We first claim that at least one case among the following cases must occur.

Case 1 |y − y′| < l.

Case 2 |x− x′| < l.

Case 3 The topmost location among (x, y) and (x′, y′) is in Da,b[2, 5, 8].

Case 4 The leftmost location among (x, y) and (x′, y′) is in Da,b[4, 5, 6].

For a contradiction, suppose that Cases 1–4 do not occur. W.l.o.g. we assume that x > x′,
so (x′, y′) is the topmost location among (x, y) and (x′, y′). Since Case 3 does not occur,
either y′ ≤ l or y′ ≥ m− b− l + 1.

Suppose first that y′ ≤ l. If y ≤ y′ then |y − y′| < l which contradicts the assumption
that Case 1 does not occur. Therefore y > y′, so (x′, y′) is the leftmost location among (x, y)
and (x′, y′). Since Case 4 does not occur, we have that either x′ ≤ l or x′ ≥ m − a − l + 1.
If x′ ≥ m− a− l + 1 then m− a− l + 1 ≤ x′ < x ≤ m− a. Therefore |x− x′| < l, but this
contradicts the assumption that Case 2 does not occur. On the other hand, if x′ ≤ l then
(x′, y′) ∈ Da,b[1]. As we assumed that Cases 1 and 2 do not occur, (x, y) /∈ Da,b[1, 2, 3, 4, 7].
Therefore, (x, y) ∈ Da,b[5, 6, 8, 9] which contradicts an assumption of the lemma.

From the above we conclude that y′ ≥ m− b− l + 1. Moreover, y < y′ otherwise Case 1
occurs. The location (x, y) is the leftmost location among (x, y) and (x′, y′), so either x ≤ l
or x ≥ m − a − l + 1. The former case cannot occur otherwise Case 2 occurs. If the
latter case occurs then from the assumption that Cases 1 and 2 do not occur we obtain that
(x′, y′) ∈ Da,b[3, 6] and (x, y) ∈ Da,b[7, 8] which contradicts an assumption of the lemma.
Therefore, at least one case among Cases 1–4 must occur.

We now show that (x, y) and (x′, y′) are Da,b-linked when Case 1 occurs and when Case 3
occurs. The proof for Cases 2 and 4 is symmetric. W.l.o.g. we assume that x ≥ x′.

Case 1 First, if y = y′ then (x, y) and (x′, y′) are Da,b-linked by a series of locations on
column y (due to the V 2

·,0 rectangles). Moreover, if 0 < |y − y′| < l then we have that
(x′, y′) ∈ V 2

(x,y),y′−y, so the rectangle V 2
(x,y),y′−y generates a Da,b-neighbor (x′′, y′) for (x, y).

From the above, (x′′, y′) is Da,b-linked to (x′, y′) and therefore (x, y), and (x′, y′) are Da,b-
linked.

25

Case 3 We prove the lemma for Case 3 using induction on x − x′. The base of the
induction (when x = x′) was already shown. Suppose now that x > x′. We claim that
(x′, y′) is contained in some rectangle V 1

(x,y),i of (x, y), and this rectangle is contained in Da,b.

The first part of the claim is true since by construction, the V 1
(x,y),· rectangles cover all the

locations of Da,b above m. The second part of the claim is true since l+ 1 ≤ y′ ≤ m− b− l.
Therefore, (x, y) has a Da,b-neighbor (x′′, y′′) with x < x′′ ≤ x′. By induction (x′′, y′′) and
(x′, y′) are Da,b-linked, and therefore (x, y) and (x′, y′) are Da,b-linked.

From Lemma 12 we obtain the following observation.

Observation 4. Let (a, b) be an offset.

1. If (x, y) is a location in Da,b such that the neighbors of (x, y) are not aligned with the
neighbors of (x+ a, y+ b) then (a, b) is a mismatch offset. Moreover, if some rectangle
of (x, y) produces a neighbor (x′, y′) while the corresponding rectangle of (x+ a, y + b)
does not produce the neighbor (x′+ a, y′+ b), then (x, y), (x′, y′) is a type 1 witness for
(a, b).

2. If (a, b) is a mismatch offset and it has a simple type 1 witness, then there is a location
(x, y) in Da,b whose neighbors are not aligned with the neighbors of (x+ a, y + b).

