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TWO DIMENSIONAL RECURSIVE FAST FOURIER TRANSFORM

CHAPTER I

INTRODUCTION

Since the appearance of fast Fourier transform (FFT)

(Cooley/Tukey, 1965) (Cooley/Cochran, 1967), many

researchers have worked in this field and invented a

variety of FFT algorithm implementations. FFT is an

efficient method of computing discrete Fourier transform

(DFT), but it requires that all the data sequence be

obtained before the start of transformation. This

limitation makes FFT difficult to be used for on-line

applications because sometimes the duration of signal is

unknown. Therefore the search of recursive algorithms of

Fourier transform is attractive.

For one dimensional DFT, Ahmed

(Ahmed/Natarajian/Rao, 1973) presented a recursive

algorithm which was derived from the " mirror image " of

the signal. By processing the input data one by one, this

method can be used for on-line spectral identification.

Hostetter (Hostetter, 1980) constructed another recursive

algorithm based on the observer concept of control theory.
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His first paper prompts more efforts in this area

(Hostetter, 1983) (Bitmead, 1982). These approaches have

recursive property, but the transform speed is low because

the data are processed one by one. Therefore, a question

is raised: how to find a method which has both fast and

recursive properties. For this problem, a moderate

method, recursive fast Fourier transform (RFFT), was

presented (Zhu, 1985) (Zhu/Wang, 1986). This mehtod is

developed from Ahmed's method, but the input data are

processed segment by segment recursively, as opposed to

one by one, and a revised fast algorithm is used in

processing every segment.

Compared with FFT, this method has the following

advantages:

(1) Flexibility: The number of input data in every segment

may not equal the number of frequencies.

(2) Recursive property: Due to no limitation on recursive

steps, the desired spectrum can be obtained as the input

data increase.

Compared with other recursive methods mentioned

above, this RFFT approach has higher transform speed

because a revised fast algorithm is used in every

recursive computation. The main idea of the algorithm is

to transform the new data segment to frequencies by means
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of revised FFT algorithm and then to "repair" the old

spectrum which is obtained by previous data. Although the

total computational operations of RFFT are more than those

of FFT, its transform speed may not be low because the

part of computation can be finished between the sampling

intervals.

For two dimensional DFT, the common methods used so

far are still FFT type. The purpose of this thesis is to

extend one dimensional RFFT to two dimensional case

because recursive algorithm is also attractive for two

dimensional signal processing.

The organization of this thesis is as follows. In

chapter II, a literature review is given, which introduces

the development of fast Fourier transform, recursive

Fourier transform and other related algorithms for the

computation of DFT. Chapter III presents the algorithm of

two dimensional recursive fast Fourier transform. This

algorithm consists of two parts: the recursive algorithm

and the revised fast algorithm. Chapter IV describes

numerical experiment results, including a simulation of

signal detection by RFFT. In chapter V, the conclusion

and discussion of possible applications of RFFT algorithm

are given.
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CHAPTER II

LITERATURE REVIEW

1. DEVELOPMENT OF FFT

Fourier transform is an essential analysis method in

many scientific and engineering fields. One of the

reasons that Fourier transform have such wide-ranging

applications is because of the existence of powerful

digital computers and efficient algorithms for computing

discrete Fourier transform.

The definition of DFT is given by

N-1

F(k): X(n)Wkn
,

k=0,1,...,N-1, (2-1)
A=0

where W=exp(-j2M7N) and x(n), n=0,1,2,...,N-1, is the

sample sequence of a time signal.
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Inverse discrete Fourier transform (IDFT) is given by

14-1

X(11)=(1/N)I: F(k)W
kn

, n=0,1,...,N-1. (2-2)
n =o

To indicate the importance of efficient

computational procedures, it is necessary to consider the

direct calculation of DFT equations. Since x(n) may be

complex, it can be written as follows:

F(k)=X { (Re[x(n)Die[W" "]-Im[x(n)]Im[W ])

+j(Re[x(n)]Im[Wk" ]+Im[x(n)]Re[W" ])} ,

k=0,1,...,N-1. (2-3)

From Eq.(2-3), it can be noticed that for each value of k,

the direct computation of F(k) requires 4N real

multiplications and 4N-2 real additions. Since F(k) must

be computed for N different values of k, the direct

computation of DFT for a sequence x(n) requires 4N2 real

multiplications and (4N-2)N real additions. It is evident

that the number of arithmetic operations required to

compute DFT by the direct method becomes very large for

the large values of N because the amount of the

computation is approximately proportional to N2. For this

reason, computational procedures that reduce the number of

the arithmetic operations are of considerable interest.

