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Abstract. In a two-dimensional space domain, we consider a reaction-diffusion equa-

tion whose diffusion term is a time convolution of the Laplace operator against a nonin-

creasing summable memory kernel k. This equation models several phenomena arising

from many different areas. After rescaling k by a relaxation time ε > 0, we formulate

a Cauchy-Dirichlet problem, which is rigorously translated into a similar problem for

a semilinear hyperbolic integro-differential equation with nonlinear damping, for a par-

ticular choice of the initial data. Using the past history approach, we show that the

hyperbolic equation generates a dynamical system which is dissipative provided that ε is

small enough, namely, when the equation is sufficiently “close” to the standard reaction-

diffusion equation formally obtained by replacing k with the Dirac mass at 0. Then, we

provide an estimate of the difference between ε-trajectories and 0-trajectories, and we

construct a family of regular exponential attractors which is robust with respect to the

singular limit ε → 0. In particular, this yields the existence of a regular global attractor
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of finite fractal dimension. Convergence to equilibria is also examined. Finally, all the

results are reinterpreted within the original framework.
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1. Introduction. Let Ω ⊂ R
N be a bounded domain with smooth boundary ∂Ω. A

very well-known equation ruling the evolution of a function u : Ω × [0,∞) → R is the

semilinear parabolic equation

∂tu−Δu+ φ(u) = 0, (1.1)

where φ is a nonlinear smooth function whose typical form is an odd polynomial with pos-

itive leading coefficient. This equation, which accounts for diffusion and reaction effects,

serves as a model for several different phenomena arising, for instance, from Physics,

Chemistry, and Biology. Its mathematical properties have been widely investigated in

previous decades by a large number of authors who proved, in particular, several re-

sults about the asymptotic behavior of solutions (e.g., [2, 4, 27, 30, 31, 40]). On the

other hand, from the physical viewpoint, equation (1.1) presents somehow a major flaw

since, due to its purely parabolic character, it predicts an infinite speed of propagation

of disturbances, which obviously cannot occur in the real phenomena. A reasonable and

physically meaningful way to avoid this unpleasant feature is to assume a delay mech-

anism preventing instantaneous regularization effects, meaning that the actual value of

u(t) is influenced by its past history u(τ ), τ < t, which produces an inertial effect. Along

this line, a quite interesting and mathematically challenging modification of (1.1) is the

reaction-diffusion equation with memory

∂tu−
∫ t

0

k(s)Δu(t− s)ds+ φ(u) = 0, (1.2)

where k : [0,∞) → [0,∞) is a nonincreasing summable kernel. This equation is hyper-

bolic in the sense that the energy of a initial given perturbation in a bounded subset

of Ω propagates with finite speed (see [16] and references therein). In particular, in the

simple, albeit basic, case

k(t) =
1

ε
e−

t
ε ,
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for some given ε ∈ (0, 1], called relaxation time, equation (1.2) can be formally trans-

formed into the hyperbolic equation

ε∂ttu−Δu+ (1 + εφ′(u))∂tu+ φ(u) = 0, (1.3)

which, provided that φ′ is bounded from below, becomes dissipative for small values of

ε. However, if k reduces to the Dirac mass at 0 (i.e., the past memory is lost), we recover

(1.1). This suggests that (1.1) is a good approximation of (1.2) when the system keeps a

very short memory. If so, then it is reasonable to work with (1.1) in place of (1.2), with

the great advantage of handling a much simpler equation.

Concerning concrete applications, (1.2) has been proposed as a model of viscoelas-

tic fluids [8, 11, 35]. Alternatively, it can be viewed as a semilinear (hyperbolic) heat

equation based on the Gurtin-Pipkin heat conduction law [18, 22, 34], or as a simple

model for chemosensitive movements [28, 29]. Its relevance has been further underlined

in a series of papers (see [10, 32, 33] and references therein). In those contributions,

the authors refer to (1.3) as a hyperbolic reaction-diffusion equation, and they show how

it can be used to describe a number of phenomena of biological and chemical interest,

such as chemically reacting systems, gene selection, population dynamics, and forest fire

propagation. Despite these attractive features, very few rigorous mathematical results

are available so far. Regarding existence and uniqueness, some theorems can be found

in [1], where (1.2) is incorporated in a phase-field system and φ is allowed to be a max-

imal monotone graph. In [6, 18], the infinite time delay version of (1.2) is shown to

generate a dynamical system in the history space framework. In particular, considering

the rescaling kε(s) = ε−1k(s/ε) of the original kernel k, with a small parameter ε > 0,

the paper [6] establishes the convergence on finite time intervals of the solutions to (1.2)

to the solutions to (1.1) in the limit ε → 0, provided that the initial data are regular

enough. Moreover, in the one-dimensional case, [21] proves the existence of the global

attractor for small values of ε, exploiting the precompact pseudometric technique [23],

but without any regularity result. We remark that, in [6, 21], the phase space for u is

L2(Ω). In this functional setting, it seems particularly hard to find satisfactory global

asymptotic results, such as the existence of regular global attractors or of exponential

attractors. Nonetheless, if we work in the smaller phase space H1(Ω), as [18] does, then

we can appeal to a more familiar hyperbolic formulation, close to (1.3). In which case, a

small relaxation time ε is needed in order to have dissipativity. This is motivated by the

recent papers [15, 36, 37], focused on (1.3) in different space dimensions, with 1+ εφ′(u)

replaced by a generic damping coefficient σ(u) ≥ σ0 > 0. These papers shed a new

light on the approach devised in [18], based on the reformulation of equation (1.2) as a

hyperbolic equation similar to (1.3), but also containing a convolution term.

The present work is devoted to a detailed investigation of the two-dimensional case,

which is of particular interest for biological and chemical applications. The main goal is

the analysis of the longtime behavior of solutions, with special regard to their dependence

on ε, in the spirit of [6, 9, 14, 24]. More precisely, we compare in a quantitative way the

closeness of the global dynamics of (1.2) and (1.1). As a consequence, it will be clear that

the latter equation can be viewed as a good approximation of (1.2) when k is rapidly

fading (short memory), not only on finite time intervals, but also asymptotically. In this
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framework, we can no longer speak in terms of dynamical systems. Thus, we need to

rephrase some notions like, for instance, the one of exponential attractor. Nonetheless,

the past history approach, which allows the use of the semigroup language, is hidden in

the proofs, and all the results can be formulated for the infinite delay version of (1.2) as

well. Finally, we remark that the presence of an extra source term (even time-dependent)

in the equation can be handled without significant changes in the proofs.

We can now enter the details. Let Ω ⊂ R
2 be a bounded domain with smooth boundary

∂Ω; then, for t > 0 and ε ∈ (0, 1], we consider the following integro-differential equation

of Volterra type for the unknown variable u = u(x, t) : Ω× [0,∞) → R:

∂tu(t)−
∫ t

0

kε(s)Δu(t− s)ds+ φ(u(t)) = 0, (1.4)

supplemented with the initial and boundary value conditions⎧⎨
⎩
u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
(1.5)

where u0 is assumed to be known, and

kε(s) =
1

ε
k
(s
ε

)

is the rescaling of a nonincreasing and summable memory kernel k : [0,∞) → [0,∞),

subject to the normalization condition∫ ∞

0

k(s)ds = 1.

We also assume that k′ is summable and absolutely continuous on R
+ = (0,∞), and

satisfies the differential inequality

k′′(s) + αk′(s) ≥ 0 (1.6)

for some α > 0 and almost every s > 0. This includes in the picture, among others,

exponential kernels. In the (singular) limit ε → 0, the kernel kε converges in the sense

of distribution to the Dirac mass at 0. Accordingly, (1.4) formally reduces to (1.1).

Plan of the paper. The next section essentially contains the basic assumptions on the

nonlinearity φ. Section 3 contains the main results stated for the Volterra equation (1.4)

endowed with the initial and boundary value conditions (1.5). In particular, Theorem 3.7

is concerned with the existence of a family of sets with finite fractal dimension which are

compact inH1
0 (Ω) and attract exponentially fast any set of initial data bounded inH1

0 (Ω).

Moreover, the Hausdorff distance between such sets and a suitable exponential attractor

of the corresponding limiting equation (1.1) can be controlled by a constant times a

certain power of ε. A useful continuous dependence estimate is proved in Section 4,

while Section 5 is devoted to establishing the equivalence of (1.4)–(1.5) with a hyperbolic

integro-differential equation similar to (1.3). The latter equation is analyzed in Section 6,

where, for any ε ∈ (0, 1], it is shown to generate a semigroup Sε(t), acting on the

extended phase space which accounts for the past history. Sections 7 and 8 are concerned

with the dissipativity properties of Sε(t) when ε is small enough, i.e., the existence
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of bounded absorbing sets. A particularly useful continuous dependence estimate is

obtained in Section 9, but the crucial properties are demonstrated in Section 10 (existence

of a compact exponentially attracting set) and in Section 11 (estimate of the difference

between ε-trajectories and 0-trajectories). In Section 12, we collect all the previous

results and prove the existence of a family of exponential attractors which is robust as

ε goes to 0. Section 13 is dedicated to some properties of the global attractor and to

the convergence to single equilibria via the �Lojasiewicz-Simon inequality. Finally, in

Section 14, we rephrase all the main theorems obtained in the history space setting in

terms of the original problem (1.4)–(1.5).

2. Notation and basic assumptions. Given a Banach space X, we denote by δX
and δsymX the usual Hausdorff semidistance and the symmetric Hausdorff distance in X,

respectively.

Setting (H0, ‖ · ‖, 〈·, ·〉) = L2(Ω), we consider the selfadjoint operator

−Δ : H2(Ω) ∩H1
0 (Ω) ⊂ H0 → H0.

Then, for every r ∈ R, we define the scale of Hilbert spaces

Hr = dom((−Δ)
r
2 ), 〈u1, u2〉Hr = 〈(−Δ)

r
2 u1, (−Δ)

r
2 u2〉.

In particular,

H−1 = H−1(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω).

The symbol 〈·, ·〉 will also be used for duality.

Being in space dimension two, we will often exploit the continuous embeddings

H1 ⊂ Lp(Ω), p ≥ 1,

as well as the Gagliardo-Nirenberg inequality

‖u‖L2p ≤ C‖u‖ 1
p ‖∇u‖1− 1

p , p ≥ 1. (2.1)

Throughout the paper, the symbols C and Q will stand for a generic constant and a

generic positive increasing function, respectively, both independent of ε.

Assumptions on φ. Let φ ∈ C3(R), with φ(0) = 0, be such that

lim inf
|u|→∞

φ(u)

u
> −λ1, (2.2)

where λ1 is the first eigenvalue of −Δ, and

φ′(u) ≥ −	, (2.3)

for some 	 ≥ 0. We also require that there exist L > 	 and γ ∈ (0, 1] such that

|φ′′(u)| ≤ C[L+ φ′(u)]1−γ . (2.4)

In particular, (2.4) implies that

|φ′(u)| ≤ C
(
1 + |u| 1γ

)
. (2.5)

We can immediately assert that any odd polynomial vanishing at zero with positive

leading coefficient is an allowed nonlinearity. This includes the physically significant case

of the derivative of the double-well potential, namely, φ(u) = u3 − u.
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3. Statements of the main results. We first stipulate the definition of a (weak)

solution to (1.4)–(1.5).

Definition 3.1. A function

u ∈ L∞([0, T ], H1)

is a solution to (1.4)–(1.5) on the time interval [0, T ] if u(0) = u0 and, for every t ∈ (0, T ]

and every test function w ∈ H1,

〈∂tu(t), w〉+
∫ t

0

kε(s)〈∇u(t− s),∇w〉ds+ 〈φ(u(t)), w〉 = 0.