As in Section 3, we transform the problem of comparing the neighbor structures into an
exact matching problem. We define strings P1 and P2 as follows. The string P1 is obtained
from P by replacing each character P [x, y] in P with L = 4dm/le + 4l − 4 characters that
encode the locations of the neighbors of (x, y) relative to (x, y). If a rectangle does not yield
a neighbor then the character for this rectangle is the wildcard character φ. The string P2

is built in the same way, except that the character 0 is used when a rectangle yields no
neighbor. The strings P1 and P2 are both of size m×mL.

After building P1 and P2 the algorithm solves the region matching with witnesses problem
on P1 and P2. The following lemma shows the correctness of Stage 1.

Lemma 13. Let (a, b) be an offset.

1. If P1 does not match P ′2 = P2[a+1 . . a+m, bL+1 . . (b+m)L] then (a, b) is a mismatch
offset. Moreover, a type 1 witness for (a, b) can be obtained from every witness to the
mismatch of P1 and P ′2 in constant time.

2. If (a, b) has a simple type 1 witness then P1 does not match P ′2.

Proof. The lemma follows from Observation 4.

The bottleneck in the time complexity of Stage 1 is the time for solving the region match-
ing with witnesses problem. By Lemma 4, the time complexity of this step isO(|P2| polylog(m)) =
O((m

3

l
+ l) polylog(m)) = O(m5/2 polylog(m)).

26

Figure 15: The three substages of Stage 2. Each substage finds witnesses in which one of
the locations of the witness is in the light gray area, and the other location is in the dark
gray area.

Stage 2

Recall that the goal of Stage 2 is to find type 1 witnesses w for mismatch offsets (a, b) (which
do not have simple witnesses) such that one location of w is in Da,b[1] and the other location
is in Da,b[5, 6, 8, 9] = [l+ 1,m− a]× [l+ 1,m− b] (this stage also finds type 2 witnesses but
we omit the details). Stage 2 is composed of three substages (see Figure 15).

1. Stage 2a finds witnesses w such that one location of w is in Da,b[1], and the other
location is in [m− a− 3l + 1,m− a]× [m− b− 3l + 1,m− b].

2. Stage 2b finds witnesses w such that one location of w is in Da,b[1] and the other
location is in [l + 1,m− a]× [l + 1,m− b− 3l].

3. Stage 2c finds witnesses w such that one location of w is in Da,b[1] and the other
location is in [l + 1,m− a− 3l]× [l + 1,m− b].

We denote the rectangles [m − a − 3l + 1,m − a] × [m − b − 3l + 1,m − b] and [l + 1,m −
a]× [l + 1,m− b− 3l] appearing above by Da,b[10] and Da,b[11], respectively.

We next describe stages 2a and 2b. Stage 2c is analogous to Stage 2b, and thus we omit
its description.

Stage 2a

Recall that this stage finds a witness for mismatch offsets (a, b) in which one location of the
witness is in Da,b[10] and the other location is in Da,b[1]. To accomplish this, we will define
new rectangles that will Da,b-link every pair of locations (x, y) and (x′, y′) holding the same
character such that (x, y) ∈ Da,b[10] and (x′, y′) ∈ Da,b[1] = [1, l] × [1, l]. The difficulty of
handling such pairs is the proximity of (x, y) to both the first row and column of the pattern.
While there are rectangles H1

(x,y),i and V 1
(x,y),i′ (defined on Stage 1) that contain (x′, y′), both

these rectangles may be inactive, and thus (x, y) and (x′, y′) may not be Da,b-linked by the

27

rectangles defined on Stage 1. The key idea here is that there are only Θ(l) rows in which
the locations (x, y) and (x′, y′) can appear. Thus, for every location (x, y) we can define Θ(l)
horizontal rectangles of height 1 that cover Da,b[1]. Since each rectangle has height 1, the
rectangle that contains (x′, y′) is necessarily active.