Most algorithms which improve the efficiency of DFT
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computation depend on one or both of the following special

properties of the quantity W:

koi-ti)
k

, kn.*
W W )

2. W =W W
kn Ktn+w) C14-rN)n

where (W)* is the complex conjugate of W.

Computational algorithms that use both (1) the symmetry

and (2) the periodicity of the sequence W were known

long before the appearance of high-speed digital

computation for Fourier transform (Colley/Cochcran, 1967).

However this is not of great importance for the small

values of N that are feasible for hand computations. The

possibility of greatly reduced computation was generally

overlooked until about 1965, when Cooley and Tukey

(Cooley/Tukey, 1965) published the famous algorithm of

fast Fourier transform. This algorithm requires much less

computational effort and can be applied when N is a

composite number (i.e., N is a product of two or more

integers). The publication of this paper makes it

possible to apply discrete Fourier transform to signal

processing and results in the discovery of a variety of

FFT algorithms.

The fundamental principle that FFT algorithms are

based on is that of decomposing the computations of DFT

sequence of length N into successively smaller DFT's. The
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manner in which the principle is implemented leads to many

different algorithms, all with some improvements in

computational speed. F

RFFT, two basic cla

decimation-in-time algo

algorithm.

To achieve the dra

r the sake of comparison with

ses of FFT are introduced:

ithm and decimation-in-frequency

atic increase in efficiency which

has been mentioned, it is necessary to decompose DFT

computation into successively smaller DFT computations.

In this process both the properties of the symmetry and

the periodicity of complex exponential W 1=exp(-j(21T/N)kn)

are used. Algorithms where the decomposition is based on

decomposing the sequence x(n), into successively smaller

subsequences, are called decimation-in-time algorithms.

They are originally discovered by Cooley and Tukey

(Cooley/Tukey, 1965).

Alternatively, the computational methods can be

considered dividing the output sequence F(k) into smaller

and smaller subsequences in the same manner. The class of

FFT algorithms based on this procedure is commonly

referred to as decimation-in-frequency (Oppenheim/Schafer,

1975).
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The following is a flow chart of the

decimation-in-frequency algorithm (N=8).

X1(0)

W°

X1(1)

ler w°

X1(2)

7..
wX°1(3)

lr w°

A ALX1(4)

X1(5)NAVAL X1(5)

.41111
I:
X1(6)

AILX1(7)

W4

X2(0) X3(0) C(0)

We W6

W We

X2(1) X3(1) C(4)

X2(2) X3(2) C(2)
W4

W2

X2(3) X3(3) C(6)

We W6

X2(4) X3(4) C(1)

W2 WI

X2(5) X3(5) C(5)

W'

(6)

leW
2

X3(6) C(3)

Alta. X2(7)

W3

X3(7) C(7)

8-point Butterfly Diagram of General FFT

Fig. 1

In Fig.1, DFT is computed by first forming the sequence

X1(n) with X1(n)=X(n)+X(n+N/2) and

X1(n+N/2)=X(n)-X(n+N/2), n=0,1,2,3, which results in two

N/2-point DFTs, then computing X2(n) in the same manner,

resulting in four N/4-point DFTs which reduce the

computation to the two-point DFTs and can be implemented

by addition and subtraction. The computation of FFT
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requires N/2Log2N complex multiplications and NLog2N

complex additions. Thus the total computation is much

less than that of direct computation of DFT for a large N.

Based on these principles, several algorithms have

been developed to speed up the transform even further.

The algorithm proposed in 1982 (Preuss, 1982) reduces the

number of multiplications and shows that the DFT of a

complex sequence can be computed from the DFT of four real

sequences which satisfies the appropriate symmetry

conditions. Another algorithm is based on the fact that a

radix-2 (i.e., N is a power of 2) algorithm diagram can be

transformed into a radix-4 algorithm diagram. This

process requires fewer multiplications and additions

(Duhamel/Hollmann, 1984). Also, an approach is proposed

for the implementation of radix-2 FFT algorithm in

multiprocessors to increase the efficiency of the

transform (Bhuyan/Agrawal, 1983). The methods discussed

above are radix-2 algorithms, the decomposition of which

leads to a highly efficient computation of DFT. However,

in some cases it may not be .possible to choose N to be a

power of 2. Thus it is necessary to consider the

application in the case where N is a product of factors

that are not all necessarily equal to 2 (Gentleman, 1966)

(Singleton, 1969).

