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1 Introduction

Conformal field theories in two dimensions [1] have a chiral symmetry algebra involving

fields of spin n ≥ 1. The conformal symmetry itself is generated by a spin-2 Virasoro

algebra, while other algebras may or may not be present in general. In the holographic

perspective [2] the spin-2 Virasoro algebra is the asymptotic symmetry of a spin-2 gauge

theory, i.e. gravity, in the bulk. Likewise, a chiral algebra of spin-N tells us that the bulk

theory has spin-N gauge fields. For N = 1 this is the case of (Abelian or non-Abelian)

gauge symmetry in the bulk.

In this paper we will focus our attention on rational conformal field theories (RCFT’s)

in 2d, for which the total number of characters is finite. We will study the characters of

these theories, defined as:

χi(q) = trHiq
− c

24
+L0 (1.1)

where q = e2πiτ and τ is the coordinate on the moduli space of the torus. The trace is taken

over the Hilbert space Hi of chiral states above the ith primary state. The characters are

typically in correspondence with primary fields (upto degeneracies) of the full chiral algebra

of the theory. Within RCFT’s, the presence of spin-1 algebras is particularly interesting

as they give rise to affine theories (WZW models, in Lagrangian language) based on a

Kac-Moody current algebra. These in turn generate a vast set of 2d CFT’s via the famous

coset construction [3, 4].

Conversely one may ask for RCFT’s that have no spin-1 chiral algebra. It is known [5]

that the only case where one can have a finite number of primaries without any other

algebra beyond the Virasoro algebra, is when the central charge c of this algebra is less

than 1. The resulting models, called minimal models, are exactly solvable by virtue of
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having null vectors in the Virasoro module. They also have physical relevance, with the

unitary series being related to RSOS models at criticality [6] and the c = −22
5 non-unitary

model being related to the Lee-Yang edge singularity. The weaker condition that only a

spin-1 algebra is absent (while arbitrary algebras of spin N ≥ 2 are allowed) has not, to our

knowledge, been classified. One interesting RCFT with this property is the “Moonshine

Module CFT”, which has a single character and is extremely interesting from the point

of view of the mathematics of sporadic discrete groups [7]. Below we investigate possible

solutions to the requirement of no Kac-Moody algebra for theories with a small number

(but greater than 1) of characters. We will find new theories that bear an intriguing

relationship with the Moonshine CFT.

One way to discover new RCFT’s is to look for solutions to modular-invariant differen-

tial equations for their characters [8–12]. In this approach one fixes a priori the number of

characters of the desired theory, as well as an integer parameter ` describing the number of

zeroes in moduli space of the Wronskian of the characters, and then writes down a general

modular-invariant differential equation. For small `, this turns out to have a small number

of arbitrary parameters. One then searches for those values of the parameters for which

the solutions have a q-series expansion with non-negative integral coefficients. If this is

verified to a sufficiently high order in the expansion then one has a candidate RCFT. With

the available information, it is often possible to directly identify it as a WZW theory or

coset theory [11, 13, 14], thereby proving its existence as a CFT, and to reconstruct its

fusion rules and primary correlators [12].

How is the absence of a spin-1 current algebra reflected in CFT characters? Among

all the characters there is a unique one called the identity character. In unitary RCFT’s

this is the one with the most singular behaviour as q → 0, though it can be more tricky to

identify in non-unitary theories. Its leading behaviour is q−
c
24 , where c is the central charge

of the theory. Let us now look at the coefficient of the successive term, q−
c
24

+1. This is the

number of states created from the ground state of the theory by acting on it with a mode

of index −1 of one of the symmetry generators. If K(z) is a generic spin-N field in the

chiral algebra then the modes are given by K(z) =
∑

n∈ZZKnz
−n−N . From considerations

of non-singularity at the origin, it follows that:

K−i|0〉 = 0, i < N (1.2)

We see in particular that K−1|0〉 = 0 for all generators of spin N ≥ 2. Therefore the

only way to have terms of order q−
c
24

+1 in the identity character is to have currents Jan ,

and these terms must then have a 1-1 correspondence with the states Ja−1|0〉. Indeed, this

approach was used in refs. [11–14] to determine the dimension of the current algebra given

the degeneracy of the first excited state in the identity character. It follows that if there

are no spin-1 currents in the theory then the coefficient of q−
c
24

+1 in the identity character

must be zero. If we parametrise the identity character as:

χ0(q) = q−
c
24

(
1 +m1q +m2q

2 + · · ·
)

(1.3)

then this tells us that m1 = 0.
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There is another way to have spin-1 currents, even if the identity character has m1 = 0.

Normally, characters are defined such that all states of integer dimension are included in the

identity character. However it may happen that a theory has states of integer dimension

but they are counted as descendants of some other primary (not the identity). Then they

will appear in a distinct character built above a primary of integer dimension. If this

primary has dimension 1 then it is a Kac-Moody current. Thus even with m1 = 0 in the

identity character, we have to ensure the absence of any dimension-1 primary in the theory

by looking at the remaining characters.

To summarise, in order to discover potentially new RCFT’s that do not have a Kac-

Moody algebra, we have to look for consistent sets of characters transforming into each

other under modular transformations and having the property that the identity character

has m1 = 0, and we also have to ensure there is no spin-1 primary in the theory.

Suppose first that the theory has a single character and a central charge of the form

c = 24k where k is an integer. Then of course the only requirement to have no Kac-Moody

algebra is m1 = 0. This can be explicitly solved as follows. The character must be a degree-

k polynomial in the Klein j-invariant. The q-expansion of j is j(q) = q−1 + 744 + O(q).