Suppose first that we only need to handle offsets (a, b) for some fixed a. As location
(x′, y′) is in rows 1, . . . , l and location (x, y) is in rows m − a − 3l + 1, . . . ,m − a − 1, the
difference x−x′ is between m−a−(4l−1) and m−a. Thus, for each location (x, y) ∈ Da,b[10]
we define rectangles [x−(m−a−i)]× [1, y−1] for i = 1, . . . , 4l−1. Note that the rows of the
rectangles depend on a. We need to handle offsets (a, b) for all values of a without defining
too many rectangles. If we look at two values a and a+ 1, the rectangles for a location (x, y)
needed for offsets (a, b) (for all b) are the same as the rectangles needed for offsets (a+ 1, b),
except for the rectangles [x − (m − a − 1)] × [1, y − 1] and [x − (m − a − 4l)] × [1, y − 1].
More generally, we can group together l consecutive values of a, and define rectangles for
each group separately.

Formally, we partition the offsets into sets Oa′ = {(a, b)|a′ ≤ a ≤ a′+ l−1}, where a′ is a
multiple of l. Consider some set Oa′ . For a location (x, y) in [m− a′− 4l+ 2,m− a′]× [1,m]
we define the rectangles

H3,a′

(x,y),i = [x− (m− a′ − i)]× [1, y − 1]

for every 1 ≤ i ≤ 5l− 2. As before, each rectangle may generate a neighbor. The rectangles
are scanned in right-to-left order.

Lemma 14. Let (a, b) be an offset in Oa′. Let (x, y) ∈ Da,b[10] and (x′, y′) ∈ Da,b[1] be two
locations holding the same character. Then (x, y) and (x′, y′) are Da,b-linked.

Proof. Let i = x′−x+m−a′. Since m−a−3l+1 ≤ x ≤ m−a and 1 ≤ x′ ≤ l we have that
i ≥ 1−(m−a)+m−a′ ≥ 1 and i ≤ l−(m−a−3l+1)+m−a′ = 4l−1+a−a′ ≤ 5l−2. Therefore,

the rectangle H3,a′

(x,y),i = [x′]× [1, y− 1] is defined. Since y′ ≤ l and y ≥ m− a− 3l+ 1 > l+ 1

(due to the assumption that a < m− 4l), it follows that y′ ≤ y − 1, hence (x′, y′) ∈ H3,a′

(x,y),i.

Therefore, (x, y) has a Da,b-neighbor (x′, y′′) in H3,a′

(x,y),i and the lemma follows.

In order to find a witness for offset (a, b), we need to compare the neighbors of locations
(x, y) inside Da,b[10] with the neighbors of (x+a, y+b). The locations of the form (x+a, y+b)
are in Da,b[10] + (a, b) = [m− 3l + 1,m]× [m− 3l + 1,m]. Therefore, for locations (x, y) ∈
[m − 3l + 1,m] × [m − 3l + 1,m] we define rectangles H3,a′

(x,y),i as before (namely, H3,a′

(x,y),i =

[x − (m − a′ − i)] × [1, y − 1]). We now transform the problem of comparing neighbors to
an exact wildcard matching with witnesses problem. Let P a′

1 and P a′
2 be strings that encode

the neighbors of all H3,a′

(x,y),i rectangles for locations in [m− 3l + 1,m]× [m− 3l + 1,m] and

[m− a′− 4l+ 2,m− a′]× [1,m], respectively. The following lemma follows from Lemma 14.

Lemma 15. Let (a, b) be an offset in Oa′.

28

1. If P a′
1 does not match P2 = P a′

2 [l− (a mod l) . . 2l−1− (a mod l),m− b− l+ 1 . .m− b]
then (a, b) is a mismatch offset. Moreover, a type 1 witness for (a, b) can be obtained
from every witness to the mismatch of P a′

1 and P2 in constant time.

2. If (a, b) is a mismatch offset for which no witness was found is Stage 1 and there is
a type 1 witness w for (a, b) such that one location of w is in Da,b[1] and the other
location is in Da,b[10], then P a′

1 does not match P2.

In Stage 2a the algorithm solves O(m/l) instances of the exact wildcard matching with
witnesses problem, each of size O(ml2). By Lemma 3, the time complexity of this stage is
O(m5/2 polylog(m)).

