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TWO DIMENSIONAL RECURSIVE FAST FOURIER TRANSFORM

CHAPTER I

INTRODUCTION

Since the appearance of fast Fourier transform (FFT)
(Cooley/Tukey, 1965) (Cooley/Cochran, 1967), many
researchers have worked in this field and invented a
variety of FFT algorithm implementations. FFT 1is an
efficient method of computing discrete Fourier transform
(DFT), but it requires that all the data sequence be
ocbtained before the start of transformation. This
limitation makes FFT difficult to be wused for oneline
applications because sometimes the duration of signal is
unknown. Therefore the search of recursive algorithms of

Fourier transform is attractive.

For one dimensional DFT, Ahmed
(Ahmed/Natarajian/Rao, 1973) presented a recursng
algorithm which was derived from the " mirror image " of
the signal. By processing the input data one by one, this
method can be used for on-line spectral identification.
Hostetter (Hostetter, 1980) constructed another recursive

algorithm based on the observer concept of control theory.




His first paper prompts more efforts 1in this area
(Hostetter, 1983) (Bitmead, 1982). These approaches have
recursive property, but the transform speed is low because
the data are processed one by one. Therefore, a question
is raised: how to find a method which has both fast and
recursive properties. For this problem, a moderate
method, recursive fast Fourier transform (RFFT), was
presented (Zhu, 1985) (Zhu/Wang, 1986). This mehtod is
developed from Ahmed's method, but the input data are
processed segment by segment recursively, as opposed to
one by one, and a revised fast algorithm 1is used in

processing every segment.

Compared with FFT, this method has the following

advantages:

(1) Flexibility: The number of input data in every segment

may not equal the number of frequencies.

(2) Recursive property: Due to no limitation on recursive
steps, the desired spectrum can be obtained as the input

data increase.

Compared with other recursive methods mentioned
above, this RFFT approach has higher transform speed
because a revised fast algorithm is wused in every
recursive computation. The main idea of the algorithm is

to transform the new data segment to frequencies by means




of revised FFT algorithm and then to '"repair™ the old
spectrum which is obtained by previous data. Although the
total computational operations of RFFT are more than those
of FFT, 1its transform speed may not be low because the
part of computation can be finished between the sampling

intervals.

For two dimensional DFT, the common methods used so
far are still FFT type. The purpose of this thesis is to
extend one dimensional RFFT to two dimensional case
because recursive algorithm 1is alsc attractive for two

dimensional signal processing.

The organization of this thesis is as follows. In
chapter II, a literature review is given, which introduces
the development of fast Fourier transform, recursive
Fourier transform and other related algorithms for the
computation of DFT. Chapter III presents the algorithm of
two dimensional recursive fast Fourier transform. This
algorithm consists of two parts: the recursive algorithm
and the revised fast algorithm. Chapter IV describes
numerical experiment results, including a simulation of
signal detection by RFFT. In chapter V, the conclusion
and discussion of possible applications of RFFT algorithm

are given.




CHAPTER 1II

LITERATURE REVIEW

1. DEVELOPMENT OF FFT

Fourier transform is an essential analysis method in
many scientific and engineering fields. One of the
reasons that Fourier transform have such wide=ranging
applications 1is because of the existence of powerful
digital computers and efficient algorithms for computing

discrete Fourier transform.
The definition of DFT is given by

il kn
F(k)=2> x(n)W , k=0,1,...,N=1, (2=1)

n=o
where W=exp(=j2W/N) and x(n), n=0,1,2,...,N=1, 1is the

sample sequence of a time signal.




Inverse discrete Fourier transform (IDFT) is given by

=l kn
x(n)=(1/N) 2= F(K)W , n=0,1,...,N=1. (2=2)
n=0
To indicate the importance of efficient

computational procedures, it is necessary to consider the
direct calculation of DFT equations. Since x(n) may be

complex, it can be written as follows:
<! kn kn
F(k)=g {(Re[x(n)IRe[W " 1-Inlx(n)]1In(W*" 1)
+3(Relx(n)IImIW " J+Imlx(n)IRe[WK 1)},
k=0,1,...,N=1. (2=3)

From Eq.(2-3), it can be noticed that for each value of k,
the direct computation of F(k) requires UN real
multiplications and 4N-2 real additions. Since F(k) must
be computed for N different values of k, the direct
computation of DFT for a sequence x(n) requires UN? real
multiplications and (UN-2)N real additions. It is evident
that the number of arithmetic operations required to
compute DFT by the direct method becomes very large for
the 1large values of N Dbecause the amount of the
computation is approximately proportional to N?. For this
reason, computational procedures that reduce the number of

the arithmetic operations are of considerable interest.

Most algorithms which improve the efficiency of DFT




computation depend on one or both of the following special

properties of the quantity W:

1. wEE (k.
2. wkn =wk(m~‘>___ (,ka)n

where (W)* is the complex conjugate of W.

Computational algorithms that use both (1) the symmetry
and (2) the periodicity of the sequence W were Kknown
long before the appearance of highe=speed digital
computation for Fourier transform (Colley/Cochcran, 1967).
However this is not of great importance for the small
values of N that are feasible for hand computations. The
possibility of greatly reduced computation was generally
overlooked until about 1965, when Cooley and Tukey
(Cooley/Tukey, 1965) published the famous algorithm of
fast Fourier transform. This algorithm requires much less
computational effort and can be applied when N is a
composite number (i.e., N 1is a product of two or more
integers). The publication of this paper makes it
possible to apply discrete Fourier transform to signal
processing and results in the discovery of a variety of

FFT algorithms.

The fundamental principle that FFT algorithms are
based on is that of decomposing the computations of DFT

sequence of length N into successively smaller DFT's. The




manner in which the principle is implemented leads to many

different algorithms, qll with some improvements in
computational speed. F&r the sake of comparison with
RFFT, two basic clasgses of FFT are introduced:
decimation-in-tiﬁe algorithm and decimation-in-frequency

algorithm.

To achieve the dramatic increase in efficiency which

has Dbeen mentioned, it 1is necessary to decompose DFT
computation into successively smaller DFT computations.
In this process both the properties of the symmetry and
the periodicity of complex exponential w“gexp(-j(2W/N)kn)
are used. Algorithms where the decomposition is based on
decomposing the sequence x(n), into successively smaller
subsequences, are called decimation-in-time algorithms.
They are originally discovered by Cooley and Tukey

(Cooley/Tukey, 1965).

Alternatively, the computational methods can be
considered dividing the output sequence F(k) into smaller
and smaller subsequences in the same manner. The class of
FFT algorithms based on this procedure 1is commonly

referred to as decimation-in=-frequency (Oppenheim/Schafer,

1975).




The following is a flow chart of the

decimation-in=frequency algorithm (N=8).

x(0) X1(0) X2(0) X3(0)___c(0)
e W e

x(1) X1(1) X2(1) X3(1)___c(4)
W e W

x(2) X1(2) X2(2) X3(2)__ C(2)
W W W

x(3) X1(3) X2(3) X3(3)___C(6)
e W e

X (4) X1(4) X2(4) X3(4)  c(1)
W W W

x(5) X1(5) X2(5) X3(5)  C(5)
W Wa W

x(6) X1(6) 2(6) X3(6)_C(3)
W W W

x(7) X1(7) x2(7)Xx3(7) c(T)
W W W

8-point Butterfly Diagram of General FFT

Fig. 1

In Fig.1, DFT is computed by first forming the sequence
X1(n) with X1(n)=X(n)+X(n+N/2) and
X1(n+N/2)=X(n)=X(n+N/2), n=0,1,2,3, which results in two
N/2-point DFTs, then computing X2(n) in the same manner,
resulting 1in four N/d~point DFTs which reduce the
computation to the two=-point DFTs and can be implemented

by addition and subtraction. The computation of FFT




requires N/2Log,N complex multiplications and NLog,N

complex additions. Thus the total computation is much

less than that of direct computation of DFT for a large N.

Based on these principles, several algorithms have
been developed to speed up the transform even further.
The algorithm proposed in 1982 (Preuss, 1982) reduces the
number of multiplications and shows that the DFT of a
complex sequence can be computed from the DFT of four real
sequences which satisfies the appropriate symmetry
conditions. Another algorithm is based on the fact that a
radix-2 (i.e., N is a power of 2) algorithm diagram can be
transformed into a radix-i algorithm diagram. This
process requires fewer multiplications and additions
(Duhamel/Hollmann, 1984). Also, an approach 1is proposed
for the implementation of radix=2 FFT algorithm in
multiprocessors to increase the efficiency of the
transform (Bhuyan/Agrawal, 1983). The methods discussed
above are radix-2 algorithms, the decomposition of which
leads to a highly efficient computation of DFT. However,
in some cases it may not be possible toc choose N to be a
power of 2. Thus it 1is necessary to consider the
application in the case where N is a product of factors
that are not all necessarily equal to 2 (Gentleman, 1966)

(Singleton, 1969).

For the Fourier transform at arbitrary frequencies,

o
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an algorithm proposed is based on the fact that the
Fourier transform at an arbitrary frequéncy can be
expressed as a weighted sum of its DFT coefficients. The
method retains the computational order of FFT but allows
the flexibility of choosing arbitrary frequencies for a

uniformly sampled signal (Sudhakar, 1981).

Besides FFT, two additional methods have been
developed recently for the computation of DFT: the
polynomial transforms (Pei/Wu, 1981) (Wu/Pei, 1984)
(Nussbaumer, 1979) and estimator methods (Charles, 1984)
(Charles, 1982). The wunderlying idea of the estimator
methods 1is to approximate the designed estimator by
iteratively solving the corresponding matrix eqﬁation,
which makes it computationally feasible for the 1large

system equations.

For two dimensional DFT, general method is by using
one dimensional FFT repeatedly. The computational
procedures consist of three steps: First, each row in the
array is transformed with one dimensional FFT. Second,
the array 1is transposed. Finally, the row transform
process is repeated. This three=step procedure yields the
transposition of the two dimensional transform array
(Mitra, 1978). In addition, the contribution of Harris
(Harris et al, 1977) described a calculation approach

avoiding matrix transposition for the two dimensional FFT,
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by means of decomposing the two dimensional transform into
successively smaller two dimensional transforms.
Mersereau proposed yet another transformation procedure
(Mersereau, 1974) to change two dimensional sequences into
one dimensional ones. Using the mapping method, several
two dimensional problems can be solved by one dimensional

techniques.