For the Fourier transform at arbitrary frequencies,
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an algorithm proposed is based on the fact that the

Fourier transform at an arbitrary frequency can be

expressed as a weighted sum of its DFT coefficients. The

method retains the computational order of FFT but allows

the flexibility of choosing arbitrary frequencies for a

uniformly sampled signal (Sudhakar, 1981).

Besides FFT, two additional methods have been

developed recently for the computation of DFT: the

polynomial transforms (Pei/Wu, 1981) (Wu/Pei, 1984)

(Nussbaumer, 1979) and estimator methods (Charles, 1984)

(Charles, 1982). The underlying idea of the estimator

methods is to approximate the designed estimator by

iteratively solving the corresponding matrix equation,

which makes it computationally feasible for the large

system equations.

For two dimensional DFT, general method is by using

one dimensional FFT repeatedly. The computational

procedures consist of three steps: First, each row in the

array is transformed with one dimensional FFT. Second,

the array is transposed. Finally, the row transform

process is repeated. This three-step procedure yields the

transposition of the two dimensional transform array

(Mitra, 1978). In addition, the contribution of Harris

(Harris et al, 1977) described a calculation approach

avoiding matrix transposition for the two dimensional FFT,
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by means of decomposing the two dimensional transform into

successively smaller two dimensional transforms.

Mersereau proposed yet another transformation procedure

(Mersereau, 1974) to change two dimensional sequences into

one dimensional ones. Using the mapping method, several

two dimensional problems can be solved by one dimensional

techniques.

In contrast to one dimensional DFT, the computations

required by two dimensional DFT may place severe demands

on even the largest computers. This is because of the

large size data arrays usually encountered in practical

applications. For this problem, Eklundh presented a fast

computer method for matrix transposition. This method

enables applications of FFT to the matrices, the size of

which exceeds available main storage (Eklundh, 1972). A

similar approach was proposed later for the transposition

of non-square matrices (Schumann, 1973). Another

algorithm presented by Twogood and Ekstrom is a more

efficient extension of Eklundh's basic method (only two

rows of the matrix are resident in the primary storage at

any one time) (Twogood/Ekstrom, 1976). Also, the

algorithms developed by Onoe (Onoe, 1975), Dellotto and

Dotti (Dellotto/Dotti, 1975), Hinton and Saleh

(Hinton/Saleh, 1984) are worth being mentioned here.
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2. RECURSIVE ALGORITHM OF DFT

Although FFT is an efficient method of Fourier

transformation, it requires that. the number of time

sequence elements be equal to the number of frequencies

and the computation begins only after all the time

sequence is obtained. In order to process signals

on-line, the recursive computation of DFT has been also

developed in recent years. Ahmed, Natarajan and Rao

presented (Ahmed/Natarjan/Rao, 1973) an algorithm derived

from the discrete Fourier transform formula by using the

"mirror image" of time-sample series. The main recursive

formula of the algorithm is

Z(w,$)=L(w)Z(w,s-1)+BX(s),

(2-14)

s=0,1,2,....,N -1,

where X(s), s=0,1,...,N-1, is the sample sequence of a



time signal, w is the frequency, and

n
se

Z(w, 1)=1 I 9

IL J

(
I I

B= i 1,

13

L(0=rcoswAt -sinwAtl

1,

IksinwAt coswAtj

At is the sample interval.

This method provides a simple means of generating

frequency amplitude plots of Fourier power and phase

spectra recursively, which can be used in the spectral

analysis of the signals whose duration is unknown. It was

emphasized that FFT would be the most efficient way to

compute spectra if the following constraints were

satisfied:

i) The number of data N equals the number of frequencies

A, i.e., N=A, and N=2", where n is a positive integer.

ii) w=2Trk/AtA, k=0,1,2, ,(A -1).

However, using Eq.(2-4), these constraints could be

removed. Another recursive DFT algorithm proposed by

Hostetter (Hostetter, 1980) is based on the concept of the

observer of control theory. The paper is developed from

the fact that a linear, time invariant homogeneous

differential equation with the characteristic polynomial

s(s2 +(211-/T)2 )(s2+(47r/T)2 ) (s2+(2Nrr/T)2 ),

has a general solution of the form
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y(t)=d0+5: (ancos(2ilnt/T)+bnsin(21fnt/T)), (2-5)
n=1

where do, an and bn are the Fourier coefficients.

It is shown that the state variable representation for

this homogeneous system is of the following form:

i o r 0 1 0

k2 j j ( 21r/T )2 0 0

X3 I I 0 0 0

*4 1 0 0 ( 14/r/T

I .

I-I
II

II .

I k2/4.-.1 I 1
O 0 O

1 : 0 0 0x
,

2.4

Lx2,...J L
0 0 0

)

0

0

1

0

0

0

0

.