Stage 2b

In this stage we define additional rectangles in order toDa,b-link pairs of locations (x, y), (x′, y′)
holding the same character in which (x, y) ∈ Da,b[1] and (x′, y′) ∈ Da,b[11]. The approach
of Stage 2a does not work here since the rectangle Da,b[11] can contain Θ(m2) locations and
therefore defining rectangles for the locations in Da,b[11] would generate too many rectangles.
Instead, we will define rectangles for the locations in Da,b[1].

We partition the set of offsets into sets Oa,b′ = {(a, b′), (a, b′+1), . . . , (a, b′+ l−1)} where
b′ is a multiple of l. The offsets in each set Oa,b′ will be handled together. Consider some
set Oa,b′ . For a location (x, y) in [1, l]× [1, l] we define the rectangle

H4,a,b′

(x,y) = [l + 1,m− a]× [y + 1, y +m− b′ − 3l].

From each rectangle a neighbor is generated by scanning the rectangle in top-to-bottom/right-
to-left order.

Lemma 16. Let (a, b) be an offset in Oa,b′. Let (x, y) ∈ Da,b[1] and (x′, y′) ∈ Da,b[11] be two
locations containing the same character. Then (x, y) and (x′, y′) are Da,b-linked.

Proof. We will show that (x, y) has a Da,b-neighbor (x′′, y′′) such that (x′, y′) and (x′′, y′′)

are Da,b-linked. It is easy to verify that (x′, y′) ∈ H4,a,b′

(x,y) . Moreover, the rectangle H4,a,b′

(x,y) is

contained in Da,b. Thus, the rectangle H4,a,b′

(x,y) generates a Da,b-neighbor; let (x′′, y′′) denote

that neighbor. Due to the scan order, y′′ ≥ y′ ≥ l + 1. Moreover, y′′ ≤ y + m − b′ − 3l ≤
m − b − l − 1 and l + 1 ≤ x′′ ≤ m − a. Therefore, (x′′, y′′) ∈ Da,b[2, 5, 8]. We also have
(x′, y′) ∈ Da,b[5, 8]. By Lemma 12, (x′, y′) and (x′′, y′′) are Da,b-linked. Thus, (x, y) and
(x′, y′) are Da,b-linked.

In order to compare the neighbors of locations (x, y) ∈ Da,b[1] with neighbors of (x +
a, y + b), we define rectangles for locations (x, y) in [a+ 1, a+ l]× [b′ + 1, b′ + 2l − 1]:

H5,a,b′

(x,y) = [l + 1 + a,m]× [y + 1, y +m− b′ − 3l].

We next define two strings P a,b′

1 and P a,b′

2 . The string P a,b′

1 encodes the neighbors of the

H4,a,b′

(x,y) rectangles, and P a,b′

2 encodes the neighbors of the H5,a,b′

(x,y) rectangles.

29

Figure 16: The three substages of Stage 3. Each substage finds witnesses in which one of
the locations of the witness is in the light gray area, and the other location is in the dark
gray area.

Lemma 17. Let (a, b) be an offset in Oa,b′.

1. If P a,b′

1 does not match P2 = P a,b′

2 [1 . .m, 1 + (b mod l) . .m + (b mod l)] then (a, b) is
a mismatch offset. Moreover, a type 1 witness for (a, b) can be obtained from every

witness to the mismatch of P a,b′

1 and P2 in constant time.

2. If (a, b) is a mismatch offset for which no witness was found in Stage 1 and there is
a type 1 witness w for (a, b) such that one location of w is in Da,b[1] and the other

location is in Da,b[11] then P a,b′

1 does not match P2.

For each set Oa,b′ , the algorithm solves the exact wildcard matching with witnesses prob-

lem on P a,b′

1 and P a,b′

2 . Since there are O(m2/l) sets, and the size of each string P a,b′

2 is O(l2),
the time complexity of this stage is O(m2l polylog(m)) = O(m5/2 polylog(m)).

Stage 3

Again this stage is composed of several sub-stages (see Figure 16).

1. Stage 3a finds witnesses w such that one location of w is in Da,b[3] and the other
location is in Da,b[7, 8].

2. Stage 3b finds witnesses w such that one location of w is in Da,b[7] and the other
location is in Da,b[3, 6].

3. Stage 3c finds witnesses w such that one location of w is in Da,b[6] and the other
location is in Da,b[8].

Stage 3b is similar to Stage 3a, and thus we omit the details of this stage.