In contrast to one dimensional DFT, the computations
required by two dimensional DFT may place severe demands
on even the largest computers. This 1is because of the
large size data arrays wusually encountered in practical
applications. For this problem, Eklundh presented a fast
computer method for matrix transposition. This method
enables applications of FFT to the matrices, the size of
which exceeds available main storage (Eklundh, 1972). A
similar approach was proposed later for the transposition
of non=-square matrices (Schumann, 1973). Another
algorithm presented by Twogood and Ekstrom is a more
efficient extension of Eklundh's Dbasic method (only two
rows of the matrix are resident in the primary storage at
any  one time) (Twogood/Ekstrom, 1976). Also, the
algorithms developed by Once (Once, 1975), Dellotto and
Dotti (Dellotto/Dotti, 1975), Hinton and Saleh

(Hinton/Saleh, 1984) are worth being mentioned here.




2. RECURSIVE ALGORITHM OF DFT

Although FFT 1is an efficient method of Fourier
transformation, it requires that. the number of time
sequence elements be equal to the number of frequencies
and the computation begins only after all the time
sequence 1is obtained. In order to process signals
on-line, the recursive computation of DFT has been also
developed in recent years. Ahmed, Natarajan and Rao
presented (Ahmed/Natarjan/Rao, 1973) an algorithm derived
from the discrete Fourier transform formula by using the
"mirror image" of time-sample series. The main recursive

formula of the algorithm is

Z(w,s)=L(w)Z(w,s=1)+BX(s),
(2=U)
$20,1,2,....,N=1,

where X(s), s=0,1,...,N=1, is the sample sequence of a




time signal, w is the frequency, and

‘ {coswat =sinwat)
, L(w)=| Py
(sinwat  coswatj

o
’ —

Z(w,=1)=

==
o
| N
e e]
1}
[STTTINN
o
| WU—

at is the sample interval.

This method provides a simple means of generating
frequency amplitude plots of Fourier power and phase
spectra recursively, which can be used in the spectral
analysis of the signals whose duration is unknown. It was
emphasized that FFT would be the most efficient way to
compute spectra if the following constraints were

satisfied:

i) The number of data N equals the number of frequencies

A, i.e., N=A, and N=2", where n is a positive integer.
ii) w=2rwk/ath, k=0,1,2,.000..,(A=1).

However, using Eq.(2-4), these constraints could be
removed. Another recursive DFT algorithm proposed by
Hostetter (Hostetter, 1980) is based on the concept of the
observer of control theory. The paper is developed from
the fact that a linear, time invariant homogeneous

differential equation with the characteristic polynomial
S(s?+(2T/TY ) (s2+(WT/TF ). ... .. (s24(2NT/T)*),

has a general solution of the form
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N
y(t)=do + 2 (ancos(2wnt/T)+bnsin(2Tnt/T)), (2=5)

n=|

where d,, a, and b, are the Fourier cocefficients.

It is shown that the state variable representation for

this homogenecus system is of the following form:

(%1 o _ 1 0 0. ..0 03{ %)

| Xy 1 1=(27/T) 0 0 0O...0 0 11 Xz

S S 0 0 o , 1...0 0 1} xa|

L x, 10 0 0 =(47/TY 0 .. .0 0 11 x,!

: 3 : : 3 3 . . . . . . 3 :: 3 :

[] | | () ]

[] . 1= . . . . . . . . . (] . ]

: . : : . . . . . . . . 3 :: . :

: 3 : : . 3 . . . . . . 3 :: 3 :

:).(ZN-I: : 0 0 0 0 0 2 1 ::XJN—I:

PXan || 0 0 0 0 -(2NT/T) 0 | 1Xan !

e} L O 0 0 0 0 0 J {Xaney
= AX, (2<6)

Y=[1 010 ......1 0 11X=C"X. (2=7)

From the viewpoint of this representation, deciding the
coefficients of DFT is equivallent to the determination of
the system initial conditions (i.e., to the classical

deterministic observer problem).

Alsoc, Hostetter proposed a recursive technique for
Fourier spectral analysis, when the samples were unevenly
spaced in time (Hostetter, 1983), and an approach to the
inverse DFT (Hostetter, 1984), both of which are based on
the observer of state variables. The latter gives a

recursive solution for general discrete 1linear transform




and shows that DFT is a special case of this algorithm.

In 1982, Bitmead (Bitmead, 1982) published a paper,
the aim of which is to demonstrate that the approach by
Hostetter yields the final results essentially equivalent
to standard signal processing methods. He makes
explicitly the connections between them and points out the

possible extensions.

In addition, Stuller (Stuller, 1982) presented an
approach for recursive discrete transform with respect to
arbitrary transform bases. He relates the generalized
transform to recursive discrete Fourier transform and
points out that it is a special case of this generalized

transformation.

As discussed above, every method has 1its own
advantages, but slow computation speed is their common
disadvantage although the recursive method 1is attractive
to on=line applications. And for the Hostetter's method,
practical realizations limit its applications due to a
high dimension of observer needed for the large number of
the coefficients of the Fourier transform. To overcome
these disadvantages and keep the recursive property, an
algorithm "Recursive Fast Fourier Transformation" (RFFT)
of one dimension has been proposed (Zhu, 1985) (Zhu/Wang,

1986). This algorithm combines the advantages of FFT and

.
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the recursive computation of DFT. By processing all data
segment by segment recursively and using the revised fast
algorithm for every segment, this algorithm has high

transform speed and can be used for on-line applications.

This thesis is focused on two dimensional recursive
fast Fourier transform (2«D RFFT), which is developed from
one dimensional RFFT. In addition, an application to

signal detection is given.
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CHAPTER III

TWO DIMENSIONAL RFFT

1. RECURSIVE ALGORITHM OF RFFT

The main idea of the two dimensional recursive fast
Fourier transform 1is to transfer the k=th row data into
the one dimensional spectrum by means of one dimensional
revised FFT or RFFT and then use the recursive algorithm
to M"repair"™ the o0ld spectrum which 1is obtained from
previous data (see Fig.2). This process is repeated until
all the data are transformed or the desired spectrum is

obtained.

Next, the construction of the recursive algorithm

will be discussed according to this idea.
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X(u,v)
T - U
pdd ,
,//// N (k=1)=th row data
/
////’ 7 k=th row data
y -7

Two Dimensional Data Array

Fig.2

DEFINITION 1:

A two dimensional discrete signal sequence is defined as

follows:

x¥(m1,m2)= X(u,v)3(u-mlau)d(vem2av), (3=1)

m2 mi

m1=0,1,2,...,N1=1, m2=0,1,2,...,N2=1,

where, X(u,v) is a two dimensional signal function, au and
AV are the sample intervals along horizontal and vertical

directions respectively and §( ) is the impulse function.

DEFINITION 2:

The mirror function of x¥(m1,m2) is given by

x*¥(m1,m2)z 5 T X(N1=1u,N2=1=v)F(u=(N1=1=m1)au)

m2 my

J(ve(N2=1=m2)av). (3=2)
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LEMMA 1:
Let F(w1l,w2) and F1(w1,w2) denote the Fourier transforms
of X*¥(m1,m2) and X*¥¥(m1,m2) respectively:
N2-b Ni-)

F(wl,w2)= Y Y X(m1,m2)exp(=jmlwlsu)exp(=jm2w2av), (3=3)
m2se me=c

- Ni~!
F1(w1 w2)-Z > X(Nleleml, N2-1-m2)exp(=jmlwlau)
mazc mi=o (3=4)

exp(=jm2w24v).
Then the relationships between the amplitude and phase

spectra of F1(w1,w2) and F(w1l, w2) are as follows

IF(wl,w2)|=iF1(wl,w2) i, (3=5)
P (w1,w2)==(N1=1)wlsu=(N2=1)w24av=Pl (w1,w2), (3=6)

where, ¢(wl,w2) is the phase spectrum of F(wl,w2) and

P1(w1,w2) is that of F1(wil,w2).

PROOF:
Egs.(3=3)(3<4) can be proved directly from the definition

of Fourier transform.

Let y1=N1=1-m1 and y2=N2=-1-m2, from Eq.(3-l), it follows

N2-1 NI~
Fi(wl,w2)=2_ I; X(y1,y2)exp(=j(Nl1=1=y1)wlau)
ya=C Yyi=¢

exp(=j(N2=1=y2)w2av)

X(y1,y2)exp(Jy1w1Au)exp(Jy2w2Av)

L5

« Mz.

exp( jN1=1)wlau)exp(=j(N2=1)w2av),
(3=7)

Compared Eq.(3<7) with Eq.(3=3), it follows that




F1(w1l,w2)=F*¥(w1,w2)exp(=j(N1=1)wlau)exp(=j(N2=1)w2av),

where F¥(w1,w2) is the complex conjugate of F(w1l,w2).

Thus, Egs.(3-5)(3=6) are proved.