Note that, by comparison, ∂tu ∈ L∞([0, T ], H−1). Hence, u ∈ C([0, T ], H0), so that

the initial condition is well defined.

Proposition 3.2. For any T > 0 and any ε ∈ (0, 1], problem (1.4)–(1.5) has a unique

solution u on [0, T ]. Moreover,

∂tu ∈ L∞([0, T ], H0).

Due to this last control and the polynomial growth of φ, we learn from (1.4) that
∫ t

0

kε(s)Δu(t− s)ds ∈ L∞([0, T ], H0).

As a consequence, we obtain the following straightforward corollary.

Corollary 3.3. A weak solution to (1.4)–(1.5) is also strong. Namely, it solves (1.4)

almost everywhere.

The existence and uniqueness (in fact, continuous dependence) result in H1 is well-

known to hold also for the limiting situation corresponding to ε = 0, that is, for equation

(1.1) with initial and boundary conditions (1.5). In that case, however, one has less

regularity for ∂tu, namely, ∂tu ∈ L∞([0, T ], H−1).

In light of these facts, for every ε ∈ [0, 1], we introduce the one-parameter family of

operators

Uε(t) : H
1 → H1

defined as

Uε(t)u0 = u(t),

where u(t) is the unique solution at time t to (1.4) (to (1.1) if ε = 0), with initial and

boundary conditions (1.5). Note that, except in the limiting case ε = 0, where U0(t)

is a (strongly continuous) semigroup on H1, the family Uε(t) is not a semigroup, due

to the presence of the convolution integral. However, we can state a weaker continuous

dependence result which holds for all ε ∈ [0, 1].

Proposition 3.4. For every ε ∈ [0, 1] and every t ∈ [0, T ], we have the estimate

‖Uε(t)u1 − Uε(t)u2‖ ≤ Q(T )‖u1 − u2‖.

The next theorem provides an estimate of the closeness of the trajectories of (1.4) and

(1.1), originating from the same (smoother) initial data, on finite time intervals.
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Theorem 3.5. Let a < 1/4 be fixed. Then, for every ε ∈ (0, 1], t ∈ [0, T ], R > 0 and

u0 ∈ H2 such that

‖Δu0‖ ≤ R,

it follows that

‖∇Uε(t)u0 −∇U0(t)u0‖ ≤ Q(T +R)εa.

If ε is small enough, the long-term dynamics are confined in a bounded set, uniformly

with respect to ε. Precisely, fixing

ε0 ∈ (0, 1] such that α− ε0	 > 0,

we have

Theorem 3.6. There exists a bounded set B0 ⊂ H1 satisfying the following properties:

for every ε ∈ [0, ε0] and every bounded set B ⊂ H1, there exists t0 = t0(‖B‖H1) ≥ 0,

independent of ε, such that

Uε(t)B ⊂ B0, ∀t ≥ t0.

Moreover,

Uε(t)B0 ⊂ B0, ∀t ≥ 0.

Then, we state what is perhaps the main result of the paper.

Theorem 3.7. For every ε ∈ [0, ε0], there exists a set Kε, compact in H1 and bounded

in H2, satisfying the following properties:

(i) The fractal dimension of Kε in H1 is uniformly bounded with respect to ε.

(ii) The set Kε attracts any bounded subset B ⊂ H1 with an exponential rate which

is uniform with respect to ε; namely, there exists κ > 0 (independent of ε and of

the choice of B) such that

δH1

(
Uε(t)B,Kε

)
≤ Q(‖B‖H1)e−κt.

(iii) There exists τ > 0 such that

δsymH1

(
Kε,K0

)
≤ Cετ .

The last theorems deal with the asymptotic behavior of single trajectories. We denote

by S the set of stationary points or equilibria of (1.1), that is, the solutions to the elliptic

problem {
−Δu� + φ(u�) = 0,

u�
|∂Ω = 0.

Theorem 3.8. For every ε ∈ [0, ε0] and u0 ∈ H1, we have

lim
t→∞

[
inf

u�∈S
‖∇Uε(t)u0 −∇u�‖

]
= 0

and, if ε > 0,

lim
t→∞

‖∂tUε(t)u0‖ = 0.
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Remark 3.9. In particular, if S is a discrete set, it follows that

lim
t→∞

‖∇Uε(t)u0 −∇u�‖ = 0,

for some u� ∈ S, depending on ε ∈ [0, ε0] and on the choice of u0 ∈ H1.

Convergence of all trajectories to equilibria is, however, ensured, provided that the

nonlinearity φ is real analytic.

Theorem 3.10. Let φ be real analytic. Then, for every fixed ε ∈ [0, ε0] and u0 ∈ H1,

there exists u� ∈ S such that

‖∇Uε(t)u0 −∇u�‖ ≤ c

tθ
,

for some θ = θ(u�) > 0 and c = c(ε, u0) ≥ 0. If ε > 0, we also have

‖∂tUε(t)u0‖ ≤ c

tθ
.

The remainder of the paper is devoted to the proofs of the stated results.

4. The continuous dependence estimate. We begin to show that the solutions to

(1.4)–(1.5), if they exist, fulfill the continuous dependence estimate provided by Propo-

sition 3.4. We need a preliminary lemma.

Lemma 4.1. For ε ∈ (0, 1] and u ∈ L∞([0, T ], H1), set

J (t, s) =
∥∥∥
∫ s

0

∇u(t− y)dy
∥∥∥2,

and define the positive functionals

Ψ0(u(t)) = kε(t)J (t, t)−
∫ t

0

k′ε(s)J (t, s)ds

and

Ψ1(u(t)) = −1

2
k′ε(t)J (t, t) +

1

2

∫ t

0

k′′ε (s)J (t, s)ds.

Then, for every t ∈ [0, T ], the following equality holds:

−
∫ t

0

kε(s)〈Δu(t− s), u(t)〉ds = 1

2

d

dt
Ψ0(u(t)) + Ψ1(u(t)).

Proof. By direct computation, using the properties of kε(s) and integration by parts.

Note that all the terms are well defined, thanks to the regularity of u. �

Proposition 4.2. Let ε ∈ [0, 1] be fixed, and let u1, u2 ∈ L∞([0, T ], H1) be two solutions

to (1.4) on [0, T ] with initial data u1 and u2, respectively. Then, for every t ∈ [0, T ],

‖u1(t)− u2(t)‖ ≤ Q(T )‖u1 − u2‖.

Proof. Fix ε ∈ (0, 1] (the case ε = 0 is well known), and denote ū(t) = u1(t)− u2(t).

Taking the difference in (1.4), we are led to

∂tū−
∫ t

0

kε(s)Δū(t− s)ds+ φ(u1)− φ(u2) = 0.
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Multiplying the equation by ū, and using the preceding lemma, we obtain the equality

1

2

d

dt

[
‖ū‖2 +Ψ0(ū)

]
+Ψ1(ū) + 〈φ(u1)− φ(u2), u〉 = 0.

Due to (2.3),

〈φ(u1)− φ(u2), ū〉 ≥ −	‖ū‖2.
Thus, using the fact that Ψ0(ū) and Ψ1(ū) are positive, we end up with the differential

inequality
d

dt

[
‖ū‖2 +Ψ0(ū)

]
≤ 2	

[
‖ū‖2 +Ψ0(ū)

]
.

Since Ψ0(ū(0)) = 0, the conclusion follows from the Gronwall lemma. �

5. An equivalent problem. In order to proceed with the investigation, it is con-

venient to work with a reformulated version of the original problem (1.4)–(1.5). To this

end, we differentiate (1.4) with respect to time, thus obtaining

∂ttu− kε(0)Δu−
∫ t

0

k′ε(s)Δu(t− s)ds+ φ′(u)∂tu = 0.

Choosing now

β ∈ (0, α),

we multiply the equation above times ε, and we add the result to (1.4) times β. This pro-

cedure leads to the following integro-differential wave equation with nonlinear damping:

ε∂ttu− k(0)Δu+ σε(u)∂tu+

∫ t

0

με(s)Δu(t− s)ds+ βφ(u) = 0, (5.1)

supplemented with Dirichlet boundary conditions, where we defined

με(s) = −εk′ε(s)− βkε(s)

and

σε(u) = β + εφ′(u).

Properties of με. Calling

μ(s) = −k′(s)− βk(s),

it turns out that

με(s) =
1

ε
μ
(s
ε

)
.

The function μ is summable, absolutely continuous and nonincreasing on R
+ (hence,

nonnegative and vanishing at infinity). Indeed, in light of (1.6), and since β < α,

μ′(s) = −k′′(s)− βk′(s) ≤ −k′′(s)− αk′(s) ≤ 0.

Furthermore, setting

δ = α− β > 0,

the differential inequality

μ′(s) + δμ(s) = −k′′(s)− αk′(s)− δβk(s) ≤ −k′′(s)− αk′(s) ≤ 0
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holds for almost every s > 0. Thus, for every ε ∈ (0, 1] and almost every s > 0,

μ′
ε(s) +

δ

ε
με(s) ≤ 0. (5.2)

As a consequence, if s ≥ s0 > 0,

με(s) ≤ με(s0)e
− δ

ε (s−s0). (5.3)

Properties of σε. On account of (2.3) and (2.5), we have that

σε(u) ≤ C
(
1 + |u| 1γ

)
(5.4)

and

σε(u) ≥ β − ε	 ≥ −ε	. (5.5)

Hence, setting ε0 ∈ (0, 1] such that

σ0 = β − ε0	 > 0, (5.6)

we obtain the control

σε(u) ≥ σ0, ∀ε ∈ (0, ε0]. (5.7)

Finally, by (2.4), up to possibly enlarging C,

|σ′
ε(u)| ≤ C[σε(u)]

1−γ , ∀ε ∈ (0, ε0]. (5.8)

Remark 5.1. In fact, since our scheme works for all β < α, any ε0 ∈ (0, 1] such that

α− ε0	 > 0 will do.

Definition 5.2. A couple (u, ∂tu) with

u ∈ L∞([0, T ], H1), ∂tu ∈ L∞([0, T ], H0)

is a solution to (5.1) on the time interval [0, T ] with initial data (u0, v0) ∈ H1 × H0 if

u(0) = u0, ∂tu(0) = v0 and, for every t ∈ (0, T ] and every test function w ∈ H1,

ε〈∂ttu,w〉−k(0)〈∇u,∇w〉+ 〈σε(u)∂tu,w〉−
∫ t

0

με(s)〈∇u(t−s),∇w〉ds+β〈φ(u), w〉 = 0.

Again, due to the control ∂ttu ∈ L∞([0, T ], H−1), which is read from the equation,

together with the standard embeddings, the initial conditions make sense.

The next step is to establish a relationship between the two formulations.

Proposition 5.3. Let (u, ∂tu) ∈ L∞([0, T ], H1)× L∞([0, T ], H0) be a solution to (5.1)

on [0, T ] with u(0) = u0 ∈ H1 and ∂tu(0) = −φ(u0) ∈ H0. Then, u is a solution to (1.4)

on [0, T ] with u(0) = u0.

Remark 5.4. On account of this result and Proposition 4.2, Proposition 3.2 is proved

once we exhibit the existence of a solution to (5.1) with initial data (u0,−φ(u0)). As a

byproduct, such a solution to (5.1) is necessarily unique.

Proof. Let (u, ∂tu) be a solution to (5.1) on [0, T ] with initial data (u0,−φ(u0)). Given

any w ∈ H1, let us define

F(t) = 〈∂tu(t), w〉+
∫ t

0

kε(s)〈∇u(t− s),∇w〉ds+ 〈φ(u(t)), w〉.
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Then, u is a solution to (1.4) with initial datum u0 if and only if F(t) = 0 for all t ∈ [0, T ]

and every w ∈ H1. On the other hand, since u solves (5.1), we have that

ε
d

dt
F(t) + βF(t) = 0

for all t ∈ [0, T ] and every w ∈ H1. Therefore,

F(t) = F(0)e−
β
ε t.