Stage 3a

In this stage we use the partitioning of offsets into the sets defined in Stage 2a, namely
Oa′ = {(a, b)|a′ ≤ a ≤ a′ + l − 1}, where a′ is a multiple of l. Consider some set Oa′ . For a

30

location (x, y) in [1, l]× [1,m] we define rectangles

H6,a′

(x,y),i = [x+m− a′ − i]× [1, y − 1]

for i = 1, . . . , 3l − 2. Neighbors are selected from the rectangles by scanning the rectangles
in right-to-left order.

Lemma 18. Let (a, b) be an offset in Oa′. Let (x, y) ∈ Da,b[3] and (x′, y′) ∈ Da,b[7, 8] be two
locations with the same character. Then (x, y) and (x′, y′) are Da,b-linked.

As before, the problem of comparing the neighbors is transformed into a region matching
with witnesses problem. The algorithm builds strings P a′

1 and P a′
2 as follows: For locations

(x, y) ∈ [a′ + 1, a′ + 2l − 1] × [m − l + 1,m] we define rectangles H6,a′

(x,y),i as above, and P a′
1

encode the neighbors of these rectangles. The string P a′
2 encodes the neighbors of locations

(x, y) ∈ [1, l]× [1,m]. By Lemma 4, the time complexity of this stage is O(m5/2 polylog(m)).

Stage 3c

We now need to find witnesses for mismatch offsets for which no witness was found during
the previous stages. The algorithm of this stage uses different approach than the previous
stages. In previous stages, multiple offsets were handled in parallel, by reduction to exact
matching problems. Here, each offset is handled separately. For each relevant mismatch
offset, the algorithm computes an almost minimal rectangle that contains a witness, and
then finds the actual witness by examining locations near the corners of the rectangle. The
computation of the rectangle is based on counting characters in substrings of P , using the
colored intersection counting data-structure of Gupta et al. [14].

Consider some mismatch offset (a, b) for which no witness was found during the previous
stages. Without loss of generality we assume that (a, b) has a type 1 witness. The stage is
based on the following lemma.

Lemma 19. Let (a, b) be a mismatch offset, and let R ⊆ Da,b be a rectangle such that there
is no type 2 witness for (a, b) whose both locations are inside R. Then, the number of distinct
characters inside the region R of P is less than or equal to the number of distinct characters
inside the region R+ (a, b) of P with strict inequality if and only if there is a type 1 witness
w for (a, b) for which both locations are in R.

Proof. Since there are no type 2 witnesses for (a, b) with both locations inside R, there is a
function matching from the substring of P induced by the region R+ (a, b) to the substring
induced by the region R. Therefore, the first part of the lemma holds. The second part of
the lemma follows from Observation 1.

In other words, Lemma 19 states that we can tell whether a rectangle R contains a
witness by computing the number of distinct characters in R and in R+(a, b). Thus, if these
computations can be done fast, a minimal rectangle containing a witness can be found using
binary search.

31

We say that a rectangle D ⊆ Da,b is a mismatch rectangle if the number of distinct
characters inside the region D of P is strictly less than the number of distinct characters
inside the region D+(a, b) of P . A mismatch rectangle D is minimal if there is no mismatch
rectangle that is contained in D.

Since no witness for (a, b) was found during the previous stages, then for every type 1
witness for (a, b), one location of the witness is in Da,b[6] and the other location is in Da,b[8].
Symmetrically, for every type 2 witness for (a, b), one location of the witness is in Da,b[2]
and the other location is in Da,b[4]. In particular, there are no type 2 witnesses for (a, b)
with both locations inside Da,b[5, 6, 8, 9]. Thus, Da,b[5, 6, 8, 9] contains at least one mismatch
rectangle.

Observation 5. Let D ⊆ Da,b[5, 6, 8, 9] be a minimal mismatch rectangle. Then, the loca-
tions at the bottom left corner and the top right corner of D form a witness for (a, b).