We will find it more convenient to work with J(q) = j(q) − 744 = q−1 + O(q). Clearly a

polynomial in j is also a polynomial of the same degree in J . Now let us write:

χ0(q) = Pk(J) =

k∑
m=0

amJ
m (1.4)

In order for the identity field to be non-degenerate we must have ak = 1, and for the

coefficient of q−
c
24

+1 = q−k+1 to vanish we require ak−1 = 0. These two conditions give

us an infinite set of potential characters for one-character theories without Kac-Moody

symmetry. The simplest theory in this class has χ(q) = J(q) and c = 24, and corresponds

to the famous Moonshine Module. In this example the CFT associated to this character is

known to exist and has been constructed, but this is not yet the case for arbitrary characters

of the above form. In general, we must think of the above conditions as necessary but not

sufficient for the existence of CFT’s without Kac-Moody symmetry.

Another interesting class of examples is provided by the c < 1 minimal models. These

are labelled by two integers (p, p′). Their central charge and primary conformal dimensions

are as follows:

c = 1− 6(p− p′)2

pp′
hr,s =

(rp′ − sp)2 − (p− p′)2

4pp′
, 1 ≤ r ≤ p, 1 ≤ s ≤ p′ (1.5)

The unitary case corresponds to p′ = p+ 1 and in this case the characters are given by [1]:

χr,s = Kr,s −Kr,−s (1.6)

where

Kr,s =
q−

c
24∏∞

n=1(1− qn)

∑
n∈ZZ

q
(2np(p+1)+r(p+1)−sp)2−1

4p(p+1) (1.7)

Evaluating the low-lying terms in the identity character, it is easy to verify explicitly that

the first term above the ground state is absent. Indeed minimal models not only have no
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Kac-Moody symmetry, they have no other symmetry algebra besides the Virasoro algebra.

For non-unitary minimal models the character formula above needs some modification, but

the same conclusions hold.

We would now like to search for other RCFT’s, beyond those in the above examples,

that have no Kac-Moody symmetries. For this we will use the method of modular-invariant

differential equations, applied to RCFT’s with small numbers of characters. We will re-

discover the relevant minimal models, and will also find new “dual” theories whose charac-

ters obey bilinear relations with those of the minimal models to give the character of the

Moonshine CFT. One of them, dual to the Ising model, has c = 47
2 and has been previously

studied by Höhn [15]. We will argue that beyond these “dual” theories, there are no more

candidate theories in the class that we study.

2 Modular-invariant differential equations

The characters of an RCFT arise as the independent solutions of a degree-p modular-

invariant differential equation in τ . Such an equation must be of the form [8–12]:(
Dp +

p−1∑
k=0

φk(τ)Dk

)
χ = 0 (2.1)

where D is a covariant derivative to be defined below, and φk(τ) is a modular function of

weight 2(p−k) under SL(2,Z). The characters transform into each other under SL(2,Z) but

they have zero weight. The derivative D acting on them successively increases the weight

by 2. It follows that every term in the above equation has modular weight 2p, and the

equation is therefore modular invariant. The covariant derivative is given by:

D ≡ ∂

∂τ
− iπr

6
E2(τ) (2.2)

where r is the modular weight of the object on which it acts, and E2(τ) is a special

Eisenstein series that transforms inhomogeneously under SL(2,Z) and thereby provides a

suitable connection.

In general the φk need not be holomorphic, indeed they can be meromorphic even

though the resulting characters are holomorphic. In fact the poles of φk are related to

the zeroes of the Wronskian of the independent solutions χ0, χ1, · · ·χp−1 of the differential

equation by the following relation:

φk(τ) = (−1)n−k
Wk

W
(2.3)

where the Wronskian determinants Wk are defined in refs. [10–12]. In searching for new

RCFT’s one therefore starts by choosing not only the number of characters p but also the

number of zeroes of W . This number is of the form `
6 where ` is a non-negative integer other

than 1 (fractional zeroes are allowed due to the orbifold singularities of the torus moduli

space). The central charge and conformal dimensions of any RCFT satisfy the relation [11]:

p−1∑
i=0

(
− c

24
+ hi

)
=
p(p− 1)

12
− `

6
(2.4)
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It is tedious but straightforward to verify that all the c < 1 minimal models, unitary or

otherwise, have ` = 0. The same is true of SO(N) and SU(N) WZW models, but there are

also many known CFT’s with ` ≥ 2, some of which appear in known discrete series and

others are constructed in refs. [13, 14, 16]. We now use this approach of modular-invariant

differential equations to investigate the existence of CFT characters without Kac-Moody

symmetries for small values of `.

3 Theories without Kac-Moody symmetries

3.1 Two-character theories

Let us start by fixing the number ` of zeroes of the Wronskian to be 0. The modular-

invariant differential equation is simplest in this case, because the coefficient functions

φk(τ) are holomorphic everywhere in the interior of moduli space and therefore must be

polynomials in the two Eisenstein series E4 and E6 (for definitions, see the appendix).

The most general homogeneous, modular invariant, second order differential equa-

tion is: (
D̃2 + φ1(τ)D̃ + φ0(τ)

)
χ = 0 (3.1)

where D̃ = 1
2πiD is the covariant derivative scaled for future convenience. Here φk are

holomorphic and φ1, φ0 have modular weight 2, 4 respectively. It follows that φ1 = 0 and

φ0 is proportional to E4. Thus we have the differential equation:

(D̃2 + µE4)χ = 0 (3.2)

with µ a free parameter. In terms of ordinary derivatives this differential equation can be

written as: (
∂̃2 − 1

6
E2∂̃ + µE4

)
χ = 0 (3.3)

where ∂̃ = 1
2πi∂.