Since

F(0) = 〈∂tu(0), w〉+ 〈φ(u0), w〉 = 0,

we conclude that F(t) = 0. �
In fact, in the subsequent section, we will provide an existence and uniqueness result

for a system of differential equations of which (5.1) is a particular case.

6. A dynamical system in the history space framework. For ε ∈ (0, 1] and

r ∈ R, we introduce the L2-weighted space

Mr
ε = L2

με
(R+, Hr+1),

endowed with the inner product

〈η1, η2〉Mr
ε
=

∫ ∞

0

με(s)〈η1(s), η2(s)〉Hr+1ds,

and we denote by

Tε : dom(Tε) ⊂ M0
ε → M0

ε

the infinitesimal generator of the strongly continuous semigroup of right translations on

M0
ε, namely,

Tεη = −Dη, dom(Tε) = {η ∈ M0
ε : Dη ∈ M0

ε, η(0) = 0},
where D denotes the distributional derivative, and the equality η(0) = 0 is understood

as lims→0 ‖η(s)‖M0
ε
= 0. If η ∈ dom(Tε), on account of (5.2), we have the relation (see

[20])

〈Tεη, η〉M0
ε
=

1

2

∫ ∞

0

μ′
ε(s)‖∇η(s)‖2ds ≤ − δ

2ε
‖η‖2M0

ε
. (6.1)

Given T > 0 and

u ∈ L∞([0, T ], H1) ∩W 1,∞([0, T ], H0),

the Cauchy problem {
∂tη

t = Tεη
t + ∂tu(t), t > 0,

η0(s) = η0(s) ∈ M0
ε,

in the unknown variable η = ηt(x, s) : Ω× R
+ × [0, T ] → R, has a unique mild solution

η ∈ C([0, T ],M0
ε) in the sense of [39], which has the explicit representation formula

[20, 38]

ηt(s) =

{
u(t)− u(t− s), 0 < s ≤ t,

η0(s− t) + u(t)− u(0), s > t.
(6.2)

Observe that the variable η, first introduced by Dafermos [7] to deal with problems with

memory, is ruled by the past history of u.
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At this point, for every ε ∈ (0, 1], we define the product Hilbert space

Hr
ε = Hr+1 ×Hr ×Mr

ε,

normed by

‖(u, v, η)‖2Hr
ε
= β‖u‖2Hr+1 + ε‖v‖2Hr + ‖η‖2Mr

ε
.

It is convenient to extend the definition for ε = 0 as

Hr
0 = Hr+1 × {0} × {0}.

Given ε ∈ (0, 1] and (u0, v0, η0) ∈ H0
ε, we consider, for t > 0, the system in the so-called

history space framework⎧⎨
⎩
ε∂ttu+ σε(u)∂tu− βΔu−

∫ ∞

0

με(s)Δη(s)ds+ βφ(u) = 0,

∂tη = Tεη + ∂tu,
(6.3)

satisfying the initial conditions

(u(0), ∂tu(0), η
0) = (u0, v0, η0).

Definition 6.1. A triplet (u, ∂tu, η) with

u ∈ L∞([0, T ], H1), ∂tu ∈ L∞([0, T ], H0), η ∈ C([0, T ],M0
ε)

is a solution to (6.3) on the time interval [0, T ] with initial data (u0, v0, η0) ∈ H0
ε if

u(0) = u0, ∂tu(0) = v0, η
0 = η0, and, for every t ∈ (0, T ], u solves the first equation in

the variational sense, and η is given by (6.2).

We now dwell on the particular instance of (6.3) with initial data of the form (u0, v0, u0).

In that case, (6.2) reads

ηt(s) =

{
u(t)− u(t− s), 0 < s ≤ t,

u(t), s > t.

Accordingly,

−
∫ ∞

0

με(s)Δηt(s)ds = −[k(0)− β]Δu(t) +

∫ t

0

με(s)Δu(t− s)ds.

We summarize this discussion into the following corollary.

Corollary 6.2. Let (u, ∂tu, η) be a solution to (6.3) on [0, T ] with initial data (u0, v0, u0).

Then (u, ∂tu) is a solution to (5.1) on [0, T ] with initial data (u0, v0).

Problem (6.3) without memory, namely, the wave equation with nonlinear damping,

was studied in [36] (see also [37] for the three-dimensional case), under suitable assump-

tions on the damping term. The existence and uniqueness of a solution to (6.3) for all

ε ∈ (0, 1] is established in the following theorem.

Theorem 6.3. For every ε ∈ (0, 1] and every T > 0, (6.3) has a unique solution z(t) =

(u(t), ∂tu(t), η
t) on [0, T ] with initial data (u0, v0, η0) ∈ H0

ε. Moreover, calling zi =

(ui, ∂tu
i, ηi), with i = 1, 2, two solutions corresponding to the initial data zi = (ui, vi, ηi)

with ‖zi‖H0
ε
≤ R, the continuous dependence estimate

‖z1(t)− z2(t)‖H−1
ε

≤ Q
(
T +R+ 1

ε

)
‖z1 − z2‖H0

ε
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holds for every t ∈ [0, T ].

Proof. Throughout this proof, the generic constant C may depend (increasingly) on

T and R. The existence of a solution on [0, T ] is established by means of a Galerkin

approximation scheme (cf. [17, 38]), leaning on the energy estimate

‖z(t)‖H0
ε
≤ C, ∀t ∈ [0, T ], (6.4)

given by the subsequent Remark 7.3. Perhaps, the only nontrivial point in the passage

to the limit is to identify the term 〈σε(u)∂tu,w〉. Indeed, we have an approximating

sequence un that, up to a subsequence, converges to u almost everywhere in Ω × [0, T ].

Besides, un is bounded in every Lp(Ω× [0, T ]). Introducing

Σ(u) =

∫ u

0

σε(y)dy,

and choosing any function q ∈ C∞
cpt([0, T ]), we have (as n → ∞)

∫ T

0

〈σε(u
n(t))∂tu

n(t), q(t)w〉dt =
∫ T

0

〈∂tΣ(un(t)), q(t)w〉dt

= −
∫ T

0

〈Σ(un(t)), q′(t)w〉dt

→ −
∫ T

0

〈Σ(u(t)), q′(t)w〉dt

=

∫ T

0

〈σε(u(t))∂tu(t), q(t)w〉dt,

since Σ(un) → Σ(u) almost everywhere in Ω × [0, T ] and, thanks to (5.4), Σ(un) is

uniformly bounded (with respect to n) in L1+ 1
γ (Ω× [0, T ]).

The proof of the continuous dependence closely follows the analogous ones presented

in [36, 37]. For the reader’s convenience, we report it in some detail. Denote

z̄(t) = (ū(t), ∂tū(t), η̄
t) = z1(t)− z2(t).

Integrating (6.3) on (0, t), the functions

w(t) =

∫ t

0

ū(τ )dτ and ψt(s) =

∫ t

0

η̄τ (s)dτ

solve the system

⎧⎨
⎩
ε∂ttw +Σ(u1)− Σ(u2)− βΔw −

∫ ∞

0

με(s)Δψ(s)ds = F +G,

∂tψ = Tεψ + ∂tw + η̄0 − ū(0),
(6.5)

having defined

F (t) = −β

∫ t

0

[φ(u1(τ ))− φ(u2(τ ))]dτ, G = Σ(u1)− Σ(u2) + ε∂tū(0).
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Multiplying the first equation of (6.5) by ∂tw = ū and the second by ψ in M0
ε, and using

(6.1), we obtain

1

2

d

dt
‖ζ‖2H0

ε
+

δ

2ε
‖ψ‖2M0

ε
≤ −〈Σ(u1)− Σ(u2), ū〉+ 〈η̄0 − ū(0), ψ〉M0

ε

+
d

dt
〈F,w〉+ d

dt
〈G,w〉 − 〈∂tF,w〉,

where we set

ζ(t) = (w(t), ∂tw(t), ψ
t).

In light of (5.5),

−〈Σ(u1)− Σ(u2), ū〉 ≤ ε	‖ū‖2.
Besides,

〈η̄0 − ū(0), ψ〉M0
ε
≤ δ

2ε
‖ψ‖2M0

ε
+ C‖z̄(0)‖2H0

ε
.

Thus, an integration in time over (0, t), with t ≤ T , leads to

1

2
‖ζ(t)‖2H0

ε
≤ C‖z̄(0)‖2H0

ε
+ ε	

∫ t

0

‖ū(τ )‖2dτ + 〈F (t), w(t)〉

+ 〈G,w(t)〉 −
∫ t

0

〈∂tF (y), w(y)〉dy

≤ 1

4
‖ζ(t)‖2H0

ε
+ C‖z̄(0)‖2H0

ε
+ C

∫ t

0

‖ζ(τ )‖2H0
ε
dτ

+ C
(
‖F (t)‖2H−1 + ‖G‖2H−1 +

∫ t

0

‖∂tF (τ )‖2H−1dτ
)
.

On account of (2.5), (5.4), and (6.4), we have

‖F (t)‖2H−1 + ‖G‖2H−1 +

∫ t

0

‖∂tF (τ )‖2H−1dτ ≤ C‖z̄(0)‖2H0
ε
+

C

ε

∫ t

0

‖ζ(τ )‖2H0
ε
dτ.

Hence, we end up with the inequality

‖ζ(t)‖2H0
ε
≤ C‖z̄(0)‖2H0

ε
+

C

ε

∫ t

0

‖ζ(τ )‖2H0
ε
dτ,

and the Gronwall lemma yields

‖ū(t)‖2 ≤ ‖ζ(t)‖2H0
ε
≤ Ce

C
ε ‖z̄(0)‖2H0

ε
.

Then, the analogous control on ε‖∂tū‖H−1 = ε‖∂ttw‖H−1 is obtained by comparison in

the first equation of (6.5). Finally, using the representation formula (6.2) for η̄, we easily

recover the remaining estimate for ‖η̄‖M−1
ε
. �

In conclusion, for every ε ∈ (0, 1], system (6.3) generates a semigroup

Sε(t) : H0
ε → H0

ε

defined by

Sε(t)(u0, v0, η0) = (u(t), ∂tu(t), η
t).

We extend the definition to the case ε = 0 by introducing S0(t) : H0
0 → H0

0 as

S0(t)(u0, 0, 0) = (U0(t)u0, 0, 0).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



REACTION-DIFFUSION EQUATIONS WITH MEMORY 621

In the next sections, we will analyze the asymptotic properties of the family of semi-

groups Sε(t).

7. Dissipativity. Our first result details the dissipative character of Sε(t). The value

ε0 appearing here and in the sequel is given by (5.6).

Proposition 7.1. For every ε ∈ [0, ε0], the semigroup Sε(t) possesses an absorbing

set B
0
ε ⊂ H0

ε, which is bounded in H0
ε with a bound independent of ε. Precisely, for

any bounded set B ⊂ H0
ε, there exists a time t0 ≥ 0, depending on the norm of B but

independent of ε, such that

Sε(t)B ⊂ B
0
ε, ∀t ≥ t0.

The result is a direct consequence of the following lemma.

Lemma 7.2. There exists C0 ≥ 0 such that, for any ε ∈ [0, ε0],

‖Sε(t)z‖H0
ε
≤ Q(‖z‖H0

ε
)e−t + C0.