Proof. By Lemma 19 there is a type 1 witness w for (a, b) for which both locations are in
D. From the minimality of D the two locations of w must be at opposite corners of D. Since
one location of w must be in Da,b[6] and the other location in Da,b[8], it follows that the
locations of w are at the bottom left corner and top right corner of D.

We do not know how to efficiently find a minimal mismatch rectangle. Instead, we will
present an algorithm that finds an “almost minimal” mismatch rectangle. The corners of the
rectangle will not necessarily give a witness for (a, b), so an additional search for the witness
will be required.

Consider the following intersection counting problem: Given a set S of points in the
plane where each point has a color, build a data-structure for S that can answer queries of
the form “what is the number of distinct colors for the points inside the 3-sided rectangle
{(x, y) ∈ R2 : x ≤ x2, y1 ≤ y ≤ y2}?”. Denote by n the number of points in S. Gupta et
al. [14] showed a data-structure for this problem with preprocessing time O(n2 log2 n) that
answers queries in O(log2 n) time. Using this result, we obtain the following lemma:

Lemma 20. Let P be an m ×m string, and let l be an integer. After preprocessing of P
in O(m

3

l
log2m) time, the following queries can be answered in O(log2m) time: “what is the

number of distinct characters in the substring P [x1 . . x2, y1 . . y2]?”, where x1, x2, y1, and y2
are integers with either x1 ≡ 1 (mod l) or x2 = m.

Proof. The preprocessing is as follows: Create a set of points S containing a point (x, y) for
every x = 1, . . . ,m and y = 1, . . . ,m. The color of (x, y) is P [x, y]. For every integer i ≤ m/l,
build the data structure of Gupta et al. on the set of points Si = {(x, y) ∈ S : x ≥ il + 1}.
Also build a data structure on S ′ = {(−x, y) : (x, y) ∈ S}.

Given a query (x1, x2, y1, y2), if x1 ≡ 1 (mod l), return the number of distinct colors in the
points of S(x1−1)/l that are inside the 3-sided rectangle {(x, y) ∈ R2 : x ≤ x2, y1 ≤ y ≤ y2}.
If x2 = m, return the number of distinct colors in the points of S ′ that are inside the 3-sided
rectangle {(x, y) ∈ R2 : x ≤ −x2, y1 ≤ y ≤ y2}.

32

Assume that the data-structure of Lemma 20 was built over P . Our algorithm constructs
an “almost minimal” mismatch rectangle D by starting with D = Da,b[5, 6, 8, 9] and then one
by one moving the left, right, and top edges of D to the right, left, and down, respectively, as
long as the rectangle remains a mismatch rectangle. More precisely, the algorithm constructs
D as follows.

1. Find the maximum y such that the rectangle [l + 1,m− a]× [y,m− b] is a mismatch
rectangle. Note that from Lemma 19, [l+1,m−a]× [y′,m− b] is a mismatch rectangle
for every y′ < y. Therefore, the algorithm finds the value of y using binary search and
queries to the data-structure of Lemma 20.

2. Using binary search, find the minimum z such that the rectangle [l+ 1,m− a]× [y, z]
is a mismatch rectangle.

3. Using binary search, find the maximum x such that x − 1 is a multiple of l and
[x,m− a]× [y, z] is a mismatch rectangle. Let D = [x,m− a]× [y, z].

From Lemma 19 and the definition of D we obtain that there is a type 1 witness for (a, b) with
one endpoint in D1 = [m−a−l+1,m−a]× [y] and the other endpoint in D2[x, x+l−1]× [z].
Finding such a witness is implemented as follows. Note that if (x1, y) and (x′1, y) are two
locations inD1 containing the same character then P [x1+a, y+b] = P [x′1+a, y+b] (this is true
since both (x1, y) and (x′1, y) are in Da,b[8], and thus these two locations cannot form a type 1
witness for (a, b)). Therefore, the algorithm scans the locations in D1, and for each location
(x1, y), if no location containing the character P [x1, y] was already encountered, the algorithm
stores (x1, y) as a candidate. The candidates are stored in an array L[1 . .m2], indexed by the
characters contained in the candidates. Next, the algorithm scans the locations in D2. For
each location (x2, z) ∈ D2, if there is a candidate (x1, y) that contains the character P [x2, z],
the algorithm checks whether the pair (x1, y), (x2, z) is a witness for (a, b).