ED
Represent F1(wl,w2)=R(w1,w2)=3jI(wl,w2), (3=8)
where
N2~ Ni=1
R(wl,w2)=}2" = X(Nl1=leml, N2=l1em2)cos(mlwlau+m2w2av),
ma2:=0 mi=o
N2+ Nt
I(wl,w2)=3 5 X(N1=1-m1, N2=1-m2)sin(miwlau+mew2av).
me=¢ mi={
Define a 2=dimensional vector
|
| M R(w1,w2) ]
F1(w1l,w2)=| i (3=9)
L I(wl,w2) J
‘ Let
[ cos(wlau) esin(wlau) ?
L1(w1)=] iy (3=10)
i L sin(wlau) cos(wlau) |
|
| I cos(w2av) =sin(w24v)
L2(w2)=| Ve (3=11)
L sin(w2av) cos(w2av)

It can be shown (Ahmed & Rao, 1975) that L1(w1) and L2(w2)

are orthgonal, and hence have the property

mi

- r cos(wlau) =sin(wlau) ]
L1 (w1l)=| i
L J

sin(wlau) cos(wlau)




M cos(miwlau) =sin(miwlau) 7
-] 1
=1 ]
L sin(mlwlau) cos(mlwlau) J,
m2 I cos(w24v) -sin(w2av) 1 ™
L2 (w2)=| i
L sin(w2av) cos(w24av)
™ cos(m2w2av) esin(m2w24v) 7
-l 1
=1 | o
L sin(m2w24v) cos(m2w24v) J
Hence
N2~ NE=i m2 mt
Fl(wl,w2)=Y Y L2 (w2)L1 (w1)eX(Nl1=leml, N2=l1-m2),
nR=2 mi=C
(3=14)
where
r 1 =
} ]
e=| [
L0 J
Denote
Ni=l m'
F2(w1,N2=1=m2)=2_ L1 (w1)eX(Nl=1eml, N2-1-m2). (3=15)
mi=¢

Then, (3-14) can be rewritten as

N2~

m2 NIt mi
F1(wl,w2)=2 L2 (w2)) L1 (wl)eX(N1=1em1, N2-=1-m2)

m2=0 mj=¢
N2~/ m2
=) L2 (w2)F2(w1,N2=1-m2). (3=16)
m2=¢

LEMMA 2:

Define the recursivevformula
zZ2(w1,w2,32)=L2(w2)22(w1,w2,S2=1)+F2(w1,32),

(3=17)

o

. __-J
L]

22(wl,w2,=1)=

r~=-"-"-"

o
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It follows that

N2-1 m2
Z2(w1,w2,N2=1)=3> L2 (w2)F2(w1,N2=1-m2)

m2=0

=F1(w1,w2). (3=18)
PROOF: (using mathematical induction)

1. For S2=0, z2(w1,w2,0)=F2(w1,0).

ma2=c¢

3. Hence, when S2=k+1,
Z2(w1,w2,k+1)=zL2(w2)Z22(w1,w2,k)+F2(w1,k+1)

K ma+|
=) L2 (W2)F2(wl,k=m2)+F2(w1,k+1)

ma2=o0

K+ d
=) L2 (w2)F2(w1,k+1=d),
d=¢
where, m2+1=d.

Therefore, when S2=N2-=1, using (3-16), we have
2-1 m2
Z2(ul,u2,N2=1)= 5 L2 (w2)F2(w1,N21em2)
=0

=F1(w1,w2).

0O
el
o

K m2
2. Assume, Z2(wl,w2,k)=2 L2 (w2)F2(w1,k=m2) when S2=k.
NOTE:
\
\

For every S2, F2(w1,S2) is an one dimensional DFT, which

can be computed by one dimensional FFT or RFFT.
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LEMMA 3: For one dimensional RFFT, the recursive formula

for F2(w1,S82) is
Z1(w1,hN=1,52)=L1" (w1)Z1(w1, (h=1)N=1,52)
+LX(hN=1, (h=1)N,S2), h=1,2,...... H,
T

Z1(w1,=1,82)=[ 0 0 ], (3=19)

where h counts the recursive steps along the u axis, N is

the number of data for every recursive step (HN=N1) and
o L Nt
L=[L1 (wl)e L1 (wl)e...... LT (wl)el, (3=20)
X(hN<1,(h=1)N,S2)
T
=[X(hN=1,82),X(hN=2,82)....X((h=1)N,S2)]. (3=21)

PROOF:

Using the same formula as in lemma 1 for F2(w1,S2), we

have

Z1(w1,81,82)=L1(w1)Z1(w1,S1=1)+eX(S1,S2),
(3=22)
Z1(w1,=1,82)=

r=="=-x

0
0

| S
.

Therefore,

Ni-1 mi

Z1(w1,N1=1,82)= Y L1 (w1)eX(N1=1-m1,S2)=F2(w1,S2).

miz0

In Eq.(3-22), let S1=hN=1; it can be shown that




hN-1
F2(w1,82)=Z1(w1,hN=1,82)=3 L1 (wl1)eX(hN=1-m1,S2).

mi=0

(3=23)

Write Eq.(3=23) in the matrix form as follows:

For h=1

Z1(w1,N=1,82)=[L1° (wide L1 (wi)e...LT (wi)el

For h=2

N-
Z1(w1,2N=1,52)=[L1° (w1)e..L1

Eq.(3=25) can be rearranged as
Z1(w1,2N=1,82)=[L1 (wl)e ...
|

N 0 N-)
LT (w1)IL1 (wl)e...L1T (Wwl)el}

X (N=1,82)7
X(N=2,82)!

! N 2N-1
(wl)e L1 (wl)e..L1 (wl)el
X (2N=1,582)7

X(N,S2)
X(N21,82)

1X(0,82)

(3=25)
follows:
X (2N=1,82)]

- 1X(2Na2.52) |
L1 (wl)el} .
]

+

X(N1,82)

| S,

X (N=1,82)]
IX(N=2,82) !
(3=26)

i
|
| . I
1X(0,s2)

Considering Eqs.(3=20)(3=21)(3=24)(3=26), it follows that

.
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N
Z1(w1,2N=1,82)=LX(2N=1,N,S2)+L1 (w1)Z1(w1,N=1,S2).

(3=27)
For h=3, we have

z1(w1,3N-1,se)=[L1°(w1)e...L1wa1)e L1 (w1)e.. LT (w)e

X (3N=1,82))

X(2N.52) |
oN an-\ X(2N=1,32)=
L1 (wl)e...L1 (wl)el . i
X(N,$2) |
X(N=1,82) |
A

' .
1X(0,82)

=LX(3N=1,2N,52)+L1" (w1)Z1(w1,2N=1,52).
(3=-28)
Also, it can be shown (by using mathematical induction

similar to that in the lemma 2) that
Z1(w1,nN=1,52)=L1" (w1)Z1(w1, (h=1)N=1,S2)
+LX(hN=1,(h—1)N,S?),

21(w1,=1,82)=00 01, (3-29)
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For convenience, all formulas necessary in the recursive

calculation are listed below.

1)

2)

3)

For F2(w1,82)=Z1(w1,hN=1,82),
. N )
Z1(w1,hN=1,82)=L1 (w1)Z1(w1,(h=1)N=1,82)

+LX(hN=1, (h=1)N,S2),
h=1’2’3’oooo’H’

o
-
—_

| W

r---
o

Z1(w1,=1,82)= and e

~—-"=7
o
| DO |

(3=30)
For F1(w1,w2)=22(w1,w2,N2=1),

Z2(w1,w2,S2)=L2(w2)Z2(w1,w2,S2-1)+Z1(w1,N1-1,S2),
S2=0’1’2’0000’N2°1’

o]
z22(wl,w2,=1)=) i

L0 (3=31)
'F(wl,w2)i=122(w1,w2,N2=1)1, (3=32)

P(w1,w2)==((N1=1)wlsu+(N2=1)w2aV

—arctg(=I(wl,w2)/R(w1,w2))). (3=33)
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2. FAST ALGORITHM OF RFFT

Eq.(3=30) is a recursive formula for processing all
data segment by segment (N sample data per segment). The
inspection of Eq.(3-30) shows that the amount of
calculations 1is mainly determined by the term of
LX(hN=-1,(h=1)N,S2). Hence, this term should be computed
by revised FFT. The main idea in this section is to make
use of the butterfly diagram of general FFT (see Fig.1).
But since the number N of sample data is not equal to the
number A1 of frequencies (this statement will be discussed
below), a revised buttefly diagram is necessary to process
these sample data. Next, the revised FFT algorithm is
dicussed and a butterfly diagram (see Fig.3) similar to

the butterfly diagram of general FFT is obtained.

Let

X(hN=1,(h=1)N,52)=[Xh(0,52) Xh(1,52)...Xh(N-1,52)1,
(3-34)
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where, [Xh(0,82),Xh(1,82)...Xh(N=1,S2)] denotes the
inverse sampled data sequence in the h-th segment and the
S2=-th row, i.e.,

Xh(0,S2)=X(hN=1,82),

Xh(1,82)=X(hN=2,52),

Xh(N=1,82)=X((h=1)N,S2).

Then
™h(0,82) 7
o Nt 1Xh(1,82)
LX(hN=1, (h=1)N,S2)=[L1 (wl)e.....L1T (wl)eli .

1
I
1
I
|
I
I
!
4

i .
Xh(N=1,82)

Nel
F; Xh(p,S2)cos(pwlau)]
| oy i (3=35)
LS: Xh(p,S2)sin(pwlau)}

P=0

Assume that the bandwidth of the signal is limited.
The maximum frequencies along w1l and w2 axes are fmaxi and
fmaxz respectively. From sampling theorem, we should have
au<=1/2fmuxi and av<=1/2fmaxz . Select au=1/2fmaxt ,
av=1/2fmexz, and suppose that A1 and A2 are the numbers of
frequencies distributed between 0 and 2fma , and O and
2fmaxz , respectively. Therefore,

wlzklawl=k1x2Tfma x2/A1=k1x2T/A1au, (3=36)

w2=k2x2T/A2av.. (3=37)

From Egs.(3=35) (3-36), define
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C(k1)= ) Xh(p,S2)exp(-j2mpk1/A1),
=0

k1=0,1,2,...... Ale1, (3-38)

EqQ.(3-38) allows to obtain A1 frequencies from N sampled
data. This is one of differences between RFFT and general
FFT, since for FFT, the constraint of A1=N must be
satisfied. The relation between A1 and N and the
computational procedure for Eq.(3-38) will be shown in the

following example.

Notation: Each decimal value of p, 0<=p<=N-1, is expressed

in binary form

n-i ne2 ] °
p=my,2 +m,,2 +...+m, 2 +m,2,

where m; =0,1, i=0,1...n=-1, n=log,N.

Similarly each decimal value of k1, 0<zk1<=A1=-1, is
expressed as

-i a-2

a
K12Keei 2 +Ka22  +.. .4k, 2 +ko 2

(<]

’

where ki =0,1, i=0,1...a=1, a=log,Al.