Moreover,

σ0

∫ ∞

0

‖∂tu(t)‖2dt ≤
∫ ∞

0

〈σε(u(t))∂tu(t), ∂tu(t)〉dt ≤ Q(‖z‖H0
ε
). (7.1)

Proof. We assume ε > 0, since the proof of the case ε = 0 is well known. Consider

the energy functional

L(t) = ‖Sε(t)z‖2H0
ε
+ 2β〈Φ(u(t)), 1〉,

with Φ(u) =
∫ u

0
φ(y)dy. In light of (2.2), there exists some ϑ > 0 such that

‖∇u‖2 + 2〈Φ(u), 1〉 ≥ 2ϑ‖∇u‖2 − C,

‖∇u‖2 + 〈φ(u), u〉 ≥ ϑ‖∇u‖2 − C.

Hence, using (2.5), and assuming without loss of generality that ϑ ≤ 1/2,

2ϑ‖Sε(t)z‖2H0
ε
− C ≤ L(t) ≤ Q(‖Sε(t)z‖H0

ε
) + C.

Multiplying the first equation of (6.3) by ∂tu in H0 and the second by η in M0
ε, thanks

to (6.1), we obtain
d

dt
L+ 2〈σε(u)∂tu, ∂tu〉+

δ

ε
‖η‖2M0

ε
≤ 0. (7.2)

Keeping in mind (5.7), an integration of (7.2) yields

‖Sε(t)z‖H0
ε
≤ Q(‖z‖H0

ε
), ∀t ≥ 0, (7.3)

together with the sought integral estimate (7.1). To complete the proof, for ω > 0 to be

fixed later, we define

Λ(t) = L(t) + 2ωε〈u(t), ∂tu(t)〉+ 2ω〈Υ(u(t)), 1〉,

with Υ(u) =
∫ u

0
yσε(y)dy. Since 〈Υ(u), 1〉 ≥ 0, it is easy to see that, for ω small enough,

ϑ‖Sε(t)z‖2H0
ε
− C ≤ Λ(t) ≤ Q(‖Sε(t)z‖H0

ε
) + C.
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Then, multiplying the first equation of (6.3) by ωu and adding the result to (7.2), we

have

d

dt
Λ + 2ωϑβ‖∇u‖2 + 2(σ0 − ωε)‖∂tu‖2 +

δ

ε
‖η‖2M0

ε
≤ −2ω〈η, u〉M0

ε
+ C.

Up to further reducing ω, we find the controls

ωϑ ≤ δ/2, 2(σ0 − ωε) ≥ ωϑε

and

−2ω〈η, u〉M0
ε
≤ δ

2ε
‖η‖2M0

ε
+ ωϑβ‖∇u‖2,

which lead to the differential inequality

d

dt
Λ(t) + ωϑ‖Sε(t)z‖2H0

ε
≤ C.

A generalized version of the Gronwall lemma (see [3]) provides the existence of C0 ≥ 0

and a time t0 = t0(‖z‖H0
ε
) > 0 such that

‖Sε(t)z‖H0
ε
≤ C0, ∀t ≥ t0.

Combining this estimate with (7.3), the conclusion follows. �
Remark 7.3. In fact, an energy estimate on finite time intervals holds for all ε ∈ [0, 1],

namely,

‖Sε(t)z‖H0
ε
≤ Q(T +R), ∀t ∈ [0, T ],

whenever ‖z‖H0
ε
≤ R. This is obtained reasoning as in the first part of the proof above;

the only difference is the role of the term 〈σε(u)∂tu, ∂tu〉 in (7.2), which, due to (2.3), is

now controlled as

−〈σε(u)∂tu, ∂tu〉 ≤ ε	‖∂tu‖2 ≤ 	L+ C.

The Gronwall lemma completes the argument.

8. Higher-order dissipativity. A further step is to prove the existence of an ab-

sorbing set in a more regular phase space compactly embedded into H0
ε. We first note

that, for ε > 0, the embedding H1
ε ⊂ H0

ε is not compact, due to the lack of compactness

of M1
ε ⊂ M0

ε (see [38]). Thus, following the lines of [6, 13], we introduce the Banach

space

Lε =
{
η ∈ M1

ε ∩ dom(Tε) : supx≥1 xT
ε
η(x) < ∞

}
,

where T
ε
η is the tail function of η, given by

T
ε
η(x) =

∫
(0, εx )∪(εx,∞)

με(s)‖∇η(s)‖2ds,

endowed with the norm

‖η‖2Lε
= ‖η‖2M1

ε
+ ‖η‖2ε,
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having set1

‖η‖2ε = ε2‖Tεη‖2M0
ε
+ sup

x≥1
xTε

η(x).

Finally, for ε > 0, we consider the Banach space

Zε = H2 ×H1 × Lε,

which, according to [6], is compactly embedded into H0
ε. Again, we extend the definition

to ε = 0 by setting Z0 = H1
0. The following fact has been mentioned in [6, 13] without

proof.

Proposition 8.1. Closed balls of Zε are compact in H0
ε.

Proof. We just have to prove that closed balls of Zε are closed in H0
ε. In fact, it is

enough to prove that closed balls centered at zero of Lε are closed in M0
ε. Let ηn ∈ Lε

be such that ‖ηn‖2Lε
≤ R and ηn → η in M0

ε. Then, up to a subsequence, ηn → η weakly

in the Hilbert space M1
ε ∩ H1

με
(R+, H1). Moreover, η(0) = 0, which can be argued by

using the fact that ‖ηn(s)‖H1 → 0 uniformly as s → 0 (cf. [20]). Hence,

‖η‖2M1
ε
+ ε2‖Tεη‖2M0

ε
≤ lim inf

n→∞

[
‖ηn‖2M1

ε
+ ε2‖Tεηn‖2M0

ε

]
.

The convergence in M0
ε implies that, for every y ≥ 1,

yTε
η(y) = lim inf

n→∞
yTε

ηn
(y) ≤ lim inf

n→∞

[
sup
x≥1

xTε
ηn
(x)

]
,

and, taking the supremum,

sup
x≥1

xTε
η(x) ≤ lim inf

n→∞

[
sup
x≥1

xTε
ηn
(x)

]
.

Collecting the two estimates above, we conclude that

‖η‖2Lε
≤ lim inf

n→∞

[
‖ηn‖2M1

ε
+ ε2‖Tεηn‖2M0

ε

]
+ lim inf

n→∞

[
sup
x≥1

xTε
ηn
(x)

]
≤ lim inf

n→∞
‖ηn‖2Lε

≤ R,

which proves the assertion. �
The higher-order dissipativity of Sε(t) reads as follows.

Proposition 8.2. For every ε ∈ [0, ε0], the semigroup Sε(t) maps Zε into Zε, and the

restriction of Sε(t) to Zε possesses a bounded absorbing set B
1
ε ⊂ Zε, with a bound

independent of ε.

The proof of this proposition will be carried out through several lemmas. In the

sequel, we will always assume ε ≤ ε0. We first report a generalized version of the

Gronwall lemma.

1 We take here the occasion to correct the definition of the higher norm of η adopted in [6, 13],
although the mistake was not influent in those papers. With this choice, the map η(s) �→ η(εs/ε0) is
an isometric isomorphism from Lε into Lε0 , which is onto if ε > 0. Thus, for every r > 0 and every
ε ∈ [0, ε0], the minimum number of r-balls of H0

ε needed to cover the unit ball of Zε is equal to (or
less than, if ε = 0) the minimum number of r-balls of H0

ε0
needed to cover the unit ball of Zε0 (see [6,

Theorem A.2]).
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Lemma 8.3. Let Λ : [0,∞) → [0,∞) be an absolutely continuous function satisfying

d

dt
Λ(t) + 2νΛ(t) ≤ h(t)Λ(t) + k,

where ν > 0, k ≥ 0 and
∫ t

s
h(τ )dτ ≤ ν(t − s) + m, for all t ≥ s ≥ 0 and some m ≥ 0.

Then,

Λ(t) ≤ Λ(0)eme−νt +
kem

ν
.

Lemma 8.4. Let p, q ≥ 1 be such that 1
p + 1

q = 2γ, with γ as in (5.8), and let a, b ∈ H1.

Then

〈[σ′
ε(u)]

2[σε(u)]
−1a2, b2〉 ≤ C〈σε(u)a, a〉1−2γ‖a‖ 2

q ‖b‖ 2
p ‖∇a‖ 2

p ‖∇b‖2− 2
p .

Proof. The Hölder inequality with exponents ( 1
1−2γ , p, q), along with (5.8), entail

〈[σ′
ε(u)]

2[σε(u)]
−1a2, b2〉 = 〈[σ′

ε(u)]
2[σε(u)]

−1a2−4γ , b2a4γ〉
≤ C〈σε(u)a, a〉1−2γ‖b‖2L2p‖a‖4γL4γq .

Exploiting (2.1),

‖b‖2L2p ≤ C‖b‖ 2
p ‖∇b‖2− 2

p

‖a‖4γL4γq ≤ C‖a‖ 2
q ‖∇a‖4γ− 2

q .

Collecting the estimates, and noting that 4γ − 2
q = 2

p , will do. �

Lemma 8.5. There exists ν1 > 0 such that

‖Sε(t)z‖H1
ε
≤ Q(‖z‖H1

ε
)e−ν1t +Q(R),

whenever z ∈ H1
ε with ‖z‖H0

ε
≤ R.

Proof. Assume ε > 0. In the proof, the generic constant C may depend (increasingly)

on R. Let z ∈ H1
ε be such that ‖z‖H0

ε
≤ R. In particular, from Lemma 7.2, we know

that ‖Sε(t)z‖H0
ε
≤ C. For ω > 0 to be fixed later, we introduce the functional

Λ(t) = ‖Sε(t)z‖2H1
ε
− 2β〈φ(u),Δu〉 − 2εω〈∂tu,Δu〉+ C.

Then, if ω is small enough and the constant C above is large enough,

1

2
‖Sε(t)z‖2H1

ε
≤ Λ(t) ≤ 2‖Sε(t)z‖2H1

ε
+ C.

Multiplying the first equation in (6.3) by −Δ∂tu − ωΔu in H0 and the second by η in

M1
ε, taking into account (5.7) and (6.1), and taking ω ≤ σ0/2, we obtain

dΛ

dt
+ 2ωβ‖Δu‖2 + σ0

2
‖∇∂tu‖2 +

δ

ε
‖η‖2M1

ε
(8.1)

≤ −2β〈φ′(u)∂tu,Δu〉+ 2ω〈σε(u)∂tu,Δu〉 − 2ω〈η, u〉M1
ε
+ 2ωβ〈φ(u),Δu〉

− 2〈σ′
ε(u)∂tu∇u,∇∂tu〉 − 〈σε(u)∇∂tu,∇∂tu〉.
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In light of (2.1),

−2β〈φ′(u)∂tu,Δu〉+ 2ω〈σε(u)∂tu,Δu〉 ≤ C‖∂tu‖
1
2 ‖∇∂tu‖

1
2 ‖Δu‖

≤ σ0

8
‖∇∂tu‖2 + C‖∂tu‖‖Δu‖2 + C

≤ σ0

8
‖∇∂tu‖2 +

ωβ

2
‖Δu‖2 + C‖∂tu‖2Λ + C.

Moreover,

2ωβ〈φ(u),Δu〉 ≤ ωβ

2
‖Δu‖2 + C,

and, up to reducing ω,

−2ω〈η, u〉M1
ε
≤ δ

2ε
‖η‖2M1

ε
+

ωβ

2
‖Δu‖2.

Finally, it is readily seen that

−2〈σ′
ε(u)∂tu∇u,∇∂tu〉 − 〈σε(u)∇∂tu,∇∂tu〉 ≤ 〈[σ′

ε(u)]
2[σε(u)]

−1[∂tu]
2, |∇u|2〉.