In ref. [11], this equation was solved by substituting the mode expansions of the char-

acters, χ =
∑∞

n=0 anq
α+n, and the Eisenstein series Ea(τ) =

∑∞
k=0Ea,k q

k. The result is

the following set of equations. First of all, if α is either of the two exponents then

α2 − 1

6
α+ µ = 0 (3.4)

Next, denoting the two roots of this equation by α0, α1 (where α0 is the exponent corre-

sponding to the identity character and α1 corresponds to the non-trivial primary), we have:

α0 + α1 =
1

6

µ = α0α1 = α0

(
1

6
− α0

) (3.5)

Note that α0 = − c
24 and therefore our parametrisation of the identity character is:

χ0 = qα0(1 +m1q +m2q
2 + · · · ) (3.6)
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Going to next order in the series solution, and using the above results, we eventually

get [11]:

m1 =
24α0(60α0 − 11)

5 + 12α0
(3.7)

To find theories without Kac-Moody symmetries we set m1 = 0 in the above equation

and solve for α0. This directly gives α0 = 11
60 . Identifying this with − c

24 gives us c = −22
5 .

This is a well-known minimal model corresponding to (p, p′) = (2, 5). From the above

equation we see that there are no more solutions to m1 = 0 at ` = 0, beyond the trivial

case α0 = 0 corresponding to c = 0.

Next we look at the ` = 2 two-character theories, exhaustively studied in ref. [13] (for

earlier work on these theories see ref. [16]). In this case we will find something surprising

and interesting. The value of m1 for these theories is given by eq. (5.26) of ref. [13] in

terms of another integer Ñ . Putting m1 = 0 one finds Ñ = 144, and indeed this value

appeared in the list eq. (5.27) of that paper. However it was then ruled out in that paper

because the degeneracy at the second level above the identity turned out to be a negative

integer. Indeed, computing the degeneracies of the identity character to very high powers

in q, we find that except for the ground state, they are all negative integers. This makes

it difficult to propose a physical meaning for this theory. However, it is still remarkable

(and not the result of any prediction, since we do not know a candidate CFT for this case)

that the degeneracies for the identity character are integral to very high orders in q and we

expect this property persists to all orders. The central charge of this would-be theory is

found by setting m1 = 0 in eq. (5.22) of ref. [13] and one finds c = 142
5 . The fact that ` = 2

tells us that the nontrivial primary of this theory has conformal dimension 9
5 . Next the

characters for this primary can be computed, upto normalisation, to any desired order in

q following the method of ref. [13] and one finds that to very high orders the degeneracies

are positive rational numbers with a denominator that appears to be bounded. Thus for

this character, a suitable degeneracy factor for the ground state would render it consistent

(if we allow for negative integer degeneracies).

These empirical facts lead to an intriguing observation. The above “characters” bear

a close relation to those of the non-unitary c = −22
5 minimal model via a bilinear relation,

analogous to the one recently found in ref. [14]. Let us exhibit the precise relationship.

Denote the familiar c = −22
5 minimal model by M2,5 and let χ0, χ1 be its characters.

Likewise, denote the (tentative) ` = 2 theory with c̃ = 142
5 as M̃2,5 and let χ̃0, χ̃1 be its

characters. It is well-known that M2,5 has a primary with h = 1
5 , while we have just

seen that M̃2,5 has a primary of dimension h̃ = 9
5 . Putting all this together we find

that c + c̃ = 24 and h + h̃ = 2. This is precisely the relation between a specific affine

theory and the coset of a meromorphic c = 24 CFT by that affine theory, proposed in

ref. [14] and justified with numerous examples. However, there is an important difference.

In the case of ref. [14], one really had a coset construction. The numerator theories were

meromorphic c = 24 CFT’s having a Kac-Moody symmetry (not affine theories, but rather

modular-invariant combinations of characters of a subset of the integrable primaries). The

denominators were affine theories having a Kac-Moody algebra that is a direct summand

of the one in the numerator. The Kac-Moody algebras play a crucial role in enabling a
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definition of these generalised cosets, as explained in detail in ref. [14]. But in the present

case there are no currents and therefore no coset construction.

However, in analogy with eq. (2.7) of ref. [14] we can ask if a bilinear relation exists

between the characters χi, χ̃i described above and some single-character CFT. What theory

should appear on the r.h.s. of such a bilinear relation? It has to be a meromorphic c = 24

CFT and must therefore appear in the list of ref. [17]. Since the pair of theories on the

l.h.s. have no Kac-Moody symmetry, the same property must hold for the r.h.s. . There is

a unique meromorphic CFT with this property, namely the famous Moonshine CFT whose

character is J(q) = j(q) − 744. Thus we are motivated to suggest a bilinear holomorphic

relation as follows:
p−1∑
i=0

χi(q)χ̃i(q) = j(q)− 744 (3.8)

with p = 2, where the characters on the l.h.s. are those ofM2,5 and M̃2,5. This is a precise,

testable formula and can only hold if infinitely many coefficients in the q-series match on

both sides. We know χi, the characters ofM2,5, and we can also use the modular differential

equation to compute the characters χ̃i of the hypothetical theory M̃2,5 as explained above.

Therefore we can check whether χi(q), χ̃i(q) obey eq. (3.8) to any desired order in q.