.

.

. . 0

. 0

.. . 0

a . 0

0

-(2N1T/T)2

0

0 1r )(,),

0 1 1 kz
0 1 1 k3

0 j I k4
I I I

I I I

I I I

I I I

I I

I I I

1 Ilx.m, :

0 1:x24. 1

0 i Lx2N.n,

= AX, (2-6)

Y=[1 0 1 0 1 0 1]X=CTX. (2-7)

From the viewpoint of this representation, deciding the

coefficients of DFT is equivallent to the determination of

the system initial conditions (i.e., to the classical

deterministic observer problem).

Also, Hostetter proposed a recursive technique for

Fourier spectral analysis, when the samples were unevenly

spaced in time (Hostetter, 1983), and an approach to the

inverse DFT (Hostetter, 1984), both of which are based on

the observer of state variables. The latter gives a

recursive solution for general discrete linear transform
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and shows that DFT is a special case of this algorithm.

In 1982, Bitmead (Bitmead, 1982) published a paper,

the aim of which is to demonstrate that the approach by

Hostetter yields the final results essentially equivalent

to standard signal processing methods. He makes

explicitly the connections between them and points out the

possible extensions.

In addition, Stuller (Stuller, 1982) presented an

approach for recursive discrete transform with respect to

arbitrary transform bases. He relates the generalized

transform to recursive discrete Fourier transform and

points out that it is a special case of this generalized

transformation.

As discussed above, every method has its own

advantages, but slow computation speed is their common

disadvantage although the recursive method is attractive

to on-line applications. And for the Hostetter's method,

practical realizations limit its applications due to a

high dimension of observer needed for the large number of

the coefficients of the Fourier transform. To overcome

these disadvantages and keep the recursive property, an

algorithm "Recursive Fast Fourier Transformation" (RFFT)

of one dimension has been proposed (Zhu, 1985) (Zhu/Wang,

1986). This algorithm combines the advantages of FFT and
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the recursive computation of DFT. By processing all data

segment by segment recursively and using the revised fast

algorithm for every segment, this algorithm has high

transform speed and can be used for on-line applications.

This thesis is focused on two dimensional recursive

fast Fourier transform (2-D RFFT), which is developed from

one dimensional RFFT. In addition, an application to

signal detection is given.
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CHAPTER III

TWO DIMENSIONAL RFFT

1. RECURSIVE ALGORITHM OF RFFT

The main idea of the two dimensional recursive fast

Fourier transform is to transfer the kth row data into

the one dimensional spectrum by means of one dimensional

revised FFT or RFFT and then use the recursive algorithm

to "repair" the old spectrum which is obtained from

previous data (see Fig.2). This process is repeated until

all the data are transformed or the desired spectrum is

obtained.

Next, the construction of the recursive algorithm

will be discussed according to this idea.
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X(u,v)

(k-1)-th row data

k-th row data

Two Dimensional Data Array

Fig.2

DEFINITION 1:

A two dimensional discrete signal sequence is defined as

follows:

x*(m1,m2)= Z 2: x(u,v)F(umlAu)6(vm2Av), (3-1)
mz m1

m1=0,1,2,...,N1-1, m2=0,1,2,...,N2-1,

where, X(u,v) is a two dimensional signal function, Au and

AV are the sample intervals along horizontal and vertical

directions respectively and 3"( ) is the impulse function.

DEFINITION 2:

The mirror function of x*(m1,m2) is given by

x**(m1,m2)= 2: 2: x(N1-1u,N2-1v)X(u(N1-1mi)Au)
rn2 mi

Ev(N2-1m2)4v). (3.2)
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LEMMA 1:

Let F(w1,w2) and F1(w1,w2) denote the Fourier transforms

of X*(m1,m2) and X**(m1,m2) respectively:

N24 mr-I

F(w1,w2)= Z EX(m1,m2)exp(-jm1w1Au)exp(-jm2w2.0v), (3-3)
masa mac

N2-i NI-I

F1(wi,w2)..z E X(N1-1-ml, N2-1-m2)exp(-jm1w14.u)
mc 0=0

exp(-jm2w2ev).

Then the relationships between the amplitude and phase

(3-4)

spectra of F1(w1,w2) and F(wl, w2) are as follows

F(w1,w2):=1F1(wl,w2)1, (3-5)

410(wl,w2)=-(N1-1)1.414u-(N2-1)w24v-41(wl,w2), (3-6)

where, l(w1,w2) is the phase spectrum of F(w1,w2) and

41(141,w2) is that of F1(w1,w2).