Hence, in light of Lemma 8.4 with a = ∂tu and b = |∇u|, we have

〈[σ′
ε(u)]

2[σε(u)]
−1[∂tu]

2, |∇u|2〉

≤ C〈σε(u)∂tu, ∂tu〉1−2γ‖∂tu‖
2
q ‖∇∂tu‖

2
p ‖Δu‖2− 2

p

=
C‖∂tu‖

2
q

〈σε(u)∂tu, ∂tu〉
1
q

(
〈σε(u)∂tu, ∂tu〉‖Δu‖2

)1− 1
p ‖∇∂tu‖

2
p

≤ σ0

8
‖∇∂tu‖2 + C〈σε(u)∂tu, ∂tu〉Λ.

These computations entail the inequality

dΛ

dt
+ 4ν1Λ ≤ C〈σε(u)∂tu, ∂tu〉Λ + C,

for some ν1 > 0. The integral estimate (7.1) allows us to apply Lemma 8.3, which yields

the desired conclusion. The case ε = 0 is treated in the same manner. �
The subsequent corollary will be needed in the next sections.

Corollary 8.6. If z ∈ H1
ε with ‖z‖H1

ε
≤ R, we have the integral control

∫ t

0

‖∇∂tu(τ )‖2dτ ≤ Q(R)(1 + t).

Proof. Set ω = 0 and integrate (8.1) on (0, t). �

Lemma 8.7. Let η be given by (6.2). Assume that η0 ∈ dom(Tε) and

ε‖∇∂tu(t)‖2 ≤ Θ,

for some Θ ≥ 0 and every t ≥ 0. Then, ηt ∈ dom(Tε) and

‖ηt‖2ε ≤ Ce−2δt‖η0‖2ε + CΘ.

Proof. Argue exactly as in [6], with minor variations. �
We are now ready to conclude our discussion.
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Proof of Proposition 8.2. Due to the existence of the absorbing set B0
ε in H0

ε, it suffices

to show that

‖Sε(t)z‖Zε
≤ Q(‖z‖Zε

)e−ν1t +Q(R),

whenever z ∈ H1
ε with ‖z‖H0

ε
≤ R. In light of Lemma 8.5, we only need to control the

norm ‖ηt‖ε. On the other hand, after Lemma 8.5, we know that

ε‖∇∂tu(t)‖2 ≤ Q(‖z‖Zε
)e−2ν1t +Q(R).

Therefore, assuming without loss of generality that ν1 ≤ δ, the desired inequality follows

from an application of Lemma 8.7. �

9. Continuous dependence for smoother initial data. With more regular initial

data, we can improve the continuous dependence estimate of Theorem 6.3. In view of

further scopes, we will actually consider the more general system⎧⎨
⎩
ε∂ttu+ σε(u)∂tu− βΔu−

∫ ∞

0

με(s)Δη(s)ds+ βφ(u) = f,

∂tη = Tεη + ∂tu,

where f ∈L2
loc([0,∞), H0), whose solutions can be described by means of a one-parameter

family of operators Sf
ε (t) on H0

ε (just adapt the proof of Theorem 6.3).

Proposition 9.1. Let ε ∈ [0, ε0] and f ∈ L2
loc([0,∞), H0), and let z1 ∈ H0

ε and z2 ∈ H1
ε

be such that

‖z1‖H0
ε
+ ‖z2‖H1

ε
≤ R.

Then, we have the estimate

‖Sf
ε (t)z1 − Sε(t)z2‖2H0

ε
≤ Q(R)eQ(R)t

[
‖z1 − z2‖2H0

ε
+

∫ t

0

‖f(τ )‖2dτ
]
.

Proof. In this proof, the generic constant C ≥ 0 may depend (increasingly) on R.

Consider the differential system solved by

z̄(t) = (ū(t), ∂tū(t), η̄
t) = Sf

ε (t)z1 − Sε(t)z2,

namely, ⎧⎨
⎩
ε∂ttū+ σε(u

1)∂tū− βΔū−
∫ ∞

0

με(s)Δη̄(s)ds = W + f,

∂tη̄ = Tεη̄ + ∂tū,

having put

W = −β[φ(u1)− φ(u2)]− [σε(u
1)− σε(u

2)]∂tu
2,

where u1(t) and u2(t) are the first components of Sf
ε (t)z1 and Sε(t)z2, respectively.

Performing the usual products, we find

d

dt
‖z̄‖2H0

ε
+ 2σ0‖∂tū‖2 ≤ 2〈W,∂tū〉+ 2〈f, ∂tū〉.

Knowing from Lemma 7.2 that ‖z̄(t)‖H0
ε
≤ C, and using the properties of φ and σε, it is

easy to check that

2〈W,∂tū〉 ≤ σ0‖∂tū‖2 + C‖∇ū‖2 + C‖∇∂tu
2‖2‖∇ū‖2.
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Therefore, we end up with the differential inequality

d

dt
‖z̄‖2H0

ε
≤ C‖z̄‖2H0

ε
+ C‖∇∂tu

2‖2‖z̄‖2H0
ε
+ C‖f‖2.

Since Corollary 8.6 provides the integral estimate for u2,∫ t

0

‖∇∂tu
2(τ )‖2dτ ≤ Q(R)(1 + t),

the conclusion follows from the Gronwall lemma. �

10. Exponential asymptotic smoothing. We now prove the existence of a com-

pact subset of H0
ε , which is exponentially attracting for the semigroup Sε(t).

Theorem 10.1. There exists R� > 0 such that the closed ball

B
�
ε =

{
z ∈ Zε : ‖z‖Zε

≤ R�

}
contains B1

ε and is exponentially attracting for Sε(t). Namely, there is ν� > 0 such that

δH0
ε

(
Sε(t)B,B

�
ε) ≤ Q(‖B‖H0

ε
)e−ν�t,

for every bounded set B ⊂ H0
ε.

Remark 10.2. From Proposition 8.1, the set B�
ε is closed in H0

ε.

We shall make use of the following lemma devised in [9], stating the transitivity of the

exponential attraction property.2

Lemma 10.3. Let S(t) be a semigroup on a Banach space H. Let B0,B1,B2 ⊂ H be such

that

δH
(
S(t)B0,B1

)
≤ M1e

−ϑ1t, δH
(
S(t)B1,B2

)
≤ M2e

−ϑ2t,

for some ϑ1, ϑ2 > 0 and M1,M2 ≥ 0. Assume also that, for all

z ∈
⋃

t≥0 S(t)Bi, ζ ∈ Bi+1, (i = 0, 1),

the inequality

‖S(t)z − S(t)ζ‖H ≤ M0e
ϑ0t‖z − ζ‖H

holds for some M0 ≥ 0 and ϑ0 ≥ 0. Then, it follows that

δH
(
S(t)B0,B2

)
≤ (M0M1 +M2)e

−ϑt,

where ϑ = ϑ1ϑ2

ϑ0+ϑ1+ϑ2
.

Proof of Theorem 10.1. In view of Lemma 7.2 and Lemma 10.3, it suffices to prove

the existence of a bounded subset of Zε attracting exponentially fast any trajectory

originating from the absorbing set B
0
ε of Proposition 7.1. Precisely, we will show that

any solution departing from z ∈ B
0
ε can be decomposed into the sum

Sε(t)z = S1
ε (t)z + S2

ε (t)z,

2 In fact, the analogous statement in [9] is slightly less general. But a closer look at its proof shows

that our hypotheses suffice to reach the desired conclusion.
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where

‖S1
ε (t)z‖H0

ε
≤ Ce−νt, (10.1)

‖S2
ε (t)z‖Zε

≤ C, (10.2)

for some ν > 0 and some C ≥ 0, depending only on the size of B0
ε.

To this aim, we define

φ0(r) = φ(r) +�r,

for some � > 	 (note that φ′
0 ≥ 0) large enough such that (cf. (2.3))

1

2
‖∇v‖2 + (� − 2	)‖v‖2 − 〈φ′(u(t))v, v〉 ≥ 0, ∀v ∈ H1.

Then, we choose

S1
ε (t)z = (v(t), ∂tv(t), ψ

t) and S2
ε (t)z = (w(t), ∂tw(t), ξ

t),

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε∂ttv + σε(u)∂tv − βΔv −
∫ ∞

0

με(s)Δψ(s)ds

+[σε(u)− σε(w)]∂tw + β[φ0(u)− φ0(w)] = 0,

∂tψ = Tεψ + ∂tv,

(v(0), ∂tv(0), ψ
0) = z,

(10.3)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε∂ttw + σε(w)∂tw − βΔw −
∫ ∞

0

με(s)Δξ(s)ds+ βφ0(w) = �βu,

∂tξ = Tεξ + ∂tw,

(w(0), ∂tw(0), ξ
0) = (0, 0, 0).

(10.4)

The proof of (10.1)–(10.2) recasts similar proofs of Lemma 4.1 and Lemma 4.2 in [36].

For the reader’s convenience, we sketch here the main steps, pointing out the differences

occurring in our case. Observe first that, arguing for (10.3) exactly as in Lemma 7.2, we

easily obtain the boundedness of ‖S2
ε (t)z‖H0

ε
, along with the integral control

∫ t

s

‖∂tw(τ )‖2dτ ≤ ω(t− s) +
C

ω
, ∀t ≥ s > 0, (10.5)

for any ω ∈ (0, 1). Then, a repetition of the proof for Lemma 8.5, exploiting (7.1) and

(10.5), entails the uniform boundedness of ‖S2
ε (t)z‖H1

ε
, which, in turn, allows us to apply

Lemma 8.7, thus proving (10.2). We also obtain, for every ω ∈ (0, 1), the estimate
∫ t

s

‖∇∂tw(τ )‖2dτ ≤ ω(t− s) +
C

ω
, ∀t ≥ s ≥ 0. (10.6)

In order to prove (10.1), we introduce the functional

Λ(t) = ‖S1
ε (t)z‖2H0

ε
+ 2β〈φ0(u(t))− φ0(w(t)), v〉

− β〈φ′
0(u(t))v(t), v(t)〉+ 2ωε〈v(t), ∂tv(t)〉.
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Here, ω ∈ (0, σ0/2) is chosen small enough such that

1

4
‖S1

ε (t)z‖2H0
ε
≤ Λ(t) ≤ C‖S1

ε (t)z‖2H0
ε
.

Performing the usual products in (10.4), Λ is readily seen to satisfy the differential

inequality

d

dt
Λ + ωΛ +

ωβ

2
‖∇v‖2 + σ0‖∂tv‖2 +

δ

2ε
‖ψ‖2M0

ε
+ 2ωβ〈φ0(u)− φ0(w), v〉

≤ −2ω〈ψ, v〉M0
ε
− 2〈[σε(u)− σε(w)]∂tw, ∂tv〉 − 2ω〈σε(u)∂tv, v〉

− 2ω〈[σε(u)− σε(w)]∂tw, v〉+ 2β〈[φ′
0(u)− φ′

0(w)]∂tw, v〉 − β〈φ′′
0(u)∂tu, v

2〉.

The first two terms on the right-hand side are estimated as

− 2ω〈ψ, v〉M0
ε
− 2〈[σε(u)− σε(w)]∂tw, ∂tv〉

≤ ωβ

6
‖∇v‖2 + δ

2ε
‖ψ‖2M0

ε
+ C‖∇∂tw‖‖∇v‖‖∂tv‖

≤ ωβ

6
‖∇v‖2 + σ0

2
‖∂tv‖2 +

δ

2ε
‖ψ‖2M0

ε
+ C‖∇∂tw‖2Λ,

whereas the remaining terms, arguing exactly as in [36], are controlled by

ω

2
Λ +

ωβ

3
‖∇v‖2 + σ0

2
‖∂tv‖2 + C

(
‖∂tu‖2 + ‖∇∂tw‖2

)
Λ.