At leading order the relationship holds due to the matching of exponents discussed

above. Once we go beyond that, there is a subtlety: so far, we do not know the degeneracy

of the nontrivial primary whose character is χ̃1. Let us assume all the characters under

discussion are normalised so that the first term in unity. Let the degeneracy of the ground

state be labelled by D0, D1 for the characters ofM2,5 and D̃0, D̃1 for those of M̃2,5. Also let

us use ψi and ψ̃i to denote characters normalised so that the first term in the q-expansion

is unity. We then have:

χi(q) = Di ψi(q), χ̃i = D̃i ψ̃i(q), i = 0, 1 (3.9)

One always has D0 = D̃0 = 1 from non-degeneracy of the identity. Therefore in a general

situation, the bilinear of interest is:

1∑
i=0

χi(q)χ̃i(q) = ψ0(q)ψ̃0(q) +D1D̃1 ψ1(q)ψ̃1(q) (3.10)

The expansion of ψi is:

ψi = qαi

(
1 +m

(i)
1 q +m

(i)
2 q2 + · · ·

)
(3.11)

where α0 = − c
24 and α1 = − c

24 + h. Note that the quantities previously called m1,m2

are now labelled m
(0)
1 ,m

(0)
2 but we will revert to the simpler notation whenever there is no

scope for confusion. A similar expansion holds for ψ̃.

Now from the above relations between the central charges and conformal dimensions

of the paired theories, we have:

α0 + α̃0 = −1, α1 + α̃1 = 1 (3.12)

– 7 –
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It follows that upto O(q), eq. (3.9) is equal to:

q−1
(

1 +m
(0)
1 q +m

(0)
2 q2

)(
1 + m̃

(0)
1 q + m̃

(0)
2 q2

)
+D1D̃1q

= q−1 + (m1 + m̃1) +
(
m1m̃1 +m2 + m̃2 +D1D̃1

)
q

(3.13)

As promised, in the last line we have dropped the superscripts on mi, m̃i because only

those corresponding to the identity appear to this order.

Now in the present case, m1 = m̃1 = 0 and also D1 = 1 because minimal models have

non-degenerate primaries. Recall that:

J(q) = j(q)− 744 = q−1 + 196884q + · · · (3.14)

and therefore to satisfy eq. (3.8) we must have D̃1 + m2 + m̃2 = 196884. Since m2 and

m̃2 are directly calculable using the differential equation, this determines D̃1. Applying

it to the case of M2,5 and M̃2,5, we find that m2 = 1, m̃2 = −164081. This determines

D̃1 = 360964. A non-trivial check of this normalisation is that in the expansion of the

non-identity character of M̃2,5, one finds fractional coefficients with denominators as large

as 90241 (working up to O
(
q1000

)
). Thus it must be the case that 360964 is divisible

by 90241, and this is true (the ratio is 4). This means that with this choice of D̃1, the

non-identity character of M̃2,5 indeed has integer degeneracies.

Despite the above check, we have not yet performed any actual test of eq. (3.8). But

now all quantities on the l.h.s. are known, as we can compute the power series for χi, χ̃i to

any desired order in q and we have determined all the normalisations. We can then test

eq. (3.8) order-by-order and we find that it holds all the way to O
(
q1000

)
.

To summarise, we have conjectured a bilinear relation between two pairs of characters

(one corresponding to a known non-unitary CFT and the other to a more exotic system with

negative but integer degeneracies) and the Moonshine CFT, and verified this conjecture to

O
(
q1000

)
. The significance of this construction is that it points the way to similar relations

for unitary theories, where no negative degeneracies are present. Such relations cannot be

sought within two-character theories because we do not know of any two-character unitary

RCFT without a Kac-Moody algebra. However such theories do exist with p ≥ 3 characters,

where an infinite family is provided by the unitary minimal models, starting with the well-

known Ising model. Hence we now turn our attention to the case p = 3. We will repeat the

procedures described above and find very analogous results. For the unitary case, there

will be no negative signs.

Note that, independent of the bilinear relation, we have successfully classified all pos-

sible two-character RCFT’s with ` = 0, 2, 3 having no Kac-Moody algebra. For ` = 0 this

is the Yang-Lee theory, for ` = 2 this is the exotic dual discussed above and for ` = 3 there

are no candidates as shown in ref. [13].

3.2 Three-character theories

The case of three-character theories, even with ` = 0, is not completely classified despite

non-trivial progress in ref. [12, 14]. It is known that infinitely many such theories exist, in
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sharp contrast to the case of two-character theories with ` = 0. However the best-known

infinite series corresponds to the SO(N)k WZW models, which are not of interest to us

here. We shall now re-open the investigation into three-character theories with ` = 0, but

focusing specifically on solutions without Kac-Moody symmetry.

The modular invariant differential equation in this case is [12]:(
D3
τ + π2µ1E4Dτ + iπ3µ2E6

)
χ(τ) = 0 (3.15)

In terms of ordinary derivatives the above equation becomes:(
∂3τ −

iπ

3
(∂τE2)∂τ − iπE2∂

2
τ −

2π2

9
E2

2∂τ + µ1π
2E4∂τ + iµ2π

3E6

)
χ = 0 (3.16)

As explained in ref. [13], one can use Ramanujan identities to make differential equations

linear in the Eisenstein series. Accordingly, we apply the following identity to eq. (3.16):

1

2iπ
(∂τE2) =

E2
2 − E4

12
(3.17)

as a result of which the equation becomes:(
∂3τ + iπ(∂τE2)∂τ − iπE2∂

2
τ −

2π2

9
E4∂τ + µ1π

2E4∂τ + iµ2π
3E6

)
χ = 0 (3.18)

Upon substituting the mode expansions we get the recursion relation:

− 8(n+ α)3an − 4

n∑
k=0

E2,kan−kk(n− k + α) + 4

n∑
k=0

(n− k + α)2an−kE2,k

− 4

9

n∑
k=0

E4,k(n− k + α)an−k + 2µ1

n∑
k=0

(n− k + α)E4,kan−k + µ2

n∑
k=0

E6,kan−k = 0

(3.19)

For n = 0 and n = 1, we get the following polynomial equations in α:

− 8α3 + 4α2 +−4

9
α+ 2µ1α+ µ2 = 0 (3.20)

and (
−4E2,1α+ 4α2E2,1 −

4

9
E4,1α+ µ2E6,1 + 2µ1E4,1α

)
+m1

(
−24α2 − 16α− 40

9
+ 2µ1

)
= 0

(3.21)

From these equations we immediately see that:

2µ1 =
4

9
− 8(α0α1 + α1α2 + α0α2), µ2 = 8α0α1α2 (3.22)

Using eqs. (3.20), (3.22) and (3.21) and substituting for the Fourier coefficients of the

Eisenstein series (see the appendix) we get:

m
(i)
1 =

24αi
(
20α2

i + (62αj − 11)αi + 62α2
j − 31αj + 1

)
(αi − αj + 1)(4αi + 2αj + 1)

, j 6= i (3.23)

Note that for any chosen i, this equation holds for both values of j different from i.
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Let us now specialize to the case of identity character (i = 0) and ask under what

circumstances m
(0)
1 vanishes. By requiring eq. (3.23) to be zero we get the following

relation between α0 and one of the other exponents, say α1:

α0 =
1

40

(
11− 62α1 ±

√
41 + 1116α1 − 1116α2

1

)
(3.24)

Since α0 and α1 are rational linear combinations of the central charge and conformal

dimensions of one of the primaries (both of which are rational), we conclude that they

themselves are rational numbers. It follows that the discriminant in eq. (3.24) is the

square of some rational number p. Solving this equation for α1 we get:

α1 =
1

186

(
93±

√
31
√

320− p2
)

(3.25)

The rationality of α1 forces
√

320− p2 to be of the form
√

31 q, where q is some rational

number. Squaring both sides of this equation gives us the following Diophantine equation:

p2 + 31q2 = 320 (3.26)

This equation describes an ellipse. Thus, we see that rational points (p, q) on this ellipse

correspond to possible candidate α’s describing 3-character theories with ` = 0 and without

a Kac-Moody algebra. Of course these candidates, if found, would only have passed a low-

level test and we would then have to determine their characters and check integrality of

their coefficients to high orders before having any confidence that they exist as CFT’s. This

check is straightforward to perform because for ` = 0 and three characters, the exponents

completely specify the differential equations and thereby the characters.

We already know one solution to the above requirements that is definitely a CFT,

namely the Ising model. This has c = 1
2 and conformal dimensions 1

2 ,
1
16 . It is easy to

verify that the characters of this theory have ` = 0, which as we already pointed out is

the case for all minimal models. And it has m
(0)
1 = 0, because minimal models have no

Kac-Moody symmetry. We will find it useful to start by describing the Ising model as a

rational point of the ellipse of eq. (3.26). Indeed using eqs. (3.25) and (3.26) we easily find

that it represents the point (p0, q0) =
(
37
4 ,

11
4

)
on this ellipse.

Using this as a “base point” we will search for other rational points on the ellipse.

Let us consider a line with variable slope passing through the point (p0, q0) and look for

rational points where it intersects the ellipse. A line through (p0, q0) can be parametrised

as follows:

(p, q) = (p0 − γt, q0 − t) (3.27)

where γ is a real parameter. Given that (p0, q0) are rational, (p, q) will also be rational if

t, γt are rational. This means that γ in particular must be rational. Now substituting the

above in eq. (3.26) permits us to solve for t in terms of p0, q0 and γ. Putting this back in

the above, we get (after excluding t = 0):

(p, q) =

(
p0 − γ

(
2γp0 + 62q0

31 + γ2

)
, q0 −

(
2γp0 + 62q0

31 + γ2

))
(3.28)
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Thus we have solved the initial problem, that of finding all rational points on the ellipse.

There is one such point for every rational γ.

Next we use the recursive solution to find the second-level degeneracy in terms of the

exponents αi:

m
(i)
2 =

[
36αi

(
2 + 3200α5

i − 339αj + 2897α2
i − 8876α3

j + 8876α4
j + 80α4

i (−1 + 248αj)

+ 8α3
i

(
−277− 718αj + 6324α2

j

)
+ α2

i

(
953− 6136αj − 17700a12 + 61504α3

j

)
+ αi

(
−109 + 2702αj − 5236α2

j − 13000α3
j + 30752α4

j

))]
× [(1 + αi − αj)(1 + 4αi + 2αj)(2 + αi − αj)(3 + 4αi + 2αj)]

−1

(3.29)

Using eqs. (3.25) and (3.24) we can express the exponents αi in terms of p, q:

(α0, α1, α2) =

(
−1

2
+

31q − 3p

120
,

1

2
− q

6
,
1

2
+

(3p− 11q)

120

)
(3.30)

Substituting the values of this in eq. (3.29), we obtain m2 (as usual, this quantity without

a superscript refers to the identity character) as a rational function of γ:

m2 =
−(−5363− 62γ + 53γ2)(18480991 + 359538γ − 116516γ2 − 1058γ3 + 21γ4)

4(31 + γ2)(−31− 9γ + 6γ2)(−527 + 82γ + 97γ2)
(3.31)

Our strategy is now to consider all rational points on the ellipse, i.e. all rational num-

bers γ, and ask which ones specify a non-negative integer m2 via eq. (3.31). If they give

fractional or negative m2, they can be eliminated. This procedure will rule out all but a

small number of cases. Accordingly, we searched for all rational solutions to eq. (3.31) for

values of m2 ranging from 1 to 2000,000. Solutions are quite sparse, with only nine possible

values of m2 in the range 1 to 100,000 and not a single one after that. We suspect (but

cannot rigorously prove) that these are all the solutions.