Denote the binary representation of Xh(p,S2) by
Xh(p,S2)=Dh(mp4Mpz .. .M Mo ,S2). (3=39)

Egs.(3-38) (3-=39) lead to the relation

il
C(k1)=:Z Xh(p,s2)w' "
=C n-i o
kKi(M,., 2 +-24M,2)
=YX Y ...X Dh(my, Myy...me,S2)W ° ., (3=40)

me m mp_,

where W=exp(=j2T/A1).
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Let N=4 A1=8, thus n=2, a=3, W=zexp(=j2T/8). For this case

ki(m,2'+m2°)
C(k1)= X ¥ Dhi(m, ,m,S2)W )

me ml

(3=41)

Assume,

. 2
Kim,2 am (2K, +2K1 tKe)
Mi=Z Dh(m, ,me,52)W =X Dh(m ,m ,S2)W e R TERTT

m,
&
Noting that W =1, we obtain

2m; (2K +Ke)
M1= ¥ Dh(m, ,m,,S2)W .
m;

(3=42)

The summation over m, in Eq.(3=42) results in a function

of ke, k, and m,, which is denoted by X1(k. ,k, ,me), i.e.,
M1=X1(ke ,ki ,m.). (3=43)

Replacing Eq.(3-43) into Eq.(3=U41), we have
m, (2’K2 +2K; tKo)

Kimo
Clk1)= 3 X1(Ke ,k, ,m W = 2 X1(ke, Kk ,mo )W .
mg m.
Similarly
C(k1)=X2(ke ,k: ,kz )=MO. (3=44)

With respect to X1(ko,k, ,m.) (i.e., M1),

2(2K; +Ko)
X1(k, ,k, ,m, )=Dh(0,m,,S2)+Dh(1,m, ,S2)W . (3=45)

Case 1. k; ko =0 O,
X1(0,0,0)=Dh(0,0,S2)+Dh(1,0,S2)W",

X1(0,0,1)=Dnh(0,1,82)+Dh(1,1,S2)W°.

Case 2. k; ko=0 1,




2
X1(1,0,0)=Dh(0,0,S2)+Dh(1,0,S2)W ,

X1(1,0,1)=Dh(0,1,52)+Dh(1,1,82)W" .

Case 3. kK, ke=1 0,
. o
X1(0,1,0)=Dh(0,0,S2)+Dh(1,0,S2)W ,
X1(0,1,1)=Dh(0,1,S2)+Dh(1,1,52)W*.

Case 4. kike=1 1,
]
X1(1,1,0)=Dh(0,0,S2)+Dh(1,0,S2)W ,
X1(1,1,1)=Dh(0,1,S2)+Dh(1,1,82)W" .

Similarly, with respect to X2(ko ,ki ,k2) (i.e. MO), it can
be obtained

4k2 T2K|+K‘
X2 (ke ,k¢ ,Ka2 )=X1(ko ,ki ,0)+X1(ke ,ki ,1)W . (3=46)

Case 1. Kxkike=0 0 O,

X2(0,0,0)=X1(0,0,0)+X1(0,0, )W .

Case 2. Kaki ke=0 0 1,

X2(1,0,0)=X1(¢1,0,0)+X1(1,0,1)W".

Case 3. kakikoe=0 10,

2
X2(0,1,0)=X1(¢0,1,0)+X1(0,1,1)W .

Case 4. kKakike=0 1 1,

3
X2(1,1,0)=X1(1,1,0)+X1(1,1,1)W .

Case 5. kaki ke=1 0 O,

4
X2(0,0,1)=X1(0,0,0)+X1(0,0,1)W .




Case 6.

Xx2(1,0,1)=X1(1,0,0

X2(0,1,1)=X1(0,1,0

X2(1,1,1)=X1(1,1,0

K:Kike=1 0 1,

&
Y+X1(1,0,1)W .

Case 7. kakikoe=1 10,

é
)+X1(0,1,1)W .

Case 8. kaki ko =1 1 1,

7
Y+X1(1,1,1)W

32

This sequence of arithmetic operations is shown in Fig.3.

Xh(0,52) X1(0) X2(0) c(0)
Xh(1,52) %; wx1(1)><x2(1) C(u)
Xh(2,52) ¥ 2) x2(2) c(2)
Xh(3,52) x;1<3):::><::ﬁx2<3) c(6)
Xh(0,52) X1(4) X2(4) (1)
xn(1,se)\\\\///wx1(5):::><::\x2(5) c(5)
xn(e,se)j><i:><\x1(6) x2(6)_____c<3)
xn(3,se)////\\\\x1(7)j::><::ﬁx2(7) c(7)

8-point Butterfly Diagram of Revised FFT

F
Here, the sample da
form are replaced
decimal form accord

conjugate property,

ig. 3

ta Dh(m,,m,

by the data

ing to Eq.(3=39).

we have

Xh(p,S2)

,S2) expressed

expr

From the

in binary
essed in

complex




C(A1/2+L)=C*(A1/2-L),

where, C*( ) is the complex conjugate of C( ).

The C(k1), k1=0,1,2,3,4, is calculated and others can be

obtained by the conjugate property of DFT.

This completes the construction of revised FFT

algorithm. Representing C(k1) as real and imaginary parts

C(k1)=R1(k1)=3I1(k1), (3=47)

and using Eq.(3-38), we have

R1(k1)="y__:; Xh(p,S2)cos(2mpk1/A1), (3-48)
I1(k1)=:§:;' Xh(p,S2)sin(2mpk1/41). (3-49)
Considering Eqs.(3=36)(3=37) and substituting

Egs.(3=48)(3-49) intc Eq.(3=35), LX(hN=1,(h=1)N,S2) can

be obtained. By comparing Fig.3 with Fig.1, it is seen
that the butterfly diagram of the revised FFT is similar
to that of general FFT. The difference between them is
only in the starting of iteration. Because of a2n (see
page 30), the first iteration for Eq.(3-38) agrees with
the (a-n+1)=-th iteration of general FFT. The sample data
are used repeatedly, and the number of repetitions is

r=A1/N.
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CHAPTER IV

EXPERIMENTAL RESULTS

In order to illustrate the possible applications of
2=D RFFT algorithm, three experiments are presented 1in
this chapter. 1In the first experiment, a 2-D exponential
function 1is transformed by RFFT and the results are
compared with DFT, FFT, and ideal spectrum. In the second
experiment, a more complicated function is shown, and in
the third one, a signal detection using the RFFT 1is

simulated.

The following is a calculational diagram of the
algorithm: when the new data appear, one dimensional RFFT
or revised FFT is first used to transform these data to
F2(w1,82), and then F1(wl,w2) is computed by the
recursive formula; this process continues until all data

are used.




e e e e m— — e — e mm e - —— . —m —— e = —— )

1

N new data in

-

'
I

Y

 aameE BT

Z1(w1,hN=1,82)=L1"(w1)Z1(w1, (h-1)N=-1,82)+
+LX(hN-1, (h=1)N,S2)

T
|
]
L

10 1
Z1(W1,-1,32)=L0)‘, e= 0)', h=1,2,3,ooooH

1

-—— - - —— e ——— - -

z2(w1,w2,82)=L2(w2)Z2(w1,w2,82=-1)+
+Z1(w1,N1-1,82)

103
z2(wl,w2,-1)=10}, $2=0,1,...,N2-1

e ————————————— ]

T
|

no

all data

finished?

[ yes

!

IF(wl,w2)=1Z2(w1,w2,N2=-1) 1|
S(wl,w2)==((N1=1)wldu+(N2-1)w2av-
—arctg(~-I(wl,w2)/R(w1,w2)))

mmmemmmmmmm o

-1
Y
Diagram of RFFT Calculation
Fig. 4
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Experiment 1:

For a two dimensional signal:

X(u,v)=exp(=(u+v)) ud>=0, v>=0, (4=1)

its Fourier transform, i.e. the ideal spectrum, is

F(wl,w2)=(1/(jw1+1)) (1/(jw2+1)), (4=2)

and the amplitude and phase spectra are

}F(w1,w2).}=1/[(w12+1)(w22+1)]? (4=3)
d(wl,w2)==[arctg(wl)+arctg(w2)]. (4=4)

Table 1 shows the ideal spectrum. Fig.5, Fig.6,
Table 3 and Table 5 to 7 are the spectra by using 2-D
RFFT. From these experimental results, it is noticed that
as the data increase, the spectra tend to the ideal

spectrum monotonically.

Comparing Table 2, which represents the spectrum
obtained by DFT, with Table 3, it can be noticed that the
results of RFFT and DFT are identical. RFFT has the same
advantage as DFT that the number of sample data may not be
equal to the number of frequencies. The transform speed
of RFFT is faster than that of DFT because the fast

algorithm is used. Table 8 presents the spectrum obtained
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by RFFT with half sample interval of Table 2. Compared
Table 8 with Table 3, it is seen that reducing sample
interval makes the spectrum closer to the ideal spectrum,
because reducing sample interval implies reducing the

overlap of the spectrum.

Comparing Table 4 which represents the FFT
algorithm results, with Table 6, it is seen that RFFT and
FFT yield the same result when the number of sample data

equals that of frequencies.

Experiment 2:

In this experiment, a complicated two dimensional
signal to be transformed comes from the model of an ideal
low=pass filter and is revised here for the purpose of

practical realization.
Definition:

1
lexp(-(0.1v+u2/llv))/v/2 ud>=1,v>=0
X(u,v)=| (4=5)
i 0 u<1,v<o0

The Fourier Transform of X(u,v) is
F{X(u,v)}=ff[exp(-(0.1v+u /8v))/v*]lexp(=(jw2v+jwlu))dvdu
i ©

=![W/(O.1+jw2)]4exp[-u((0.1+jw2)4+jw1)]du
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[} 1 [}
=[+ exp(-(jw1+(0.1+jw2)4)]/(0.1+jw2)4(jw1+(0.1+jw2f5).
(4=6)

The amplitude spectrum of F{X(u,v)} can be obtained as
2 2 V4 \ 2 2 %
IF{X(u,v)}!iz1wexp(=(0.1°+w2% )% cos(8/2))/{[w1+(0.1%° +w2")

[}
(sin(8/2)) +(0.12+w2? ) 2c052(0/2)1 ((0.12 +w22)*},
(4=7)

where, O@=zarctg(10w2).

The Fig.7 to Fig.13 show the convergence of the spectra to
the ideal spectrum by using 2-D RFFT. Fig.13 shows a good
agreement between the 1ideal spectrum and the result

obtained from 2-D RFFT.