Hence, fixing ω suitably small, we are led to the differential inequality

d

dt
Λ + ωΛ ≤ C

(
‖∂tu‖2 + ‖∇∂tw‖2

)
Λ.

The dissipation integrals (7.1) and (10.6) allow us to apply Lemma 8.3, which yields

Λ(t) ≤ CΛ(0)e−
ωt
2 .

This finishes the proof of (10.1). �

11. Estimate of the difference of trajectories. The aim of this section is to

compare the trajectories of Sε(t) and S0(t) originating from the same initial position

u0 ∈ H2, providing a quantitative estimate of their difference on finite time intervals as

ε tends to zero. Given ε ∈ (0, 1] and z = (u0, v0, η0), we denote

Sε(t)z = (u(t), ∂tu(t), η
t) and S0(t)(u0, 0, 0) = (û(t), 0, 0).

Theorem 11.1. Let a < 1/4 be fixed. Then, for all ε ∈ (0, 1] and z = (u0, v0, η0) ∈ H1
ε,

with η0 ∈ dom(Tε) satisfying

‖z‖H1
ε
+ ε‖Tεη0‖M0

ε
≤ R,

the following estimates hold:

‖∇u(t)−∇û(t)‖ ≤ Q(R)eQ(R)tεa, (11.1)

ε‖∂tu(t)‖2 + ‖ηt‖2M0
ε
≤ Q(R)

[
e
− �t√

ε + ε
]
, (11.2)

for some � > 0.
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Remark 11.2. For further scopes, we define the operator Π : H0
ε → H0

0 as

Π(u0, v0, η0) = (u0, 0, 0).

Then, setting any t� > 0, and collecting (11.1)–(11.2), we obtain the estimate

‖Sε(t)z − S0(t)Πz‖H0
ε
≤ Q(R)eQ(R)tεa, ∀t ≥ t�. (11.3)

We first note that, in light of Remark 7.3, inequalities (11.1)–(11.2) need to be proved

only when ε is close to zero. Accordingly, we assume without loss of generality ε ∈ (0, ε0],

with ε0 as in (5.6). Let then z fulfill the assumptions of the theorem. Until the end of

the section, the generic constant C ≥ 0 may depend (increasingly) on R.

The proof of Theorem 11.1 will be carried out through several lemmas, where, on

account of Lemma 8.5, we will exploit the uniform bounds

‖Δû‖+ ‖Δu‖+
√
ε ‖∇∂tu‖+ ‖η‖M1

ε
≤ C,

which, in particular, imply

‖φ′(û)‖L∞ + ‖φ′(u)‖L∞ + ‖φ′′(u)‖L∞ + ‖σε(u)‖L∞ ≤ C.

Lemma 11.3. We have the inequality

‖ηt‖2M0
ε
≤ ‖η0‖2M0

ε
e−

δt
2ε + Cε.

Proof. Multiplying the second equation of (6.3) by η inM0
ε, and using (6.1), we obtain

d

dt
‖η‖2M0

ε
+

δ

ε
‖η‖2M0

ε
≤ 2‖∇∂tu‖

∫ ∞

0

με(s)‖∇η(s)‖ds ≤ C√
ε
‖η‖M0

ε
≤ δ

2ε
‖η‖2M0

ε
+ C.

An application of the Gronwall lemma completes the argument. �

Lemma 11.4. There exists � > 0 such that

ε‖∂tu(t)‖2 ≤ Ce
− �t√

ε + Cε.

Proof. Setting v = ∂tu and ξ = ∂tη, we differentiate (6.3) with respect to time. Noting

that σ′
ε = εφ′′, this leads to⎧⎨
⎩
ε∂ttv + σε(u)∂tv + εφ′′(u)v2 − βΔv −

∫ ∞

0

με(s)Δξ(s)ds+ βφ′(u)v = 0,

∂tξ = Tεξ + ∂tv.

For ω ∈ (0, σ0/2), we multiply the first equation by ∂tv + ω√
ε
v in H0, and the second

one by ξ in M0
ε. Recalling (5.7) and (6.1), we find

d

dt
Λ +

2ωβ√
ε
‖∇v‖2 + σ0‖∂tv‖2 +

δ

ε
‖ξ‖2M0

ε

≤ −2ε〈φ′′(u)v2, ∂tv〉 − 2β〈φ′(u)v, ∂tv〉 −
2ω√
ε
〈σε(u)∂tv, v〉 − 2ω

√
ε 〈φ′′(u)v2, v〉

− 2ωβ√
ε
〈φ′(u)v, v〉 − 2ω√

ε
〈ξ, v〉M0

ε
,

where we set

Λ(t) = β‖∇v(t)‖2 + ε‖∂tv(t)‖2 + ‖ξt‖2M0
ε
+ 2ω

√
ε 〈∂tv(t), v(t)〉.
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It is clear that, if ω is small enough,

1

2
Λ(t) ≤ β‖∇v(t)‖2 + ε‖∂tv(t)‖2 + ‖ξt‖2M0

ε
≤ 2Λ(t).

We now estimate the terms on the right-hand side of the differential inequality. Exploiting

(2.1) and the fact that ε‖∇v‖ ≤ C, we have

−2ε〈φ′′(u)v2, ∂tv〉 − 2β〈φ′(u)v, ∂tv〉 ≤ C‖v‖‖∂tv‖ ≤ σ0

4
‖∂tv‖2 + C‖v‖2

and

− 2ω√
ε

(
〈σε(u)∂tv, v〉+ ε〈φ′′(u)v2, v〉+ β〈φ′(u)v, v〉

)

≤ C√
ε

(
‖v‖‖∂tv‖+ ε‖∇v‖‖v‖2 + ‖v‖2

)

≤ σ0

4
‖∂tv‖2 +

C

ε
‖v‖2.

Finally, provided that ω is small enough,

− 2ω√
ε
〈ξ, v〉M0

ε
≤ δ

2ε
‖ξ‖2M0

ε
+

ωβ√
ε
‖∇v‖2.

Collecting the estimates above, we are led to the inequality

d

dt
Λ +

�√
ε
Λ ≤ C

ε
‖v‖2, (11.4)

for some � > 0. In light of the integral control for ‖v‖2 given by (7.1), the Gronwall

lemma yields

ε‖∂ttu(t)‖2 ≤ 2Λ(t) ≤ C

ε2
e
− �t√

ε +
C

ε
. (11.5)

Indeed,

Λ(0) ≤ 2
(
β‖∇v0‖2 + ε‖∂ttu(0)‖2 + ‖∂tη0‖2M0

ε

)
≤ C

ε2
.

The last inequality follows at once by the assumptions on z = (u0, v0, η0), observing that

the initial values of ∂ttu and η are read from (6.3) at t = 0, namely,

ε∂ttu(0) = −σε(u0)v0 + βΔu0 − βφ(u0) +

∫ ∞

0

με(s)Δη0(s)ds

and

∂tη
0 = Tεη0 + v0.

Then, multiplying the first equation of (6.3) by ∂tu in H0, in view of (5.7), we have

σ0‖∂tu‖2 ≤ β〈Δu, ∂tu〉 − β〈φ(u), ∂tu〉 − ε〈∂ttu, ∂tu〉+
∫ ∞

0

με(s)〈Δη(s), ∂tu〉ds.

The right-hand side is controlled by

C‖∂tu‖+ ε‖∂ttu‖‖∂tu‖ ≤ σ0

2
‖∂tu‖2 + Cε2‖∂ttu‖2 + C.

Therefore,

‖∂tu‖2 ≤ Cε2‖∂ttu‖2 + C.

The desired result follows from (11.5). �
A crucial step is a suitable estimate of the norm of ∂ttu.
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Lemma 11.5. Let a < 1/4 be fixed. Then,

ε2‖∂ttu(t)‖2 ≤ C
√
ε,

whenever t ≥ 2ε2a.

Proof. With the notation of the preceding lemma, we first observe that (cf. (11.5))

Λ(t) ≤ C

ε2

and

‖v(t)‖ = ‖∂tu(t)‖ ≤ C, ∀t ≥ ε2a.

Thus, for t ≥ ε2a, the differential inequality (11.4) turns into

d

dt
Λ +

�√
ε
Λ ≤ C

ε
,

and the Gronwall lemma entails

Λ(t) ≤ Λ(ε2a)e
− �(t−ε2a)√

ε +
C√
ε

≤ C

ε2
e
− �(t−ε2a)√

ε +
C√
ε
, ∀t ≥ ε2a.

Consequently, if t ≥ 2ε2a,

ε2‖∂ttu(t)‖2 ≤ 2εΛ(t) ≤ C

ε
e
− �ε2a√

ε + C
√
ε ≤ C

√
ε,

as a < 1/4. �
The next result provides the proof of (11.1).

Lemma 11.6. The inequality

‖∇u(t)−∇û(t)‖ ≤ CeCtεa

holds for every fixed a < 1/4.

Proof. Let a < 1/4 be given. The difference ū(t) = u(t) − û(t) solves the parabolic

problem⎧⎨
⎩
β∂tū− βΔū =

∫ ∞

0

με(s)Δη(s)ds− ε∂ttu− β[φ(u)− φ(û)]− εφ′(u)∂tu,

ū(0) = 0.

Assume first that t ≥ 2ε2a. The product by ∂tū in H0 entails the equality

d

dt
β‖∇ū‖2 + 2β‖∂tū‖2

= −2〈η, ∂tū〉M0
ε
− 2ε〈∂ttu, ∂tū〉 − 2β〈φ(u)− φ(û), ∂tū〉 − 2ε〈φ′(u)∂tu, ∂tū〉.

The memory term on the right-hand side is easily estimated by Lemma 11.3 as

−2〈η, ∂tū〉M0
ε
≤ C‖∇∂tū‖‖η‖M0

ε
≤

√
ε‖∇∂tū‖2 + C

√
ε .

Using Lemma 11.5, we deduce that

−2ε〈∂ttu, ∂tū〉 ≤ Cε2‖∂ttu‖2 + β‖∂tū‖2 ≤ C
√
ε + β‖∂tū‖2.
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Since ε‖∂tu‖2 ≤ C, we have

−2β〈φ(u)− φ(û), ∂tū〉 − 2ε〈φ′(u)∂tu, ∂tū〉 ≤ C(‖ū‖+ ε‖∂tu‖)‖∂tū‖
≤ C‖∇ū‖2 + Cε+ β‖∂tū‖2.

In conclusion, we obtain
d

dt
‖∇ū‖2 ≤ C‖∇ū‖2 + g,

where we set

g(t) =

√
ε

β
‖∇∂tū(t)‖2 + C

√
ε .

From Corollary 8.6, ∫ t

0

‖∇∂tū(τ )‖2dτ ≤ C(1 + t).

Therefore, for every t ≥ 2ε2a, the Gronwall lemma gives

‖∇ū(t)‖2 ≤ CeCt
(
‖∇ū(2ε2a)‖2 +

√
ε
)
.

On the other hand, if t ≤ 2ε2a, we have

‖∇ū(t)‖2 ≤
(∫ t

0

‖∇∂tū(τ )‖dτ
)2

≤ 2ε2a
∫ 1

0

‖∇∂tū(τ )‖2dτ ≤ Cε2a.

Thus, the sought inequality is verified for every t ≥ 0. �

12. Robust exponential attractors. The main result concerning the asymptotic

properties of Sε(t) is the existence of a family of exponential attractors Eε, which is

robust (in an appropriate sense) with respect to the singular limit ε → 0.