We found six rational values of γ for m2 = 1, and two for each of the other allowed

values of m2. Once we have the values of γ that solve eq. (3.31), we use equations eq. (3.28)

and eq. (3.30) to obtain the exponents αi. The central charges for these candidates can be

computed as c = −24α0. It turns out that there are two different values of γ for each set of

exponents αi, with the roles of α1 and α2 exchanged. This can be explained by observing

that eq. (3.30) has a symmetry under the transformation (p, q)→
(
−93q

20 −
11p
20 ,

11q
20 −

3p
20

)
which leaves α0 unchanged but exchanges α1 with α2. Therefore, for m2 = 1 the six

different values of γ group into three pairs corresponding to three different sets of exponents

αi. There is a candidate 3-character theory for each set. On the other hand for m2 ≥ 2 we

have a single set of exponents for each pair of γ values, and therefore a single candidate

theory. The results at this stage are exhibited in table 1.

We now try to understand whether these candidates really exist as characters, and

if so, to what CFT’s they are associated. First of all given the exponents αi in table 1,

we check the absence of any spin-1 primary (recall that the primary dimension is hi =

αi − α0, i = 1, 2). This rules out lines 5 and 6 of the table. Next using these exponents
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No. m
(0)
2 γ α0 α1 α2 c = −24α0

1 1 −13, 15 11
60 − 1

60
1
3 −22

5

2 1 −33, 47 17
42 − 1

42
5
42 −68

7

3 1 −341
37 ,

31
3 − 1

48
1
24

23
48

1
2

4 2 −217
9 , 31 11

30 − 1
30

1
6 −44

5

5 156 7,−19
3 −1

3
2
3

1
6 8

6 2296 −31
7 ,

93
19 −2

3
1
3

5
6 16

7 49291 1
3 ,−

1
17 −121

84
83
84

20
21

242
7

8 63366 31
33 ,−

31
47 −59

42
43
42

37
42

236
7

9 63428 −403
131 ,

31
9 −101

105
107
210

20
21

808
35

10 90118 9
7 ,−1 −41

30
31
30

5
6

164
5

11 96256 37
11 ,−3 −47

48
23
24

25
48

47
2

Table 1. Solutions to eq. (3.31). The exponents αi are obtained using eqs. (3.28) and (3.30). The

given values of α1, α2 correspond to the first value of γ exhibited, while they are interchanged if we

use the second value.

we can evaluate the corresponding character as a q-series using the modular-invariant

differential equation. Thereby we check to very high orders that m
(0)
n are non-negative

integers. We also verify that m
(i)
n for the other two characters is a non-negative rational

number. We reject candidates that do not satisfy these consistency conditions. Using

these criteria and carrying out this analysis on each line of table 1, we find that the entries

for m
(0)
2 = 49291 and 63428 must also be rejected. The surviving candidates are those

appearing in lines 1− 4, 8, 10, 11 of the table.

Examining the exponents for these cases, we easily see that the cases in lines 1 − 4 of

the table correspond to known CFT’s. The first three are, respectively, the minimal models

for (p, p′) = (2, 5), (2, 7) and (3, 4) while the fourth one is the tensor product of two copies

of the (2, 5) minimal model. Notice that case 1 is really a 2-character theory that has

appeared as the solution of a 3-character differential equation (this means it has a spurious

“third character” with which the first two do not mix under modular transformations, much

as for the E8 case discussed in ref. [11]). This was already discussed as a 2-character theory

in the previous section and we therefore ignore it in the present discussion. The others are

all genuine 3-character theories. One of them, with c = 1
2 , is the famous Ising model. Since

these theories exist and satisfy all the criteria for which we have been searching, it is of

course reassuring to find them. But the important question is whether there are any more.

Remarkably it turns out that there are exactly three more theories in our list that are not

minimal models. As we will show, each of them pairs up with a minimal model to satisfy

the bilinear “dual” relation to the 3-character minimal models given in eq. (3.8) with p = 3.

To see the relations between the new and old cases, let us compare lines 2 and 8 of

table 1. Note first that the central charges add up to 24. Next, each of the conformal

– 12 –
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dimensions h1 = α1 − α0 and h2 = α2 − α0 for these two lines adds up to 2. These are

precisely the properties of the bilinear relation (and also of the novel coset construction of

ref. [14] to which it is analogous). The same properties hold when we compare lines 3 and

11 of the table, and lines 4 and 10. Thus we have found three more pairs of theories that

may potentially satisfy a bilinear relation giving the Moonshine CFT.

Again the proposed relations can be verified to high orders in q. We simply compute

the characters of the potentially related pairs in table 1 using the differential equations

approach, multiply them pairwise, add them up and compare with J(q) to each order.

As before, this verification involves an ambiguity in the normalisations of the non-identity

characters, since these are not determined by the differential equation. Compared with the

2-character case in the previous section, here we are studying 3-character theories so there

are two undetermined primary degeneracies D̃1, D̃2. We determine these by imposing the

bilinear identity to the first two nontrivial orders in q. Thereafter we check whether the

identity continues to hold up to O(q1000). We find that each pair passes this test perfectly.