By Lemma 20, the time complexity for handling a single offset (a, b) is O(log3m + l).
Thus, the time complexity of this stage is O(m

3

l
log2m+m2 log3m+m2l) = O(m5/2 log2m).

Handling special offsets

We now describe how to handle a mismatch offset (a, b) with a ≥ m− 4l. For each location
(x, y) in P we define the following rectangles: For i = −4l + 1, . . . , 4l − 1, let H(x,y),i =

[x+ i]× [1, y− 1] and Ĥ(x,y),i = [x+ i]× [y + 1,m]. For each location the algorithm chooses
neighbors using these rectangles and then constructs an exact wildcard matching problem
as described in Stage 1. The size of the strings in this problem is O(m2l), so this stage takes
O(m5/2 polylog(m)) time. Handling mismatch offsets (a, b) with b ≥ m− 4l is similar.

5 Substrings character counting

In this section we show an O(n2) time algorithm that counts the number of distinct characters
in every m × m substring of an n × n string T . W.l.o.g. we can assume that n = 2m (if

33

a

a

a

a

a

a

a

a

a

a

Figure 17: An example of the definition of upper and lower chains. The figure shows the
chains when the current strip is Strip 2. The upper chain contains the locations (2, 3) and
(1, 5), and the lower chain contains the locations (7, 2) and (8, 4).

needed, by partitioning a larger text into overlapping 2m× 2m pieces).
The algorithm sweeps across the strips of string T (see Definition 5). When at Strip y,

it will determine for each location (x, y) how many distinct characters are contained in the
m×m substring Tx,y = T [x . . x+m− 1, y . . y +m− 1].

To this end, for each character c, it computes values Dc[x, y] such that
∑x

x′=1Dc[x
′, y] is

1 if Tx,y contains the character c and 0 otherwise. As we shall see, each column will have
at most three non-zero entries for character c, and the number of changes to these values as
y increases is linear in the number of occurrences of c in T . Consequently, the array Dc is
maintained just for the current value of y and is updated as the sweep advances. Henceforth,
we let Dc[x] denote Dc[x, y], where y is understood to be the current value of y.

In fact, it is more convenient to record just D[x] =
∑

cDc[x]. For then
∑x

x′=1D[x′] equals
the number of distinct characters in Tx,y.

Next, we explain how to compute Dc. To help with this, two chains of locations in
T containing c are maintained, an upper and a lower chain. These chains are illustrated
in Figure 17. The upper chain comprises locations in T [1 . .m, y . . y + m − 1]. It is the
maximal series of locations (xu1 , y

u
1), (xu2 , y

u
2), . . . , (xuku , y

u
ku

), where xu1 > xu2 > · · · > xuku ,
yu1 < yu2 < · · · < yuku , and there is no location (x′, y′) in T [1 . .m, y . . y +m− 1] containing a
c “below” the chain, i.e., for which x′ > xui and y′ > yui−1 for some 1 < i ≤ ku, or x′ > xu1 or
y′ > yuku . If the chain is empty, we define xu1 = 0.

The upper chain is readily maintained as y advances by deletion at the left end of the
chain and insertion, preceded by necessary deletions, at the right end. More specifically, all
locations violating the chain order with respect to the new item to be added are removed
from the right end of the chain and only then is the new item added. As each item is added
and removed at most once, this takes time O(number of occurrences of c in T).

The lower chain is defined analogously for locations in T [m + 1 . . 2m, y . . y + m − 1],
but now xl1 < xl2 < · · · < xlkl and yl1 < yl2 < · · · < ylkl . If the chain is empty, we define
xl1 = 2m+ 1.

The values of x for which the texts Tx,y contain c are given by the intervals [1, xu1]∪ [xl1−

34

m+ 1,m+ 1]. The definition of Dc is now clear:

Case 1 xu1 = 0, xl1 = 2m+ 1.
Dc[x] = 0 for all x.

In the remaining cases we indicate only the non-zero entries for Dc.

Case 2. xu1 6= 0, xl1 = 2m+ 1.
Dc[1] = 1, Dc[x

u
1 + 1] = −1.