Theorem 12.1. For every ε ∈ [0, ε0], there exists a compact set Eε, called exponen-

tial attractor, which is compact in H0
ε and bounded in Zε, and satisfies the following

properties:

(I) The fractal dimension of Eε in H0
ε is uniformly bounded with respect to ε.

(II) The set Eε attracts any bounded subset B ⊂ H0
ε with an exponential rate which

is uniform with respect to ε; namely, there exists κ > 0 (independent of ε and of

the choice of B) such that

δH0
ε

(
Sε(t)B, Eε

)
≤ Q(‖B‖H0

ε
)e−κt.

(III) There exists τ > 0 such that

δsymH0
ε

(
Eε, E0

)
≤ Cετ .

Moreover, Eε is positively invariant for Sε(t); that is, Sε(t)Eε ⊂ Eε.

This theorem is proved combining the abstract theorems of [6, 14]. Indeed, in the

present model, we actually have to deal with a double singular limit (one on the velocity

and one on the memory component). To this end, we take the exponentially attracting

set B�
ε of Theorem 10.1, and we choose t� > 0 large enough such that

Sε = Sε(t
�) : B�

ε → B
�
ε.
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In view of the transitivity of the exponential attraction property provided by Lemma 10.3,

we have the following result (see [6, 14]).

Lemma 12.2. Assume that the following hold.

(H1) For some λ ∈ [0, 1
2 ) and for every z1, z2 ∈ B

�
ε, we have

Sεz1 − Sεz2 = Dε(z1, z2) +Kε(z1, z2),

where

‖Dε(z1, z2)‖H0
ε
≤ λ‖z1 − z2‖H0

ε
,

‖Kε(z1, z2)‖Zε
≤ C‖z1 − z2‖H0

ε
.

(H2) For some a > 0, every t ≥ t� and every z ∈ B
�
ε,

‖Sε(t)z − S0(t)Πz‖H0
ε
≤ CeCtεa.

(H3) For every t ∈ [t�, 2t�], the map

z �→ Sε(t)z : B�
ε → B

�
ε

is Lipschitz continuous in the topology of H0
ε , with a Lipschitz constant indepen-

dent of t ∈ [t�, 2t�] and of ε.

(H4) For every ε ∈ [0, ε0] and every z ∈ B
�
ε, the map

t �→ Sε(t)z : [t�, 2t�] → B
�
ε

is 1
2 -Hölder continuous, with a Hölder constant that may depend on ε, but is

independent of z ∈ B
�
ε. Again, B�

ε is endowed with the topology of H0
ε.

Then, the conclusions of Theorem 12.1 hold true.

Proof of Theorem 12.1. In light of Proposition 9.1 and Remark 11.2, conditions (H2)–

(H3) of Lemma 12.2 are already proven, while (H4) is a direct consequence of the bounds

on the time-derivatives. Indeed, assume that 2t� ≥ t1 > t2 ≥ t�. Then, appealing to

Corollary 8.6, we obtain

‖∇u(t1)−∇u(t2)‖ ≤
∫ t1

t2

‖∇∂tu(τ )‖dτ ≤ C
√
t1 − t2 ,

while, if ε > 0, we deduce from the proof of Lemma 11.5 that

√
ε ‖∂tu(t1)− ∂tu(t2)‖+ ‖ηt1 − ηt2‖M0

ε
≤

∫ t1

t2

[√
ε ‖∂ttu(τ )‖+ ‖∂tητ‖M0

ε

]
dτ

≤ C
4
√
ε
(t1 − t2).

Thus, exploiting (11.2), it is possible to rewrite the latter estimate as
√
ε ‖∂tu(t1)− ∂tu(t2)‖+ ‖ηt1 − ηt2‖M0

ε
≤ C

√
t1 − t2 .

In summary, (H4) holds, even with a Hölder constant independent of ε. In order to

complete the proof of Theorem 12.1, we are left to show the validity of (H1). To this
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aim, for zi ∈ B
�
ε, we denote Sε(t)zi = (ui(t), ∂tu

i(t), ηit), and we set

Ψ(t) =
1

ε

σε(u
1(t))− σε(u

2(t))

u1(t)− u2(t)
=

∫ 1

0

φ′′(su1(t) + (1− s)u2(t))ds.

At this point, we exploit the decomposition devised in [15], namely,

Sε(t)z1 − Sε(t)z2 = ζ1(t) + ζ2(t),

where

ζ1(t) = (v(t), ∂tv(t), ψ
t) and ζ2(t) = (w(t), ∂tw(t), ξ

t)

solve the problems⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε∂ttv − βΔv −
∫ ∞

0

με(s)Δψ(s)ds+ σε(u
1)∂tv + εΨv∂tu

2 = 0,

∂tψ = Tεψ + ∂tv,

ζ1(0) = z1 − z2,

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε∂ttw − βΔw −
∫ ∞

0

με(s)Δξ(s)ds+ σε(u
1)∂tw + εΨw∂tu

2 + βφ(u1)− βφ(u2) = 0,

∂tξ = Tεξ + ∂tw,

ζ2(0) = 0.

Setting ω ∈ (0, σ0/2) small enough such that

1

2
‖ζ1(t)‖2H0

ε
≤ Λ(t) = ‖ζ1(t)‖2H0

ε
+ 2ωε〈∂tv(t), v(t)〉 ≤ 2‖ζ1(t)‖2H0

ε
,

and making (by now) standard calculations, we arrive at the differential inequality

d

dt
Λ + 2ωβ‖∇v‖2 + σ0‖∂tv‖2 +

δ

ε
‖ψ‖2M0

ε

≤ −2ε〈Ψ∂tu
2v, ∂tv〉 − 2εω〈Ψ∂tu

2v, v〉 − 2ω〈σε(u
1)∂tv, v〉 − 2ω〈ψ, v〉M0

ε
.

We see that

−2ε〈Ψ∂tu
2v, ∂tv〉 − 2εω〈Ψ∂tu

2v, v〉 ≤ C‖∂tu2‖2Λ +
ωβ

2
‖∇v‖2 + σ0

4
‖∂tv‖2,

and, for ω small enough,

−2ω〈σε(u
1)∂tv, v〉 − 2ω〈ψ, v〉M0

ε
≤ ωβ

2
‖∇v‖2 + σ0

4
‖∂tv‖2 +

δ

2ε
‖ψ‖2M0

ε
.

Thus, we obtain
d

dt
Λ + νΛ ≤ C‖∂tu2‖2Λ,

for some ν > 0. From (7.1) and Lemma 8.3, we conclude that

‖ζ1(t�)‖H0
ε
<

1

4
‖z1 − z2‖H0

ε
,

provided that we suitably enlarge t�. Similarly, knowing that, as φ ∈ C3(R),

‖∇Ψ(t)‖ ≤ C,
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we have
d

dt
‖ζ2‖2H1

ε
≤ C‖ζ2‖2H1

ε
+ C‖∇u1 −∇u2‖2.

Using the Gronwall lemma, along with the continuous dependence estimate of Proposi-

tion 9.1, we end up with

‖ζ2(t�)‖H1
ε
≤ C‖z1 − z2‖H0

ε
.

Then, an application of Lemma 8.7 yields

‖ζ2(t�)‖Zε
≤ C‖z1 − z2‖H0

ε
.

Therefore, condition (H1) with λ = 1/4 follows by setting Dε(z1, z2) = ζ1(t�) and

Kε(z1, z2) = ζ2(t�) �

13. Global attractors and convergence to equilibria. Theorem 12.1 provides,

in particular, the existence of a compact attracting set. Therefore, from a classical result

in the theory of dynamical systems, we conclude that Sε(t) has the global attractor (cf.

[2, 23, 40]).

Theorem 13.1. For every ε ∈ [0, ε0], the semigroup Sε(t) possesses a global attractor

Aε ⊂ Eε, whose fractal dimension is bounded, uniformly with respect to ε.

Remark 13.2. Due to the regularity of Aε, applying the same techniques as in [19, 24],

it is not hard to show the upper semicontinuity at ε = 0 of the family {Aε}, namely,

lim
ε→0

δH0
ε

(
Aε,A0

)
= 0.

We now prove the existence of a Lyapunov functional for the semigroup Sε(t). This

is a function L ∈ C(H0
ε,H0

ε) satisfying the following properties:

(i) L(Sε(t)z) ≤ L(z), for every z ∈ H0
ε;

(ii) L(Sε(t)z) = L(z) for every t ≥ 0 implies that z is a stationary point for Sε(t).

Remark 13.3. The set of stationary points of Sε(t) is

S = {(u�, 0, 0) : u� ∈ S},
where S is the set of stationary points of (1.1) endowed with homogeneous Dirichlet

boundary conditions.

As in the proof of Lemma 7.2, we set

Φ(u) =

∫ u

0

φ(y)dy.

Proposition 13.4. For every ε ∈ [0, ε0],

L(z) = ‖z‖2H0
ε
+ 2β〈Φ(u), 1〉,

with z = (u, v, η) ∈ H0
ε, is a Lyapunov functional for Sε(t).

Proof. It is clear that L ∈ C(H0
ε,H0

ε). Besides, on account of (7.2), L is nonincreasing

along the trajectories of Sε(t). This proves (i). In order to show (ii), we observe that,

again using (7.2), the equality L(Sε(t)z) = L(z) for every t ≥ 0 implies that ∂tu(t) = 0

and ηt = 0. In which case, the first equation of (6.3) reads

−Δu+ φ(u) = 0.
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Hence, Sε(t)z = z for every t ≥ 0. �
The existence of a Lyapunov function ensures that Aε coincides with the unstable

manifold of S (which, in particular, is compact and nonempty), and that the next result

holds (see [4, 23]).

Theorem 13.5. For every ε ∈ [0, ε0] and every z ∈ H0
ε ,

lim
t→∞

[
inf
z�∈S

‖Sε(t)z − z�‖H0
ε

]
= 0.

Thus, if ε > 0,

lim
t→∞

[
‖∂tu(t)‖+ ‖ηt‖M0

ε

]
= 0. (13.1)

Rephrasing the theorem, the ω-limit set of z belongs to S, for every z ∈ H0
ε. In fact,

setting ι = limt→∞ L(Sε(t)z), it easily follows that

ω(z) ⊂ Sι = {z� ∈ S : L(z�) = ι}.

In particular, we have

Corollary 13.6. If Sι is discrete, there is z� ∈ Sι such that Sε(t)z → z� in H0
ε as

t → ∞.

On the other hand, in dimension two, Sι can be a continuum (e.g., if Φ is a double-

well potential [25]). Hence, the convergence of a given trajectory to a single equilibrium

cannot be predicted, and it is false in general. Nonetheless, if φ is real analytic, there is a

well-known tool which can be used in order to guarantee the convergence of trajectories to

single stationary states: the �Lojasiewicz-Simon inequality. If we consider the functional

E : H1 → R, defined by

E(u) =
1

2
‖∇u‖2 + 〈Φ(u), 1〉,

we have the following version of the �Lojasiewicz-Simon inequality, devised by Haraux

and Jendoubi [26].

Theorem 13.7. Let φ be real analytic, and let u� ∈ S. Then, there exist θ = θ(u�) > 0

and ς = ς(u�) > 0 such that

|E(u)− E(u�)|
1+θ
1+2θ ≤ ‖Δu− φ(u)‖H−1 ,

whenever u ∈ H1 fulfills ‖∇u−∇u�‖ < ς.

Thanks to this inequality, we can state and prove

Theorem 13.8. Let φ be real analytic. For every fixed ε ∈ [0, ε0] and every fixed z ∈ H0
ε,

there exists z� = (u�, 0, 0) ∈ S such that ω(z) = {z�}. Moreover,

‖Sε(t)z − z�‖H0
ε
≤ c

tθ
, (13.2)

for some θ = θ(u�) > 0 and c = c(ε, z) ≥ 0.