Experiment 3:

This is a simulation of signal detection by using
RFFT. The signal g(u,v) is mixed with additive noise
n(u,v) and the time of the signal appearance (a,b) is

unknown. The input signal is

X(u,v)=zg(u=a,v=b)U(u=-a,v=b)+n(u,v)U(u,v), a>=0, b>=0,
(4=8)
where U(u,v) is a 2=D unit step function.
Assume that the noise n(u,v) is Gaussian, white noise with

zero mean and unit variance and has stationary and ergodic
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properties. Assume also that g(u,v) and n(u,v) are
uncorrelated. Resulting from these assumptions, the

autocorrelation function of X(u,v) is
Rx(z1,z2)=Rg(z1,z2)+Rn(z1,22). (4=9)

And the power spectrum of X(u,v) is
Sx(wl,w2)=Sg(w1,w2)+Sn(w1,w2), (4=10)

where

Ta T

Rx(z1,z2)=1im[f { X(u,v)X(u-21,v-22)dudv1/T1T2,
Ti>roe e g

Ta=>o¢

) Ta Te
Rg(z1,z2)=lim[jj g(u,v)g(u=z1,v=22)dudv]/T1T2,
Ti>ex o o
Ta>oe

T2 Ti
Rn(z1,z2)=lim[‘f n(u,v)n(u=z1,v=22)dudv]/T1T2,

TI=>® o o
TIM

tot + o0
sx(w1,w2)=[ [ Rx(z1,22)exp(-(Julz1+ju2z2))dz1dz2,

-0p =00

+ 90 yao
Sg(w1,w2)=[(’Rg(z1,z2)exp(-(jw1z1+jw2z2))dz1dz2,

~ 20 -0

< oo
Sn(w1,w2)=ff Rn(z1,z2)exp(=(jwlz1+jw2z2))dz1dz2.

o ion
If no signal is present, i.e., g(u,v)=z0, then
Sx(wl,w2)=Sn(wl,w2)=1.

The key point here is to obtain Sx(wl,w2) from the random
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signal X(u,v) directly, because the calculation of
correlation Rx(z1,z2) requires all sample data and
therefore does not allow the recursive method to be used

for on=line applications.

Assuming that X(u,v) is ergodic, the following formula can
be derived
T T2

Sx(w1,w2)=1im:[j X(u,v)exp(=(jwlu+jwav))dudvi® /T1T2.

‘ﬁ-’oo o o

Ty >ec (4=11)

Because the detection of sinusoidal/narrow=band
signals has received a great deal of attention (Kumaresan
& Tufts, 1983) (Glover, 1977), the sinusoidal signal is
selected as a signal to be detected in this experiment,

i.e.,
g(u,v)=sin(qru=Tv). (4<12)

The discrete form of Eq.(4=11) is

N2-i Ni-|
Sx¥(k1,k2)=1> 3 X(m1,m2)exp(=(2 k1m1/A1+
mx= miso

2 kom2/A2) 12 /T1T2.
(4=13)

Fig.14 to Fig.17 illustrate the experiment results.
At the beginning, the result is only the noise power

spectrum because the collected data does not include the




41

signal. When the signal appears, the spectrum is changed
and the signal is detected better and better with increase
of recursive steps ( Fig.14 to Fig.17 ). From the
experimental results it is indicated that, in the presence
of the additive white noise, RFFT provides an efficient
signal detection and accurate estimate of the signal
frequency despite a small signal-to-noise ratio (see

Fig.18).
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CHAPTER V
CONCLUSION AND POSSIBLE APPLICATIONS

The algorithm developed in this thesis provides a
recursive fast Fourier transform method, by which the
(A1xA2) values of frequencies are computed recursively
from the (N1xN2) sample data sequence. Because of no
constraints on the length of signal sequence and recursive
steps, the results of transform can approach monotonically
the real spectrum as the data sequence=-length increases.
RFFT is a recursive version of FFT, and theoretically its
output is equal to that of general FFT for the same signal
sequence. Hence, the convergence of RFFT to the real

spectrum can be discussed similarly to that of FFT.

Studying the formulas in Chapter III, we notice that
the amount of computational operations of RFFT is larger
than that of FFT when the number of sample data is the
same as that of frequencies. But from the viewpoint of
on-line applications, the transform speed of RFFT might be
not lower than that of FFT because part or most

computational operations may be finished during the sample
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intervals of one segment. This 1is true if the computer
efficiency is relatively high when compared with the

duration of one data segment.

The above feature is very suitable for microcomputer
or microprocessor implementations. The processes of
sampling and calculating may be carried out by several
microcomputers or microprocessors seperately. This may
fully wutilize the computer time and speed up the
transformation even further, making it very useful for
on=-line spectral analysis and identification of two

dimensional systems.

RFFT may also have other applications. In many
cases, the analog=-digital transform is necessary. For
example, digital Butterworth filter, digital Chebyshev
filter (Rader/Gold, 1967) and Elliptic filter (Gold/Rader,
1969) (Guillemin, 1957) (Storer, 1957) all present the
design methods for analog=digital transform according to
the desired frequency response specifications. Steiglitz
(Steiglitz, 1970) (Rabiner/Steiglitz, 1970) has proposed
an IIR (infinite impulse response) design procedure based
on minimization of mean=-square error in frequency domain.
All of these methods require a given frequency response as
design bases. Thus, if the desired frequency
specification comes from a real analog system, all of the

methods require the solution to analog-digital transform
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problem. With RFFT, all the above procedures might be
realized on-line through the 1identifications of those
unknown analog systems in frequency domain. For one
dimensional system, the paper (Zhu & Wang, 1986) gives an
application of such concept to system identification

problem.

Another application of RFFT is to solve the problem
of processing a signal sequence which otherwise requires a
large computer memory. Especially, in 2-D applications,
the largee-size data arrays are commonly encountered.
Although the signal sequence may be very long, the number
of frequencies does not have to be too large for the
computer memory to accept. This is Dbecause the
frequencies in the question are usually distributed in a
certain range only. For such a problem, it is difficult
to wuse general FFT (requiring the same number of
frequencies and sampling data) to process a large amount
of sample data. While selecting the number of data that
the computer could accept, the real spectrum will bDe
distorted. RFFT can solve this problem. By selecting the
necessary number of frequencies, the desired spectrum
could be obtained as the data are processed step by step,

regardless of the amount of samples.

Presented here, a "signal detection" experiment

(Experiment 3) has shown another advantage of RFFT. Since
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the time when the signal appears is unknown, it is
necessary to sample and detect the signal continuously,
which results in an increasing-size 2-D datum array. If
the signal appears after a long delay, then, the amount of
sample data will become very large, most of them being the
noise. This TMuseless" information will be transformed,
and the number of frequencies produced by FFT will
increase greatly because of the large amount of sample
data. This may set a big burden on the computers. On the
other hand, the signal detected by RFFT can produce the
spectrum whose frequency number is usually much smaller
than that of sample data in practical applications.
Hence, the demand for the computer memory and calculations
is relaxed. Moreover, because of the recursive property
of RFFT, it 1is possible to stop the transform as soon as

the signal is detected.

In the summary, the recursive property, speed and
flexibility of RFFT algorithm make it attractive for the
applications in a variety of signal processing and

analysis problems.
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IDEAL SPECTRUM

EXP. 1: X(u,v)=exp(-(u+v))
‘N1=128 (H=4, N=32)
2u=0.01
A1=128

Fig. 5

u>=0, v>=0

N2=128
av=0.01
A2=128
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IDEAL SPECTRUM

u>=0, v>=0

EXP. 1: X(u,v)=exp(=(u+v))
N1=256 (H=8, N=32) N2=250
Au=0.01 Av=0.01
A2=128

- A1=128
Fig. 6
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[]
EXP. 2: X(u,v)=}
[ ]
]

]
[
EXP. 2: X(u,v)=|
!
i

L9

exp(-(0.1v+u®/8v))/v% ud=1,v>=0

0 u<1, v<o0
N1=64 (H=1, N=64) N2=50
au=0,1 av=0.1
A1=128 A2=128
Fig. 7

exp(-(0.1v+uz/4v))/vﬁ' u>=1,v>=0

0 u<1, v<O0
N1=64 (H=1, N=64) N2=100
au=0.1 Av=0.1
A1=128 A2=128

Fig. 8
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lexp(=(0.1v+u?/ly))/v¥* u>=1,v>=0
EXP. 2: X(u,v)=}
]
]

0 u<1, v<o
N1=128 (H=1, N=128) N2=128
Au=0,1 av=0.1
A1=128 A2=128
Fig. 9

exp(-(0.1v+u*/4v))/v/2 ud=1,v>=0

]
]
EXP. 2: X(u,v)=}
1
]

0 u<1, v<o
N1=128 (H=2, N=64) N2=128
au=0.1 av=0,1
A1=128 A2=128
Fig. 10
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texp(-(0.1v+u?/4v))/v¥* ud=1,v>=0
EXP. 2: X(u,v)=i
[}
1

0 u<i1, v<o
N1=192 (H=3, N=64) N2=200
4u=0.1 Av=0.1
A1=128 A2=128
Fig. 11

exp(-(0.1v+u?/Uv))/v¥% ud>=1,v>=0

EXP. 2: X(u,v)=

0 u<1, v<o0
N1=256 (H=2, N=128) .N2=200
4u=0.1 4v=0.,1
A1=128 A2=128

Fig. 12



IDEAL SPECTRUM

exp(=(0.1v+u*/4v))/v* u>=1,v>=0

(]
]
EXP. 2: X(u,v)=j|
]
]

0 u<1, v<O0
N1=384 (H=3, N=128) N2=350
su=0.1 av=0.1
A1=128 A2=128

Fig. 13
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NOISE SPECTRUM

JAUY. N A “ A

B IR BTN G RATx '
e o ORISR AT ACTEATIFR
e AN =0 O e e, 3\\"7 . ~
O N S TSN, g AL T S S

o A A T LN O
SN L S AT eSS AP TR =
\J‘M _\vj‘\.*‘wnu&"v S

o
g - N, o . o >
A - W = '.@"\" :-—;-.-W ~

e IROR TN vo»&;(#én-&“s;

5
N N A A e AN A SN S oy
R N BB A

EXP. 3: X(u,v)=0.1Sin(m(u-4)-m(v-4))U(u-4,v-4)+n(u,v)U(u,v)

N1=640 (H=10,N=64) N2=640
4u=0.125 Aav=0,125
A1=64 A2=64




SPECTRUM pHALYSTS WITH TRANSFER FUNCTIGH
FUNCTION: fix,vIzexpl-{xxct+yxec )
TRANSFER FUNCTION:F{S1,32)=1/4CS1+C1 )4 52+C2)) |