PROOF:

Eqs.(3-3)(3-4) can be proved directly from the definition

of Fourier transform.

Let y1=N1-1-m1 and y2=N2-1-m2, from Eq.(3-4), it follows

W2-4 NH

F1(0,W2)=1: I: X(y1,y2)exp(-j(N1-1-y1)1414u)
Yi=c

exp(-j(N2-1-y2)w24v)

ti2-1 141-1

X(y1,y2)exp(jy1w1du)exp(jy2w2Av)
yz.oxi-0

exp(-j(N1-1)1414u)exp(-j(N2-1)w24v),

(3-7)

Compared Eq.(3-7) with Eq.(3-3), it follows that
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Fl(w1,w2)=F*(0,w2)exp(-j(N1-1)04u)exp(-j(N2-1)w24v),

where F*(w1,w2) is the complex conjugate of F(w1,w2).

Thus, Eqs.(3-5)(3-6) are proved.
QED

Represent F1(0,w2)=R(w1,w2)-jI(w1,w2), (3-8)

where

N2-1 M1 I

R(0,W2)=2: E X(N1-1-m1, N2-1-m2)cos(m1w14u+m2w24v),
012-t Hato

142-1 1 -I

I(w1 042)=E X(N1-1-m1, N2-1-m2)sin(m1w14u+m2w24v).
mz =e mu *C

Define a 2-dimensional vector

r R(0,2) 1
F1(0,2):1

L I(141,w2) j

Let

r cos(w14u)

L1(41)=1

L sin(w14u)

-sin(w14u)
1
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COS(04u) j

r cos (1424v ) -sin(w24v) I
L2(w2)=I 1.

L sin(w24v) cos(w24v) j

( 3-9 )

(3-10)

(3-11)

It can be shown (Ahmed & Rao, 1975) that L1(w1) and L2(w2)

are orthgonal, and hence have the property

ml r cos(w14u) -sin(w1Au) 1 mi
L1 (w1)=I

1 sin(w14u) cos(wlau)



r cos(mlwlAu) - sin(m1w1iu)
_1 1

-I I

L sin(sm.w.Au) cos(mlwlAu)

m2 r cos(w24v) -sin(waelv)

L2 (w2)=i
1

1

L sin(w2Av) cos(w2Av) J

Hence

ni2

rcos(m2w241.1) -sin(m2w24v) 1

1

_1
11-.

L sin(m2w2Av) cos(m2w2Av) J

(3-13)

WA 2 mt

F1(w1,w2) =Z 1_ L2 (w2)L1 (0)eX(N1-1-m1, N2-1-m2),
m

where

Denote

(3-14)

hip-/ mf

F2(141,N2-1-m2)=E L1 (0)eX(N1-1-ml, N2-1-m2). (3-15)

Then, (3-14) can be rewritten as

ra-i m2 NI-1 ml

F1(141,w2)=Z L2 (w2)2: L1 (0)eX(N1-1-m1, N2-1-m2)
m2 =0 mizei

N2 -1 m2

= E L2 (w2)F2(w1,N2-1-m2). ( 3 ". 1 6 )

ft12

LEMMA 2:

Define the recursive formula

Z2(0,w2,S2)=L2(w2)Z2(141,w2,S2-1)+F2(0,S2),

r

Z2(0,w2,-1)=: 1.

' 'L 0

(3-17)



It follows that

N2-1 m2

Z2(w1,w2,N2-1)=Z L2 (w2)F2(0,N2-1-m2)
m20

=F1(0,w2).

PROOF: (using mathematical induction)

1. For S2=0, Z2(0,w2,0)=F2(0,0).

22

(3-18)

14 m2

2. Assume, Z2(w1,w2,k)=Z L2 (w2)F2(0,k-m2) when S2=k.
m2=c

3. Hence, when S2=k+1,

Z2( ,41,W2,k+1)=L2(142)Z2(0,W2,k)+F2(0,k+1)

K 1112+1

=2: L2 (w2)F2(0,k-m2)+F2(141,k+1)
m2=o

=if 1,24(W2)F2(141,k+1...d),

d=

where, m2+1=d.

Therefore, when S2=N2-1, using (3-16), we have

pa:1 m2

Z2(w1,w2,N2-1).TL L2 (w2)F2(0,N2-1-m2)
112=0

=F1(0,w2).