Case 3. uu1 = 0, xl1 6= 2m+ 1.
Dc[x

l
1 −m+ 1] = 1.

Case 4. xu1 6= 0, xl1 6= 2m+ 1, and xu1 ≥ xl1 −m.
Dc[1] = 1.

Case 5. xu1 6= 0, xl1 6= 2m+ 1, and xu1 < xl1 −m.
Dc[1] = 1, Dc[x

u
1 + 1] = −1, and Dc[x

l
1 −m+ 1] = 1.

Clearly, whenever xl1 or xu1 changes, the corresponding update to Dc can be made in
O(1) time. In fact, the updates are made directly as increments or decrements to D[x], as
appropriate.

Theorem 21. There is an O(n2) time algorithm that reports the number of distinct charac-
ters in each m×m substring of an n× n text.

Proof. It suffices to show this result for n = 2m, as already noted. The cost of the algo-
rithm has two parts. The first is the cost of updating D as the sweep occurs: this takes
O(

∑
c number of occurrences of c in T) = O(m2). The second is to compute

∑x
x′=1D[x′] for

each value of x (1 ≤ x ≤ n−m+ 1) for each value of y is in turn (n−m+ 1 values again).
But this is readily done in O(m2) time.

References

[1] N. Alon and M. Naor. Derandomization, witnesses for boolean matrix multiplication
and construction of perfect hash functions. Algorithmica, 16:434–449, 1996.

[2] A. Amir, Y. Aumann, M. Lewenstein, and E. Porat. Function matching. SIAM J. on
Computing, 35(5):1007–1022, 2006.

[3] A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two dimen-
sional pattern matching. SIAM J. on Computing, 23(2):313–323, 1994.

[4] A. Amir, K. W. Church, and E. Dar. The submatrices character count problem: an
efficient solution using separable values. Information and Computation, 190(1):100–116,
2004.

35

[5] A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized
matching. Information Processing Letters, 49(3):111–115, 1994.

[6] A. Apostolico, P. L. Erdös, and M. Lewenstein. Parameterized matching with mis-
matches. J. of Discrete Algorithms, 5(1):135–140, 2007.

[7] Y. Aumann, M. Lewenstein, N. Lewenstein, and D. Tsur. Finding witnesses by peeling.
ACM Transactions on Algorithms, 7(2):24:1–24:15, 2011.

[8] G. P. Babu, B. M. Mehtre, and M. S. Kankanhalli. Color indexing for efficient image
retrieval. Multimedia Tools and Applications, 1(4):327–348, 1995.

[9] B. S. Baker. Parameterized string pattern matching: Algorithms and applications. J.
of Computer and Systems Sciences, 52(1):28–42, 1996.

[10] B. S. Baker. Parameterized duplication in strings: Algorithms and an application to
software maintenance. SIAM J. on Computing, 26(5):1343–1362, 1997.

[11] P. Clifford and R. Clifford. Simple deterministic wildcard matching. Information Pro-
cessing Letters, 101(2):53–54, 2007.

[12] R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard matching.
In Proc. 34th ACM Symposium on Theory Of Computing (STOC), pages 592–601, 2002.

[13] R. Cole and R. Hariharan. Faster suffix tree construction with missing suffix links.
SIAM J. on Computing, 33(1):26–42, 2003.

[14] P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersection search-
ing problems: Counting, reporting, and dynamization. J. of Algorithms, 19(2):282–317,
1995.

[15] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
J. on Computing, 13(2):338–355, 1984.

[16] C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized matching. ACM
Transactions on Algorithms, 3(3), 2007.

[17] S. R. Kosaraju. Faster algorithms for the construction of parameterized suffix trees.
In Proc. 36th Symposium on Foundation of Computer Science (FOCS), pages 631–637,
1995.

[18] M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision,
7(1):11–32, 1991.

[19] U. Vishkin. Optimal parallel pattern matching in strings. In Proc. 12th International
Colloquium on Automata, Languages and Programming (ICALP), pages 91–113, 1985.

[20] U. Vishkin. Deterministic sampling — a new technique for fast pattern matching. SIAM
J. on Computing, 20:303–314, 1991.

36