FACTOR: C1=1.0000 C2=1.,0000 |

FE b A A R AR A T e o OB Ak R e e kRO kKK

LAUEL R R R L R R R R RN X R R W Y
\

i

\

SPECTRUM Fuuf, W2 RESREALLFOUL, 023D, IM=IMAG FoWl, WZ0) MOD=MODELL FOWT , 820 ), ANL=RHGLES Fr Wi, 12))
::: ? z;: ; RE= 1.000000 M= 0. 000000 MOD= 1L 000500 AHL= 0. 000000
Uie 2 wae o RE= . 060897 IMN=  -.239144 MaD= 246772 ANL=284, 286620
- RE= . 01%3%7 Iit= -, 125293 MOL- 16304 ANL =277, 2551 fin
ﬁ:j ; fif E RE= 007154 IM=  -.084275 MiD= . 0845783 ANL=274, 351510
Wi= S Wz 0 RE= . 004038 IM=  -,063405 MOD= . UE3533 ANL=Z73 . 642640
Wi= &  42= g RE= 002557 M= -, 050798 MOLD= . 050864 215530
Ve ¢ wee RE= 001725 1= -. 042365 MOD= . 042403 4306240
Wie & wze RE= 001322 IM=  -.038330 MOD= . 035354 ANL=272. 053376
U= 9 wee RE= . 001012 IM=  -.03179% MOD= . 021815 ANL=271.823150
Uie 10 wee RE= . 000800 iM= -, 028272 MoD= . 023283 AHL=271.620730
Gi= 11 uae o RE=  .000643 : IM=  ~.025443 MOD= . 025457 ANL=271.453740
Vis 12 wae RE=  .000536 IM= -, 023137 MOD= . 023144 ANL=271,326170
Wi= 13 W= G RE= BT (TR IM= -.0z21211 MOD= L 021216 AHL=2?21.215700
Ui= 14 Wos RE= 000334 M= -.019581 MOD= . 013585 AHL=271. 122130
) RE=  .000331 IN= -.018133 MOD= . 013186 ANL=271. 042050
::: 'z ::: ? RE= .000233 IM=  -. 016972 MOD= . 016974 ANL=270.372600
Uie 1 ume RE= 060897 M=  -.23914} MOD= 246772 ANL=234. 236620 |
W= 2 Wze RE= -.053450 IM=  -.029126 MOL= . 060897 ANL=203. 573210 |
W= 2 uze i RE= -, 028991 IM= -, 011445 MOD= . 031168 ANL=201 . |
Ut= 4 up= g BT m.0Ime IN= - 006343 ML= . 020872 ANL=197, %
Gie 5 uze RE=  —.014917 IM= - 004226 Mol= . 015675 AtL=197, 9292 |
BE= -, 0pf4%0 M= -, 003712 Mif= . 012552 AL =197, 202120

TABLE 1 Spectrum Analysis with Transfer Function: F(w1,w2)=1/((jw1+1)(jw2+1))
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W= 1

| Wi= 2
1= -_
Wi= 4
Wi ow
1= [
W= 7
W= 2
W= 3
Wi= 10
= 1
M= 1z
Wi= 12
= 14
W= 15
Wi= 0
Wi= 1
Wi= 2
f= 3
Wi= 9
M= s

ol

J
W

Lig=

W=

1,W2o:
n

[
u
1]
0

TABLE 2 Spectrum Analysis with DFT (N1=28, N2=30)

LA AR R L R R A N A N R NN R T YRR S Ny SN O A NP

LPECTRUN wttsit el wETH DFT

THFUT FOHCTION: Fix,udcexpl = xecl+ykcz

HUMBER OF TNEGT: faszgter TP

iR S R

*****0********!«**w******#3************$$#

RE=REARLLF{UW , W2, IM=IMAGS FJWt,WZr) MIL=MODELSFL{W] , We ) ANL=ANGLECFLUWI . W2 )
RE= . 385463 IM=  0.000000 MO Ls= LAE5468 AtiL= ¢,

R L0997 243 i My L2e e ML =2 SRS
PE= N7a77 lit= -, 125713 MOL= 44264 ANL=299, 37

RE= 0624672 IM= -,070594 MO L= . 034265 ANL=311.

rE= 051583 M=~ 047848 M= L 0EA530 AML=317, 85533
EE L053iS08 ifl= -, 036494 ML= L0551 26 AHL=324.,63207 0
Fo= 0S5 060 IM= -.021&73 MOT= 060177 ANL=338.6353550
RE= 053121 IM= -, 006712 HQAL= . 053543 AHL=352.793070
RE= L 049332 IM= =, G0udou MOD= . 049232 ANL=35%,

RE= L0S3121 In= L0067 4 MOD= . 053543 Alkb= 7.200704
RE=- L5606 0 IM= L 021873 MG D= 060176 ANL= 21, 314533
E= L, 031508 Iti= . 036494 MOD= L0 126 AlL= 35.2i7770
RE= L5156 = COdERTE M= LWL 838 AHL= 42 1an053
RE= .U62467% IM= LU 0594 neD= . 094265 AlL= 43

FE= LUY077 0 IrM= LHEFTIS Mal= 144264 AatlL= &0,

RE= . 0697243 In= L 2422736 MU= 261084 ARL= &&.

RE= .0381539 IM=  -.228467 MO L= 245677 AHL=2%3,

RE= ~, 046480 IM= -, 046520 MaD= . 065883 AlL=225,

RE= -, 022023 IM= -, 023934 M= L 035404 ANL=232.

RE= -, 0101414 IM= -,021E817 MOl= L Q23787 ANL=244,7¢

RE= -.003e7% M= -.016603 M= L0 TE43 ANL=-51 .

RE= -,003323 IM= ~.,015578 MGL= .015?30 ANL=Z57 . 240320

LS
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SPECTRIM AHALYZIS MITH RYET

INFUT FUNCTION: Fooo L nmaspd —f LRI DR I
FralTOoR o LOnug

HIIMBE= OF IH ; M Y]

HUMBES QF SPECTRUM:H 16&

RECURSIVE TIMES: H

THPUT SAMPLE STEP:

R RO TRUR UL RURT SUSTER R ¥ 8 TH R W AT g 3 3 R E B b 2 R 2 e 3 e it g o
SPECTRUN ﬁﬁwl,w2): RE=REALLFCWT, W25, IM=TMAGS FOMT W, MOD=MOCELIFO WY W2 0 0, AHL=ANGLECF{WT W2 1)
Wi= @ Wz= 0
oy J RE=  .9834e7 = 0,000000 ML= 925467 BHL= 0, 000000
1= 1 W= 0

RE= 097249 M= =-,242296 MO = V281 R4 AHL=291 227110
Li= 2 Wz= 0
e 3 s RE=  .070770 IM=  -,125713 M= 144364 ANL=29%, 377144
1= 3 Wa= 0 .

RPE= 062409 IMN= -, 0703534 ML= T peg AHL=311 . 505740
Wi= 4 W U

RE= L. 0515672 IM= -, (045656 M= AHL =317 . 2%
= S W= 1]

RE= , 051508 IN= -, 038494 MOD= GHL=3I2d4 , 62025
Hi= & e 1}
W 7 W RE- + 056060 TH= - 021873 MOL= AHL=Z32, 626040
uh = v e 1}

) RE= L 083121 IM= -, BET1H MOD= ANL=352. 7939130

Wi= @ [P 1]

RE= , 049232 M= ,G0anp0 ML= AHL= L B0S46
W= 9 W= 0

aHL= v .z201861
aHL= 21 . 315987
AHL= 35.313954
all= 42, 142700
alL= 43 ,435110
aHL= &0, 621155
AHL=

RE= . 052121 M= L 008712 iD=
Mi= 10 MW= @
) RE= . 056060 M= . 021875 ML=

Mi= f1 uz= D

RE= . 051507 = 03649 MiD=
Mi= 12 W= 0

RE= . 051561 M=, 045659 MOD=
Mi= 13 uWz= 0 _ . . i

RE= . 062468 IH= . U7039S ML=
Wi= 14 uz= 0

RE= . 070773 = 125711 ML=
Wi= 15 u@= 0 - i

RE= 097257 M= 242292 MOD=
W= 0 Wz=

™

RE= . (09&198 IM=  -.228467 ML=
Wi= 1 wz= 1 )
G- s \ RE= -, 046483 M= -, 046683 iD=
o RE= ~.022093 M= -,023934 MO L=
W= 3 g ]

RE: - 010141 IM=- =, 021517 ML=
M= e i

RE= -, QOSE

4
Wi 5 )2 \ vE IM= -, DEEARQOT M=
= . f) o2 =

RE= -, 003325 M= -~ Q1557 ML=

TABLE 3 Spectrum Analysis with RFFT (N1=28, N2=30)
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FACTOR

HUMBER OF ZPECTRU:HF
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TABLE ¥ Spectrum Analysis with FFT (N1=16, N2=16)

1060

2o ITERPL (KT k2D
Lann

c2=1.040600

HFY= 1a

IM=IMAGC FOU W2,

TH=
IH=
IM=
M=
IM=
IN=
M=
In=
IN=
in=
IH=
IM=
M=
IM=
In=
M=
In=
IH=
IH=
In=
IH=
M=

a,e0anon0

R e

-, 079440
-, 043525

-, 00EE40

a,000aanq
L 0EE40
L01ZR22
L 022232
L 033E0

L 04 FRES

07344

=

-, 012425
-, 014004
-.e1120
-, 010487

hokock ok etk ok

AAD=MODELCFORT W20y,

ML=
ML=
MOD=
M=
ML=
HOL:=
ML=
M=
MaLe=
MO L=
MQ L=
MO L=
M3 =
ML=
ML=
MOL=
MOL=
HaD=
MO
MOL=
QL=
MOL=

TO3ETA

B Pl O
L SEES
S 2EET

N1 N491

AHL=AHGLECFCWY W2 0

A= 0,

noaenn

5.248530

025340

FLReu0sl
L1e18vo
635490
2.31932490

oeoe0ao
680649
314526

328135

2.139961

L 208740
510560

64



B IR b i R R R T R R N R R R R 2 A R A R N RUR Y

SPECTRUM paHALYZ TS WITH RFFT
THFUT FOMCTION:

Lo, wdmeupl —(xkCt 4kl 0
Laann cd=1,00010
Hi¢= 10

HFY= t:

SPECTRUM Eiwi,MQ): RE=FERLCF(WY W2 0), IN=THAG F{WT, Wan >, MOD=MODELL Fo T, W20 ), AHL=RHGLECFCWT W2 0>
Wi= 0 w=

0
W3 . RE= 284373 IM= 0, 000000 MO L= L3243V AHL= 0, 000000

ki= = U
s . RE= 16757 IH= -, 2270&9 ML= L2512én AHL=235, 343&30

thi= 2 2= U
RE= . 024433 IM= -.043412 M3 L= 043213 ANL=a3% 3772040

W=

.l
=
N
n
o

RE= . 055834 IH= -, 071461 MO L= L5071 8 AHL=3 043, 0
RE= 020112 IM= -.012138° MQAL= La27122 ANL=C1 7,

=4
o
[n g}
=
(=

Ut =

=
hel
"
Laet]
L=

W=
W=
W=

[ IS
e =
LA NY
HE)
< [~
o«
[ )

RE= . 051A11 IM= -, (32042 MO L= LOEQT0 ANL=328,
RE = . 019359 IM= -, 007553 ML= L2072 ANL=33g

=]
&
hY
i
[t
T
w0
13
[ I <]
N o
L=~ ~ T ]

3& M= -, 09550 ML= LASIEER AHL=343, 31321
Wi= &  Wi= ©
P L018z03 IM= ., 00000 M= LA ANL=735%, 999830
Wi= 9 - Wi= @
2

N
4]
o1

; & IM:= L QOeasn ML= CESSR AHL= 110
M= 10 Wz=

Wi= 11 W=
Wi= 12 Wa=

Wt= 12 Was= 1]

W T
-
& o
n
7]
22}

= , 0123359 M= G753 ML= L 08

E [z}

RE = 051611 = L 032047 ML=
[
E

(=S =~

T
b
=
I
L5Y]
O
~]
(]
-~
ul

=3

RE= L 020115 TH= L1219 MO L=
T 0558824 IH= L OV 1462 M= 03

1
b B NN |
& @
[
F ]
W

Hi= 14 Wz= 1§

. RE = L 024437 IM= , 43412 IR AHL= 64 .622407
Wi= 15 WZ= 0
RE= LNEFETO IM= L 227069 M= AHL= &4 ES150T

M= 0 we=

<
£
-
o

F
E
RE= 04597 IM= -,183308 ML= AHEL=2R3 . &5
= 1 Wwz= 1
E L 033671 IM= -, 472997 MIFEe= ,
Ki= 2 Wwz= 1
018401 IM= -.017137 MOE=

= LSS EE AML=2o3, e ¢
i= 3 We= |

RE= - 02sdts IM= -, 035997 ML= L 045563 ANL=2T1.710720

T
=
-
[}
a
ol
i}
E-
Ixv]
=

el
i
]
1
2
e
A

Wi= 4 Uz= 1
RE=  —, 006534 IM= -, 01205 M= AR LR R <4 AML =241 . 544300
Wi= 3 Wa=

FE= -~ @o09can IM=  -.023134 P41 s SOV CAHL=251 346530

TABLE 5 Spectrum Analysis with RFFT (N1=8, N2=10)
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SPECTRUN ANALYSIS WITH RFFT

INFUT FUHCTION: v, wo=expl =, xhcl dpkce 1)
FACTOR : ci=1,0000 c2=1,0000

HUMBER OF IHFUT: H¥= 4 HY= 16

NUMBER OF SPECTREUM:HFX= 16 NFY= 1&

RECURSIVE TIMES: H=

IHFUT SAMPLE STEP: T= .100H

et e e ok Sl s sl sl ok S ook b e e St sk s e ok ek shoke ot e s b koK

m?fLTﬁum ALARECEE RE=REALCFLWT 200, IM=IMAGE FOW1, W2, MOD=MODELS Fe W, W2) ), ANL=ANGLECFC W1, 4200
de 1 uze G RE=  .703374 IM= 0,000000 MOD= 703374 aNL=  0.000000
bie 2 wae PE=  .074720 IM= -, 157874 MOD= 174693 ANL=235.342630
die 1 wae RE= . 044721 IH= -, 073440 MOD= 091163 ANL=239,377200
o= 4 Wze RE= . 038854 IM= —.049685 MOD= L 067073 AHL=303, 025760
- RE= .036803 M= -, 033301 MOD= 042533 ANL=317.859920
E:: j z:; Z RE= 035823 IN= -,022232 MOD= . 042238 ANL=228. 161320
we 7 wze 0 RE=  , 035425 In= -,013822 MaL= 032026 ANL=338,635060
Wi= @ Wz2= o RE=  .035205 IM= -, 006640 ML= 03526 ANL=349.3192110
W= 9 Wz= ® RE= 03519 = .000000 MOD= 035133 AHL= . 000109
Wi= 10  W2=  © RE= . 035205 CIM= 006640 Midb= . 035226 AML= 10.680996
Wis 11 u2= o RE=  , 035425 M=, 013822 MOD= L 0ZR026 aHL= 21.314674
Wiz 12 2= © RE= 035863 M= 022292 MOD= 042238 ANL= 31.833631
W= 13 uz= o RE= 0368032 IM= 033301 ML= . 042533 ANL= 42.140083
Wi= 14 'w2= 0 RE= . 033853 IM= ., 049686 MOD= 063073 aNL= S1,975555
W= 15 Wz= o RE= 044713 IN= 079441 MOD= . 091163 aHL= &€0,623773
W= 0 uz= RE=  .074783 In= 157675 MOD= 174633 ANL= 64652330
Wie 1 wze RE= 074790 IM= -, 157874 MOD= 174693 ANL=235, 348510
W= 2 Wz= 1 RE= -, 027483 IM= -, 033574 . o mop= 0433288 ANL=230.637110
W= 3 wpe RE= -,013075 IN= -,018425 MOD= . 028642 ANL=234, 725650
U= 4  uz= i RE= -.007021 IM=  -.014004 Mul= 01SEAS ANL=743, 374080
Wi= 5  wz= 1 Ri= . 00330t M= - olien MOb= L 012327 ANL=253, 208470
FE= -, 0011326 IM= -, 010427 M= L0 0430 AHL=263,503350

TABLE 6 Spectrum Analysis with RFFT (N1=16, N2=16)
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1?ELTRUM Fth,g dr PE=RESLCFO WY, W20, IM=TMAGS FoMW  WaE s, MOD=MOLELCFOWY Wl sy, GHL=AOHGLECF{ WL, W2 0
W= e
) RE= , BV 43 M= 0, oc0funa MO L= LETE4TN At = 0, 00000
W= 1 . Wz= U

RE= NIRRT M= -~ 212500 M= SLAnEy AHL =203, 055371 0

W= 2 b2= 0
W _ . . RE= L OVIET IM= —-,129372 Mitle= AR B AHL=299, 377140
i = K = u

- RE= L 0de3201 IM= -, 073157 ML= RS el AHL=300.312420
Wi= 4 W= ]
ui= 5 wz= @ BT cmess In= -.041434 MOb= 061344 ANL=317 . 859920
T - RE= L (INH OG5S = -, 025412 M D= LR 1423 AHL=335, 368710
Hi= & z= [
1 Wz PE= 057955 M= -, 022514 MOD= L DEZINS ANL=338, 685550
il= 2= 0

. PE= L 04 1438 M= -, 0184734 MO D= AHL=341.612120
Wi= g uWa2= 0

IE = L GIITan IM= , 000000 M= AHL.= , 0N054¢€

Wi= 9 Wwz= 0

RE= , 043438 IH= L 01584270 MO AaHL= 1

,0RD21S L= 21 .315112
RE= 055055 M= L hes1e MaD= L0E14273 faHL= 24,131992

«Q
il
ual
o0
Lo
o
=i

=

-
]

—

RE= L 057984 In= , 022615 Hgb=

E = =
# ]
PN - o

RE= L04TEST M= , 041425 ML= L0 1Edd aHL= 42.140953
RE= » 04529 M= SOFITE MO L= JamEa AHL= 59,683940
RE= JOVE1ARS IN= 1299373 ML= 49151 AHL= &0,623779
RE= L 133561 IH= . 212924 MOD= , 254039 AML= 56.945747
RE=" 112492 IMN= -, 233754 MO L= . 255232 ANL=233 . 676030

1t
L]
&
N
I
-0 o o o o o

]
=T I
[
re
]

i
=
™~

n

Y _ Wz | RE= L Q405273 IM= -, 061254 M= , G739 AHL=236. 731840
= P b2 =
RE= -.028103 IM= -, 034717 ML= L043435 AHL =233, 05810

Wi= 3 ya= 1

RE= -,015702 IM=  —, 021603 M D= CAZAT I pHL =233, 3342920
Ut= 4 Wz= 1

PE= =, 003704 TH=  ~, 01 70H8s M= R (RN gt =251, S3I601 0
W= 5 wz= 1 )

PE= -.0001432 IH= -, 037857 M= LiTEeR HHL=289 . 544920

TABLE 7 Spectrum Analysis with RFFT (N1=20, N2=25)
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SPECTRUN AHALYSIS WITH RFFT