QED

NOTE:

For every S2, F2(0,S2) is an one dimensional DFT, which

can be computed by one dimensional FFT or RFFT.
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LEMMA 3: For one dimensional RFFT, the recursive formula

for F2(w1,S2) is

Zi(wl,hN-1,S2)=L1N(w1)Z1(w1,(h-1)N-1,S2)

+LX(hN-1,(h-1)N,S2), h=1,2, H,

Z1(0,-1,S2)=[ 0 0 fr, (3-19)

where h counts the recursive steps along the u axis, N is

the number of data for every recursive step (HN=N1) and

L=[L1 e(w1)e (wl)e L1w- I(w1)el,

X(hN-1i(h-1)N,S2)

.7.[X(hN-1,52),X(hN-2,S2) X((h-1)N,32)7T

PROOF:

(3-20)

(3-21)

Using the same formula as in lemma 1 for F2(w1,S2), we

have

Zi(wl,S1,S2)=L1(w1)Z1(wl,S1-1)+eX(S1,S2),

r 0 1

z1(0,-1,52)=1 1.

L .1

Therefore,

NI -1 ml

Z1(0,N1-1,S2)=:: L1 (0)eX(N1-1-m1,S2)=F2(0,S2).
mm-1-0

In Eq.(3-22), let S1 =hN-1; it can be shown that

(3-22)
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bw-1 ml

F2(w1,S2)=Z1(w1,hN-1,S2)=E L1 (w1)eX(hN-1-m1,S2).
rni=0

(3-23)
Write Eq.(3-23) in the matrix form as follows:

For h=1

rX(N-1,S2)1

1X(N-2,S2)1
Z1(w1,N-1,S2)=EL1°

1 w-1

(w1)e L1 (w1)e...L1 (w1)e]:

1X(1,S2)
LX(0,S2) j

(3-24)
For h=2

o N-1 N 214-1

Z1(w1,2N-1,S2)=[L1 (w1)e..L1 (w1)e L1 (w1)e..L1 (w1)e]

IX(2N -1,S2)-1
1

1

1

1X(N,S2)

1X(N-1,S2)

1

1 1

LX(0,S2) j

(3-25)

Eq.(3-25) can be rearranged as follows:

rX(2N-1,S2)-1

1X(2N-2,S2)
Z1(w1,2N-1,S2)=[L1 (w1)e L1 (w1)e71

LX(N1,S2)

rX(N,.1 9S2)1

N 0 1X(N-2,S2)1
L1 (w1)[L1 (w1)e...L1 (w1)e]1 . 1. (3-26)

LX(0,S2) j

Considering Eqs.(3-20)(3-21)(3-24)(3-26), it follows that
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Z1(w1,2N-1,S2)=LX(2N-1,N,S2)+L1 (w1)Z1(w1,N-1,S2).

(3-27)

For h=3, we have

0
2N -4

Z1(w1,3N-1,S2)=[L1 (w1)e...L1 (w1)e L1 (w1)e...L1 (w1)e

rK(3N-1,s2)1
.

1 .

1X(2N,S2)

IN aw-1 1X(2N-1,S2)

L1 (0)e...L1 (w1)ell

X(N,S2)

X(N-1,S2)

LX(0,S2) j

=LX(3N-1,2N,S2)+L1"(0)Z1(0,2N-1,S2).

(3.28)

Also, it can be shown (by using mathematical induction

similar to that in the lemma 2) that

Z1(w1,hN-1,S2)=L1w(w1)Z1(w1,(h-1)N-1,S2)

+LX(hN-1,(h-1)N,S2),

Z1(141,-1,S2)=C0 ()].r (3-29)

QED
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For convenience, all formulas necessary in the recursive

calculation are listed below.

1) For F2(w1,S2)=Z1(w1,hN-1,S2),

Z1(w1,hN-1,S2)=L14(w1)Z1(w1,(h-1)N-1,S2)

+LX(hM-1,(h-1)N,S2),

r 0

z1(w1,-1,S2)=1 1,

' 0

2) For F1(w1,w2)=Z2(141,w2,N2-1),

and

h=1,2,3,....,H,

r

e=1 1.

L 0 j

(3-30)

Z2(w1,w2,S2)=L2(w2)22(w1,w2,S2-1)+Z1(w1,N1-1,S2),

S2=0,1,2,....,N2 -1,

01
22(0,w2,-1)=1

1i
' 0 J (3431)

3) iF(w1,w2)1=1Z2(w1,w2,M2-1)1, (3-32)

(P(w1,w2)=-((N1-1)w1Au+(N2-1)w2av

-aretg(-I(w1,w2)/R(w1,w2))). (3-33)
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2. FAST ALGORITHM OF RFFT

Eq.(3-30) is a recursive formula for processing all

data segment by segment (N sample data per segment). The

inspection of Eq.(3-30) shows that the amount of

calculations is mainly determined by the term of

LX(hN-1,(h-1)N,S2). Hence, this term should be computed

by revised FFT. The main idea in this section is to make

use of the butterfly diagram of general FFT (see Fig.1).