We will restrict to ε ∈ (0, ε0]. The (easier) case ε = 0, besides having been treated

by many authors (cf. [41] and references therein), can be easily recovered with minor

changes in the proof by setting ε = 0. We begin with a weaker result.
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Lemma 13.9. The conclusion of Theorem 13.8 holds, with (13.2) replaced by the weaker

estimate

‖u(t)− u�‖ ≤ c

tθ
.

Proof. Let z� = (u�, 0, 0) ∈ ω(z). In this proof, c ≥ 0 will denote a generic constant,

which may depend on ε and z. In order to show that ω(z) = {z�}, we follow the strategy

of [26] (see also [5, 12]). We introduce the functional

Γ(t) = 2β[E(u(t))− E(u�)] + ε‖∂tu(t)‖2 + ‖ηt‖2M0
ε
− 2ωε〈Δu(t)− φ(u(t)), ∂tu(t)〉H−1 ,

for ω ∈ (0, σ0/2) to be chosen later, which fulfills the inequality

d

dt
Γ + σ0‖∂tu‖2 +

δ

ε
‖η‖2M0

ε
+ 2ωβ‖Δu− φ(u)‖2H−1

≤ 2ωε〈∂tu, φ′(u)∂tu〉H−1 + 2ω〈σε(u)∂tu,Δu− φ(u)〉H−1 + 2ω〈η,Δu− φ(u)〉M−1
ε
.

Thanks to Lemma 7.2, provided that we fix ω small enough, the terms on the right-hand

side are estimated by

2ωε〈∂tu, φ′(u)∂tu〉H−1 ≤ σ0

4
‖∂tu‖2,

2ω〈σε(u)∂tu,Δu− φ(u)〉H−1 ≤ σ0

4
‖∂tu‖2 +

ωβ

2
‖Δu− φ(u)‖2H−1 ,

2ω〈η,Δu− φ(u)〉M−1
ε

≤ δ

2ε
‖η‖2M0

ε
+

ωβ

2
‖Δu− φ(u)‖2H−1 .

Therefore, we obtain

d

dt
Γ + ρ0

(
‖∂tu‖+ ‖η‖M0

ε
+ ‖Δu− φ(u)‖H−1

)2 ≤ 0, (13.3)

for some ρ0 > 0. In particular, Γ is a decreasing function, and so it has a limit (possibly

not finite) when t → ∞. On the other hand, since z� ∈ ω(z), we know that

lim
n→∞

Sε(tn)z = z�,

for some tn → ∞. In turn,

lim
t→∞

Γ(t) = lim
n→∞

Γ(tn) = 0.

We conclude that Γ(t) ≥ 0. We now choose θ and ς as in Theorem 13.7. For t large

enough such that ‖∂tu(t)‖ ≤ 1 and ‖ηt‖M0
ε
≤ 1, from the very definition of Γ, we have

Γ
1+θ
1+2θ ≤ c

(
|E(u)− E(u�)|

1+θ
1+2θ + ‖∂tu‖+ ‖η‖M0

ε
+ ‖Δu− φ(u)‖H−1

)
.

Besides, there is m = m(ς) ∈ N such that

‖∇u(tn)−∇u�‖ < ς, ∀n ≥ m,

and the inequalities ‖∂tu(t)‖ ≤ 1 and ‖ηt‖M0
ε
≤ 1 are satisfied for all t ≥ tm. Defining

then, for every n ≥ m,

t�n = sup
{
t ≥ tn : ‖∇u(τ )−∇u�‖ < ς, ∀τ ∈ [tn, t]

}
,

we can apply Theorem 13.7, thus obtaining, for every n ≥ m,

Γ
1+θ
1+2θ ≤ c

(
‖∂tu‖+ ‖η‖M0

ε
+ ‖Δu− φ(u)‖H−1

)
, ∀t ∈ [tn, t

�
n), (13.4)
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for some c independent of n. Combining (13.3)–(13.4), we deduce that

‖∂tu‖ ≤ −cΓ− 1+θ
1+2θ

d

dt
Γ = −c(1 + 2θ)

θ

d

dt
Γ

θ
1+2θ , (13.5)

for all t ∈ [tn, t
�
n) and every n ≥ m. On the other hand, since Γ(t) → 0 as t → ∞, an

integration of (13.5) yields

lim
n→∞

∫ t�n

tn

‖∂tu(τ )‖dτ = 0.

The next step is to show that t�n = ∞ for some n. If not,

lim
n→∞

‖u(t�n)− u�‖ ≤ lim
n→∞

(
‖u(tn)− u�‖+

∫ t�n

tn

‖∂tu(τ )‖dτ
)
= 0.

But the existence of the global attractor implies that u(t�n) is precompact in H1. As a

consequence, u(t�n) → u� in H1, which contradicts the definition of t�n. Thus, t
�
n = ∞ for

some n, and so ∂tu ∈ L1(tn,∞;H0). This fact, together with the convergence u(tn) → u�,

imply that u(t) → u� in H0 as t → ∞. Recalling (13.1), this proves that ω(z) = {z�}.
Finally, from (13.3) and (13.4),

d

dt
Γ + ρ1Γ

2(1+θ)
1+2θ ≤ 0, ∀t ≥ tn,

for some ρ1 > 0. Hence,

Γ(t) ≤ c

t1+2θ
, ∀t ≥ tn,

which, by integrating (13.5), entails

‖u(t)− u�‖ ≤
∫ ∞

t

‖∂tu(τ )‖dτ ≤ c

tθ
, ∀t ≥ tn.

Clearly, the inequality holds for every t > 0. �
Proof of Theorem 13.8. In order to prove (13.2), we use the trajectory decomposition

of Section 10, namely,

Sε(t)z = S1
ε (t)z + S2

ε (t)z = (v(t), ∂tv(t), ψ
t) + (w(t), ∂tw(t), ξ

t).

Then, in view of (10.1), we are left to prove that

‖∇w(t)−∇u�‖+
√
ε ‖∂tw(t)‖+ ‖ξt‖M0

ε
≤ c

tθ
. (13.6)

Setting w� = w − u�, we define

Ξ(t) = β‖∇w�(t)‖2 + ε‖∂tw(t)‖2 + ‖ξt‖2M0
ε
+ 2ωε〈w�(t), ∂tw(t)〉,

with ω ∈ (0, σ0/2) small enough such that

1

2
‖(w�(t), ∂tw(t), ξ

t)‖2H0
ε
≤ Ξ(t) ≤ 2‖(w�(t), ∂tw(t), ξ

t)‖2H0
ε
.
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Multiplying the first equation of (10.4) by ∂tw + ωw� in H0 and the second one by ξ in

M0
ε, we are led to

d

dt
Ξ + 2ωβ‖∇w�‖2 + σ0‖∂tw‖2 +

δ

ε
‖ξ‖2M0

ε

≤ −2β〈φ(w)− φ(u�), ∂tw〉+ 2�β〈v, ∂tw〉 − 2ω〈σε(w)∂tw,w
�〉

− 2ω〈ξ, w�〉M0
ε
− 2ωβ〈φ(w)− φ(u�), w�〉+ 2ω�β〈v, w�〉.

Exploiting (10.2), the right-hand side is estimated by standard computations, yielding

d

dt
Ξ + ρ2Ξ ≤ c(‖w�‖2 + ‖v‖2) ≤ c

t2θ
,

for some ρ2 > 0, where the last inequality follows from the obvious estimate

‖w�‖2 ≤ 2‖u− u�‖2 + 2‖v‖2,

along with (10.1) and Lemma 13.9. The Gronwall lemma entails the desired conclusion.

�

14. Conclusion: Proofs of the main results. Theorem 6.3, along with Corol-

lary 6.2, ensure the existence and uniqueness of a solution to (5.1). In turn, Proposi-

tion 5.3 provides the existence of a solution to (1.4), whose uniqueness is established by

Proposition 4.2. This completes the proof of Proposition 3.2 and Proposition 3.4. In

particular, we find the relationship

Uε(t)u0 = PSε(t)(u0,−φ(u0), u0),

where, here and in the sequel, P : H0
ε → H1, defined as

P(u0, v0, η0) = u0,

is the projection of H0
ε onto its first component H1.

Proof of Theorem 3.5. The idea is to make use of the estimate (11.1) provided by

Theorem 11.1. Unfortunately, this cannot be done directly, since u0 does not belong to

dom(Tε) (unless it is zero). This obstacle can be circumvented as follows: if ‖Δu0‖ ≤ R,

by Theorem 11.1, we learn that

‖∇PSε(t)(u0,−φ(u0), 0)−∇U0(t)u0‖ ≤ Q(T +R)εa. (14.1)

Then, we observe that

PSε(t)(u0,−φ(u0), u0) = PSf
ε (t)(u0,−φ(u0), 0),

where we set

f(t) = h(t/ε)Δu0, with h(t) =

∫ ∞

t

μ(s)ds.

Indeed, by means of (6.2), the third component ηt of Sε(t)(u0,−φ(u0), u0) reads

ηt(s) = η̃t(s) +

{
0, 0 < s ≤ t,

u0, s > t,
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where η̃t is the mild solution to the Cauchy problem{
∂tη̃

t = Tεη̃
t + ∂tu(t), t > 0,

η̃0 = 0.

Accordingly, ∫ ∞

0

με(s)Δηt(s)ds =

∫ ∞

0

με(s)Δη̃t(s)ds+ f(t),

which proves the claim. At this point, we can apply Proposition 9.1, so obtaining

‖∇PSε(t)(u0,−φ(u0), 0)−∇Uε(t)u0‖ (14.2)

≤ ‖Sε(t)(u0,−φ(u0), 0)− Sf
ε (t)(u0,−φ(u0), 0)‖H0

ε

≤ Q(t+ R)
(∫ t

0

[h(τ/ε)]2dτ
) 1

2

≤ Q(T +R)
√
ε.

Collecting (14.1) and (14.2), we are done. �
Proof of Theorem 3.6. Due to Proposition 7.1, the set B1 =

⋃
ε∈[0,ε0]

PB
0
ε is bounded

in H1. Moreover, given a bounded set B ⊂ H1, we have

Uε(t)B = PSε(t)B ⊂ PB
0
ε ⊂ B1,

for every t ≥ t0(‖B‖H0
ε
) = t0(‖B‖H1), where

B = {(u0,−φ(u0), u0) : u0 ∈ B}.

The desired B0 is obtained by setting

B0 =
⋃

t∈[0,t1]
Uε(t)B1,

with t1 = t0(‖B1‖H1). By Lemma 7.2, B0 is bounded in H1. �
Proof of Theorem 3.7. Define Kε = PEε. Then, Kε is compact in H1 and bounded in

H2. Besides, thanks to point (I) of Theorem 12.1,

dimfrac(Kε;H
1) ≤ dimfrac(Eε;H0

ε) ≤ C.

Let now B ⊂ H1 be a bounded set. Setting B as in the previous proof, and appealing to

point (II) of Theorem 12.1, we have

δH1

(
Uε(t)B,Kε

)
= δH1

(
PSε(t)B,PEε

)
≤ δH0

ε

(
Sε(t)B, Eε

)
≤ Q(‖B‖H0

ε
)e−κt

= Q(‖B‖H1)e−κt.

Finally, exploiting point (III), we learn that

δsymH1

(
Kε,K0

)
= δsymH1

(
PEε,PE0

)
≤ δsymH0

ε

(
Eε, E0

)
≤ Cετ ,

which completes the proof. �
Proofs of Theorem 3.8 and Theorem 3.10. Apply Theorem 13.5 and Theorem 13.8 to

the vectors z = (u0,−φ(u0), u0). �
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