INPUT FUNLTION: Fix,pr=expl ~Cxkcl+ysc 2l
nCTOR} ci=i. 0000 c2=1,0000

HUMBER OF INPUT H¥= 8 HY= é¢

HUMBER OF SPECTRUM:MNFX=_ 32 HFY= 32

FECURSIVE TIMES: H= 7

INPUT SAMPLE STEP: T= ,0500

LERELEL L EEE LRSI ERLEEE LI EERS L L LEEE LR REL L LS

UlE gun 55u|,%2>: RE=REALCF-WL, W2)), IN=IMAGC FCWL,Waed), MOC=MILELCFCWT 200, BHEL=AHGLEC FOMY W2,
= 2™
RE= L 937991 M= @,000000 MQL= A= 0, 000000
Wt= Ww2= 0 .
PE= L Q69763 IM= -,2372c6 [ DR HHL=256.32477 0
Wi= 2 W2= 0 ~
FE= . 042837 IM= -,127783 MG L= AHL =228, 411870
Wi= 3 W= 0
RE=  0ZA37E IMN=  —,07777V7 ML= ANL=295, 064750
Wi= 4 We=s 0 -
FE= 026762 IM= -, 05498:% MO L= AL =295, 573000
Wi= S W2= 0
RE= , 024325 IM=  —,047083 MOL= pHL=297 , 322570
yt= 6 Wwa2= o0
RE= . 027924 IM= -, 032587 MO L= ANL=208, 2925320
Wi= 7?7 Ww2= 0 _ - i
- RE= 027667 IM= -, 022057 M= AHL=314, 593300
Wi= 8 W2= 0 N
RE= , 02401¢ IM= ~-,022344 MO L= AL =216 43526350
Uil= 9 Ww2= 0
RE= , 024159 IM=  -,021508 MOLD= ANL=212,3219c @
Ui= 10 2= 0
RE= 0268769 IMN= -,017246 MQLe= LT R44 BHL=ZZ7, 207780
Wis 1% Wwa= 0 :
RE= , 025922 IM= -,011478 ML= L 028355 wHL=336,121700
W= 12 Wa2= 0
" 13 ws 0 RE= , 023543 IM= -,009467 MOL= L 0253278 AHL=338, 094060
W= =
. i 14 us 0 RE= , 024570 IM= -.,008904 MOD= LOE 134 nHL=340, (RO3B0
] -RE= . 026506& IM= -,005137 MQD= L 025999 AHL=349, 032900
Ui= 15 Wa2= 0
) RE= 023115 IH= -,000820 MOL= 02T 30 AHL =357 .994 140
Wi= 16 W2= 0
RE= , 023445 . IM= -,000002 MOD= 023448 AML=3%% 295150
Wi= 17 W2= 0
RE= . 023115 M= , 0008786 MOLs LU2ZS130 AHL= 1,993240
Wi= 18 W2= ¢
RE= L 026507 IM= . 005133 MOL= . 0269939 aHL= 10,959450
ui= 19 wa= 0 RE 024571 0089 143
. RE= L 02457 IM= . 900 HOL= LU2A 34 nHL= 19.,91§318&
Ut= 20 W2a= 0
ul= 29 wo= o RE= , 0202544 1= . 009464 MOD= LG25375 RHL= 21.83%8247
RE= L 02592¢ IM= 011474 MO L 028355 Al = 23, 3vedas
Ni= 22 We= 0
RE= L Qavye IM= 017242 MQLe= L0321844 whiL= 32, 782837

€9

TABLE 8 Spectrum Analysis with RFFT (N1=56, N2=60)




64

CHAPTER VI

BIBLIOGRAPHY

Ahmed ,N., Natarajan,T. & Rao,K.R., "An algorithm for the
on=line computation of Fourier spectra", International
Journal of Computer Mathematics, Vol.3, No.4, pp 361-370,

1973.

Bhuyan,L.N. & Agrawal,P.P., "Performance analysis of FFT °
algorithm on multiprocessor systems", IEEE Trans. on

Software Eng., Vol.9, No.4, pp 512-521, July 1983.

Bitmead, R.R., "On recursive discrete Fourier
transformation", IEEE Trans. on Acoust, Speech, Signal

Processing, Vol.30, No.2, pp 319-322, Apr. 1982.

Byrne,C.L. & Fitzgerald,R.M., "Linear and nonlinear
estimators for one= and two=dimensional Fourier
transforms", IEEE Trans. on Acoust, Speech, Signal

Processing, Vol.32, No.4, pp 914-916, Aug. 1984,

Byrne,C.L. & Fitzgerald,R.M., "Reconstruction from
Partial Information with Applictions to Topography", SIAM.

J. Appl. Math., Vol.42, pp 933-940, Aug. 1982.




65

Cooley,J.W. & Cochran,W.T., "What is the fast Fourier
transform?", IEEE Trans. on Audio Electroacoust, Vol.15,

pp 45-=55, June 1967.

Cooley,J.W. & Tukey,J.W., "An algorithm for the machine
calculation of complex Fourier series", Math. of Comput.,

Vol.19, pp 297-301, Apr. 1965.

Delotto and Dotti,D., "Two dimensional transforms by
minicomputers without matrix transposing", Computer
Graphics and Image Processing, Vol.l4, No.3, pp 271=-276,

Sept. 1975.

Duhamel,P. & Hollmann,H., "'Split radix' FFT algorithm",

Electronics Letters, Vol.20, No.1, pp 14-16, Jan. 1984,

Eklundh,J.0., "A fast computer method for matrix
transposing", IEEE Trans. on Computers, Vol.21, No.7, pp

801-803, July 1972.

Gentleman,W.M. & Sande,G., "Fast Fourier transform-for

fun and profit", D.C., Spartan 1966, pp 563=578.

Glover,d., "Adaptive noise cancelling applied to
sinusoidal interferences", IEEE Assp. Vol.25, pp 484=491,

Dec, 1977.

Gold,B. & Rader,C.M., "Digital processing of signals",

McGraw-Hill Book Company, New York, 1969.



66

Guillemin,E.A., "Synthesis of passive networks", John

wiley and Sons, Inc., New York, 1957.

Harris,D.B., McClellan,J.H., Chan,D.S.K. &
Schuessler,H.W., "Vector radix fast Fourier transform",
IEEE Internat. Conf. on Acoust, Speech, Signal

Processing, pp548=551, 1977.

Hinton,O.R. & Saleh,R.A., "Two-dimensional discrete
Fourier transform with small multiplicative complexity
using number theoretic transforms", IEE Proceedings,

Vol.131, pt.G, No.6, pp 234-236, Dec. 1984

Hostetter,G.H., "Recursive discrete functional expansion",
IEEE Trans. on Automatie Control, Vol.29, No.7, pp

654-656, July 1984,

Hostetter,G.H., "Recursive discrete Fourier transform with
unevenly spaced data", IEEE Trans. on Acoust, Speech,

Signal Processing, Vol.31, No.1, pp 206-209, Feb. 1983.

Hostetter,G.H., "Recursive discrete Fourier
transformation", IEEE Trans. on Acoust, Speech, Signal

Processing, Vol.28, pp 184-190, Apr. 1980.

Hoyer,E.A. & Berry,W.R., "An algorithm for the
two=-dimensional FFT", Proec. of IEEE Internat. Conf. on

Acoust, Speech, Signal Processing, pp 552=555, 1977.

Kumaresan,R. & Tufts,D.W., "Estimating the parameters of



67

exponentially dampted sinusoids and pole-zero modeling in

noise", IE Assp. Vol.30, pp 833-840, 1983.

Mersereau,R.M., & Dudgeon,D.E., "The representation of two
dimensional sequences as one dimensional sequences", IEEE
Trans. on Acoust, Speech, Signal Processing. Vol.22,

No.5, pp 320-325, Oct. 1974.

Mitra,S.K. & Ekstrom,M.P., "Two=dimensional digital
signal processing”, Dowden Hutchinson and Ross, Inc.,

1978.

Nussbaumer,H.J. & Quandalle,P., "Fast computation of
discrete Fourier transforms using polynomial transforms",
IEEE Trans. on Acoust, Speech, Signal Processing, Vol.27,

No.2, pp 169-181, Apr. 1979.

Onoe,M., "A method for computing large=scale
two=dimensional transform without transposing data

matrix", IEEE Proc. Vol.63, No.1, pp 196-197, 1975.

Oppenheim,A.V. & Schafer,R.W., "Digital signal
processing", Prentice-Hall, Inc., Englewood Cliffs, New

Jersey, 1975.

Pei,Soco=Chang & Wu,Ja=Ling, "Fast biased polynomial
transforms for two-dimesional convolutions", Electronics

Letters, Vol.17, No.14, pp 547=-548, July 1981.

Preuss,R.D., "Very fast computation of the radix-2 DFT



68

discrete Fourier transform", IEEE Trans. on Asouct,
Speech, Signal Processing, Vol.30, No.4, pp 595-607, Aug.
1982.

Rabiner,L.R. & Steiglitz,K., "The design of wide=band
recursive and nonrecursive digital differentiators", IEEE
Trans. on Audio Electroacoust, Vol.18, No.2, pp 204=209,

June 1970.

Rader,C.M. & Gold,B., "Digital filter design techniques

in the frequency domain", IEEE Proc., Vol.55, pp 149=-171,

Feb. 1967.
Schumann,U., "Comments on ' A fast computer method for
matrix transposing ' and application to the solution of

Poisson's equation", IEEE Trans. on Computers, Vol.22,

No.5, pp 524=542, May 1973.

Singleton,R.C., "An algorithm for computing the mixed
radix fast Fourier transform", IEEE Trans. on Audio

Electrocacoust, Vol.17, pp 93-103, June 1969.

Steiglitz,K., "Computer-aided design of recursive digital
filters", IEEE Trans. on Audio Electroacoust., Vol.18,

No.2, pp 123=129, June 1970.

Storer,J.E., "Passive network synthesis"™, McGraw-=Hill Book

Company, New York, 1957.

Stuller,J.A., "Generalized running discrete transform",



o

‘ IEEE Trans. on Acoust, Speech, Signal Processing, Vol.30,

No.1, pp 60-68, Feb. 1982.

| Sudhakar,R., Agarwal,R.C. & Dutta Roy,S.C., "Fast
computation of Fourier transforn at arbitrary
frequencies", IEEE Trans. on Circuits and Systems,

Vol.28, No.10, pp 972-980, Oct. 1981,

Twogood,R.E. & Ekstrom,M.P., "An extension of Eklundh's
matrix transposition algorithm and its applications in
digital image processing", IEEE Trans. on Computer,

Vol.25, No.9, pp 950-952, Sept. 1976.

Wu,Ja=Ling & Pei,Sco=Chang, "Fast biased polynomial
transforms for 2D prime length discrete Fourier
transforms", Electronics Letters, Vol.20, No.22, pp

932-934, Oct. 1984.

‘ Zhu,Feihong, "Recursive fast Fourier transform", ACTA
Automatica Sinicana, Vol.11, Suppl. No.2, pp 221=225,
Dec. 1986.

Zhu,Feihong and Wang Xiedong, "System spectrum analysis
with recursive fast Fourier transformation", Journal of
Chinese Society of Automation, Information and Control,

Vol.15, No.1, pp6=13, Feb. 1986.