But since the number N of sample data is not equal to the

number Al of frequencies (this statement will be discussed

below), a revised buttefly diagram is necessary to process

these sample data. Next, the revised FFT algorithm is

dicussed and a butterfly diagram (see Fig.3) similar to

the butterfly diagram of general FFT is obtained.

Let

X(hN-1,(h-1)N,S2)=[Xh(0,S2) Xh(1,S2)...Xh(N-1,S2)],

(3-34)
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where, EXh(0,S2),Xh(1,S2)...Xh(N-1,S2)] denotes the

inverse sampled data sequence in the h-th segment and the

S2-th row, i.e.,

Xh(0,S2)=X(hN-1,S2),

Xh(1,S2)=X(hN-2,S2),

ih(N-1,S2)=X((h-1)N,S2).

Then

rKh(0,52) 1

N-I
1

LX(hN-1,(h-1)N,S2)=EL1°(wl)e Ll (w1)e]i

Offi(11 S2)
1

1

1 1

1
.

1

rz Xh(p,S2)cos(pwlAun

IfL Xh(p,S2)sin(pwl4u)J
p=o

LXh(N-1,S2)j

(3-35)

Assume that the bandwidth of the signal is limited.

The maximum frequencies along wl and w2 axes are fmni and

fmn2 respectively. From sampling theorem, we should have

4u<=1/2fmmi and Av<=1/2fmn2. Select Au=1 / 2 fmaxt 9

.4v=1/2fiwtx2, and suppose that Al and A2 are the numbers of

frequencies distributed between 0 and

2flmw , respectively. Therefore,

wl=klaw1 =k1x27frmv x2/A1=k1x2117A14u,

w2=k2x21T 7A2Av-

From Eqs.(3-35) (3-36), define

2 ftria4 I 9 and 0 and

(3-36)

(3-37)



N.,

C(k1)= Xh (p ,S2)exp(-j2rrpk 1 /A1) ,

R--0

kl=0,1,2, A1-1.
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(3-38)

Eq.(3-38) allows to obtain Al frequencies from N sampled

data. This is one of differences between RFFT and general

FFT, since for FFT, the constraint of A1=N must be

satisfied. The relation between Al and N and the

computational procedure for Eq.(3-38) will be shown in the

following example.

Notation: Each decimal value of p, 0<=p<=N-1, is expressed

in binary form

p =Mn_i 2 +m..22n-2+ . . +Mt 2' +ma

where mi=0,1, i=0,1...n-1, n=loggN.

Similarly each decimal value of kl, 0<=k1<=A1-1, is

expressed as

psi u-2
kl=k,: 2 +k.-2 2 + . . +k, 2' +k. 2 ,

where ki=0,1, i=0,1...a-1, a=loglAl.

Denote the binary representation of Xh(p,S2) by

Xh (p , S2) =Dh (mn-, mn-2 .m, ma , S2) .

Eqs.(3-38) (3-39) lead to the relation

(3-39)

C(k1)=
N4

Xh(p,S2)W
IP

Pz.-C

kJ 2n-a+ +Mae)=E-E ..E Dh(m,,_, mn_2 .m. ,S2)W (3-40)
mo m,

where W=exp(-j2g/A1).
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Let N=4 A1=8, thus n=2, a=3, W=exp(-j2 W8). For this case

Ki(m,2' +m02°)
c(ki)= E E Dh(n, ,s2)w

mc

Assume,

kuna 2m(22k2 +214 +K.)

mi=E Dh(mme,S2)W Dh(mm.,S2)W
m, rn,

8

Noting that W =1, we obtain

M1=1: Dh(mm0,82)W
m,

2m,(2k1+K.)

(3-41)

(3-42)

The summation over m, in Eq.(3-42) results in a function

of k k, and m., which is denoted by X1 (k° ,k, "), i.e.,

M1=X1(k. ,k, ,m.). (3-43)

Replacing Eq.(3-43) into Eq.(3-41), we have

KLIN 111., 021(2 t2K1 t Ko)

C(k1)= xi (k. ,k, ,m. )W = X1 (k. , k, ,m. )W
m. m

Similarly

C(k1)=X2(ke ,k1 ,k2 )=M0. (3-44)

With respect to X1(k.,km0) (i.e., M1),
2(2K, +K.)