One caveat is that we again encounter negative degeneracies when the original theory is

non-unitary, so in these cases the duals are “exotic” — it may or may not be possible to

make sense of them as some kind of CFT’s. For the dual to M2,7, denoted M̃2,7, we have

the exponents:

(α̃0, α̃1, α̃2) =
1

42
(−59, 43, 37) (3.32)

and the degeneracies of the non-identity primaries are (D̃1, D̃2) = (−715139, 848656). For

the dual to M2,5 ×M2,5 the exponents are:

(α̃0, α̃1, α̃2) =
1

30
(−41, 31, 25) (3.33)

and the degeneracies are (D̃1, D̃2) = (615164,−508400). Notice that unlike the two-

character case in the previous section, here all the degeneracies of the associated character

are negative (equivalently, all are positive after extracting the overall negative degeneracy

of the ground state). Thus it may be possible to make sense of these as theories with a

fermion number.1

This time we also have a unitary case, the Ising model, for which everything works

perfectly with no negative degeneracies. The “dual” theory with which it obeys a bilinear

identity has c = 47
2 . Again we have determined the degeneracies and verified that the

bilinear identity holds to high orders in q. For this case the exponents which determine

the primary dimensions are:

(α̃0, α̃1, α̃2) =
1

48
(−47, 46, 25) (3.34)

and the degeneracies are (D̃1, D̃2) = (96256, 4371).

All in all, there is now a strong case that every minimal model with two or three

characters has an associated “dual” CFT (exotic when the original theory is non-unitary,

but normal when the original is unitary) which pairs with it to give the Moonshine Module.

1We thank Matthias Gaberdiel for this suggestion.

– 13 –



J
H
E
P
0
7
(
2
0
1
6
)
1
3
8

No m0
2 γ D1 D2 Identification

1 1 −33, 47 1 1 M2,7 minimal model

2 63366 31
33 ,−

31
47 −715139 848656 Dual of M2,7

3 1 −341
37 ,

31
3 1 1 M3,4 (Ising model)

4 96256 37
11 ,−3 96256 4371 Dual of M3,4

5 2 −217
9 , 31 1 1 M2,5 ⊗M2,5

6 90118 9
7 ,−1, 615164 −508400 Dual of M2,5 ⊗M2,5

Table 2. ` = 0 three-character theories without Kac-Moody algebra. Here m
(0)
2 is the degeneracy

of the second excited state in the identity character, γ is the rational number in eq. (3.27) and D1,

D2 are the ground-state degeneracies of the non-trivial primaries.

The resulting pairings are summarised in table 2. It is amusing to note that the values

of γ for each pair of models satisfying the bilinear relation are related by the inversion

γ → −31
γ .

Again it is worth pointing out that, independent of the bilinear relation, we have

successfully classified all possible three-character RCFT’s with ` = 0 having no Kac-Moody

algebra. There are precisely three such theories, one of them a normal CFT (which we

discuss in the following section) and the other two “exotic” in the sense of having negative,

but integer, degeneracies.

3.3 Relation to the Baby Monster

Clearly it is important to understand the “new” theories, namely entries 2, 4, 6 of table 2.

We note that these candidates have large values of m2. They also have large degeneracies

for the non-identity primary. Since two of them are exotic (and therefore may or may not

exist as CFT’s) we will focus on the sole unitary candidate, the one related to the Ising

model. One of its fascinating features is that the number 96256 occurs twice: once as

the degeneracy of the second excited state in the identity character (m2) and once as the

degeneracy of one of the nontrivial primaries. The number 4371 is the dimension of the

other primary. Both these numbers are related to the Baby Monster, the second largest

sporadic group.

Indeed, there is a Baby Monster Vertex Operator Algebra V IB\ [15] with central charge
47
2 whose character (the “shorter Moonshine module”) has the expansion:

χV IB\ = q−
47
48

(
1 + 4371q

3
2 + 96256q2 + 1143745q

5
2 + · · ·

)
(3.35)

This can be rewritten:

χV IB\ = q−
47
48
(
1 + 96256q2 + · · ·

)
+ q

25
48 (4371 + 1143745q + · · · )

= χ0(q) + χ2(q)
(3.36)

where the second line is a sum of two of the characters of our 3-character c = 47
2 theory.

Moreover the three characters χ̃0, χ̃1, χ̃2 of the c = 47
2 theory discussed above appear in
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eq. (4.13) of ref. [15] (see also ref. [18]) as the modules V IB\(0), V IB\(2), V IB\(1) respec-

tively. The bilinear relation eq. (3.8) for this case will then decompose the dimensions of

representations of the Monster in terms of those of the Baby Monster.

The dual relation between the Ising model and the above theory seems to originate in

the fact that the Moonshine Module is itself a sum of irreducible characters of 48 copies

of the Ising model, as shown in ref. [19].2 Indeed this observation was relevant for the

subsequent work of Höhn on the c = 47
2 “Baby Monster” module. Nevertheless, the way

we have discovered the Baby Monster as a three-character RCFT without a Kac-Moody

algebra, which pairs with Ising model to give the Moonshine character, could provide a

simple method to reproduce some of the results of ref. [15], add new perspectives and give

rise to generalisations.

3.4 Beyond three characters

Our results lead one to ask whether other minimal models have duals of the sort we have

found. The next unitary minimal model,M4,5 (the tri-critical Ising model) has 6 characters

and a central charge of 7
10 . If it has a dual in our sense (with which it obeys a bilinear

identity giving the Moonshine Module) then that theory must have six characters as well,

and a central charge c = 233
10 . It is easy to verify using α0+α̃0 = −1, αi+α̃i = 1, i = 1, . . . , 5

that the potential dual has ` = 6 which means the coefficients in its differential equation

can have `
6 = 1 full singularity in moduli space. This allows a rather large number of

independent coefficient functions, hence the free parameters in the differential equation

cannot be completely determined by the conjectured exponents α̃i. Thus we have no

obvious way of generating the q-series for the possible dual characters and verifying their

integrality. The situation gets even more complicated for other unitary minimal models. In

short, for the moment we have no way to support nor exclude the existence of such duals

for unitary minimal models other than the Ising model.

There are, however, a couple of non-unitary four-character minimal models and we

can test for the existence of dual pairs for these models. One of these has (p, p′) = (2, 9).

Its central charge is c = −46
3 and the three non-trivial primaries have conformal dimen-

sions (h1, h2, h3) =
(
−1

3 ,−
5
9 ,−

2
3

)
. If this is to have a dual with respect to the Moon-

shine CFT, the dual theory should have central charge c̃ = 118
3 and conformal dimen-

sions (h̃1, h̃2, h̃3) =
(
7
3 ,

23
9 ,

8
3

)
. This data is sufficient to determine the differential equa-

tion and compute the characters upto normalisation. We insert arbitrary normalisations

D̃i, i = 1, 2, 3 for the putative dual characters corresponding to the primaries of dimensions

h̃i. Requiring eq. (3.8) with p = 4 to hold upto the first three orders in q determines these

degeneracies to be (D̃1, D̃2, D̃3) = (445096,−2351268, 2114206). As a consistency check,

inserting these values one finds that the excited-state degeneracies of the non-identity char-

acters all become integers (though sometimes negative, as we have seen before for the non-

unitary case). Finally, computing the l.h.s. of eq. (3.8) and subtracting it from j(q)− 744,

one finds a vanishing answer upto O(q1000). Thus the dual pairing of the previous sections

persists for this model.

2We thank Matthias Gaberdiel for bringing this fact and this reference to our attention.
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Finally, we consider the case with (p, p′) = (3, 5). Here the central charge is c = −3
5 and

the three non-trivial primaries have conformal dimensions (h1, h2, h3) =
(
− 1

20 ,
1
5 ,

3
4

)
. Then

the dual should have central charge c̃ = 123
5 and dimensions (h̃1, h̃2, h̃3) =

(
41
20 ,

9
5 ,

5
4

)
. Re-

peating the above procedures again gives rise to integer primary degeneracies (D̃1, D̃2, D̃3) =

(99180,−22591,−492). Using these we have verified that the miraculous dual pairing holds.

In summary, both the four-character minimal models are found to have a dual (at least at

the level of characters) satisfying eq. (3.8). This strongly suggests that the phenomenon

of dual pairing that we have identified may persist in all minimal models, including the

unitary ones.

4 Summary and discussion

In this section we summarise the emerging picture and propose possible lines of further

investigation. We have classifed all two-character RCFT’s with no Kac-Moody algebra for

` ≤ 2 (` = 0, 3 were already done) and all three-character RCFT’s with the same property

for ` = 0 (the latter, under the assumption that our computation upto m2 = 2, 000, 000

is sufficient). The restriction to low values of ` is due to the fact that the method of

modular-invariant differential equations is most restrictive in these cases and allows efficient

construction of candidate characters given only the critical exponents.

Within this set of systems, we found the expected unitary and non-unitary minimal

models (precisely those with two and three characters) as well as dual theories in every

case, although the duals for non-unitary minimal models have negative integer degeneracies.

Each model and its dual satisfies a bilinear pairing identity equating it to the Moonshine

Module. This pairing is reminiscent of that recently found in ref. [14] between an affine

theory and the coset of a meromorphic theory by that affine theory, although affine Lie

algebras play no role in the present case — by construction. We also looked at two non-

unitary four-character cases and found that the same miracle occurs.

The structure that we uncovered is interesting from the mathematical point of view

as well, since our unitary example is a known theory related to the Baby Monster module,

and our pairing decomposes representations of the Monster into the Baby Monster. It

would be interesting to know if more such unitary pairs of theories exist, as well as their

possible mathematical implications. Unfortunately as explained above, our approach based

on differential equations does not work in a straightforward way for any other unitary

minimal model besides the Ising model, since the following cases cannot be treated by the

differential equations technique. Conceivably there may be a different way to address the

question for these minimal models.
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A Conventions and useful formulae

The relevant Eisenstein series used in this paper, normalised so that their first term is

unity, have the series expansion:

E2 = 1− 24
∞∑
n=1

nqn

1− qn
= 1− 24

∞∑
n=1

σ1(n)qn

E4 = 1 + 240

∞∑
n=1

n3qn

1− qn
= 1 + 240

∞∑
n=1

σ3(n)qn

E6 = 1− 504

∞∑
n=1

n5qn

1− qn
= 1− 504

∞∑
n=1

σ5(n)qn

where

σp(n) =
∑
d|n

dp

E4 and E6 can be expressed in terms of Jacobi θ-functions:

E4 =
1

2

4∑
ν=2

(
θν(0|τ)

)8
E6 =

√
E3

4 −
27

4
(θ2θ3θ4)8

The explicit expansion of these series to a few finite orders is:

E2 = 1− 24q − 72q2 − 96q3 − 168q4

E4 = 1 + 240q + 2160q2 + 6720q3 + 17520q4

E6 = 1− 504q − 16632q2 − 122976q3 − 532728q4
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