X1 (k. ,k, ,m. )=Dh(0,m. ,S2)+Dh(1,m. ,S2)W (3-45)

Case 1. k, k. =0 0,

X1(0,0,0)=Dh(0,0,S2)+Dh(1,0,S2)We,

X1(0,0,1)=Dh(0,1,S2)+Dh(1,1,S2)W°.

Case 2. ki ko =0 1,
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2

X1(1,0,0)=Dh(0,0,S2)+Dh(1,0,S2)W ,

X1(1,0,1)=Dh(0,1,S2)+Dh(1,1,S2)W2 .

Case 3. k, ko =1 0,

4
X1(0,1 ,0)=Dh(0,0,S2)+Dh(1,0,S2)14 ,

X1(0,1,1)=Dh(0,1,S2)+Dh(1,1,S2)W4 .

Case 14. k, ko =1 1,

6

X1(1,1,0)=Dh(0,0,S2)+Dh(1,0,S2)W ,

X1(1 , 1 ,1)=Dh(0,1 ,S2)+Dh(1 ,1 ,S2)111 .

Similarly, with respect to X2(k. ,ki ,k2 ) (i.e. MO), it can

be obtained

X2(k. ,k, ,k2 )=X1(ko ,k, ,0) +X1 (km ,ki ,1)1441c2-r2"1(e . (3-146)

Case 1. k2 k, ko =0 0 0,

X2(0,0,0)=X1(0,0,0)+X1(0,0,1)WQ.

Case 2. k2 k, ko =0 0 1,

X2(1,0,0)=X1(1,0,0)+X1(1,0,1)Wt.

Case 3. k2k, ko =0 1 0,

X2(0,1,0)=X1(0,1,0)+X1(0,1,1)W
2

.

Case 14. k2k, ko =0 1 1,

a

X2(1,1,0)=X1(1,1,0)+X1(1,1,1)W .

Case 5. k2k, ko =1 0 0,

X2(0,0,1):X1(0,0,0)-FX1(0,0,1)W
4

.



32

Case 6. K2k,k0 =1 0 1,

X2(1,0,1)=X1(1,0,0)+X1(1,0,1)W .

Case 7. k2 k, ko =1 1 0,

X2(0,1,1)=X1(0,1,0)+X1(0,1,1)W .

Case 8. kalo ko =1 1 1,

X2(1,1,1)=X1(1,1,0)+X1(1,1,1)W .

This sequence of arithmetic operations is shown in Fig.3.

Xh(0,S2)

Xh(1,S2)

Xh(2,S2)

Xh(3,S2)

Xh(0,S2)

Xh(1,S2)

Xh(2,S2)

Xh(3,S2)

X1(0)

W6

X1(1)

1.4.46,,WX1 (2)

414

X1(3)
W4

X1(4)

X1(5)

'Ilhrg2:X1(6)

AIL X1(7)
W6

X2(0) C(0)

X2(1) C(4)

W4

X2(2) C(2)

X2(3) C(6)

W6

X2(4) C(1)

WI

X2(5) C(5)

Ws

X2(6) C(3)

X2(7) C(7)

8-point Butterfly Diagram of Revised FFT

Fig. 3

Here, the sample data Dh(m,,m. ,S2) expressed in binary

form are replaced by the data Xh(p,S2) expressed in

decimal form according to Eq.(3-39). From the complex

conjugate property, we have



C(A1/2+L)=C*(A1/2-L),
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L=1,2, A1/2-1,

where, C*( ) is the complex conjugate of C( ).

The C(k1), k1=0,1,2,3,4, is calculated and others can be

obtained by the conjugate property of DFT.

This completes the construction of revised FFT

algorithm. Representing C(k1) as real and imaginary parts

C(k1)=R1(k1)-jI1(k1), (3-47)

and using Eq.(3-38), we have

R1(k1)=E: Xh(p,S2)cos(27Tpk1/A1),
P=C

I1(k1)=2: Xh(p,S2)sin(2npk1/A1).
P=0

(3-48)

(3-49)

Considering Eqs.(3-36)(3-37) and substituting

Eqs.(3-48)(3-49) into Eq.(3-35), LX(hN-1,(h-1)N,S2) can

be obtained. By comparing Fig.3 with Fig.1, it is seen

that the butterfly diagram of the revised FFT is similar

to that of general FFT. The difference between them is

only in the starting of iteration. Because of a;r1 (see

page 30), the first iteration for Eq.(3-38) agrees with

the (a-n+1)-th iteration of general FFT. The sample data

are used repeatedly, and the number of repetitions is

r=A1/N.
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CHAPTER IV

EXPERIMENTAL RESULTS

In order to illustrate the possible applications of

2-D RFFT algorithm, three experiments are presented in

this chapter. In the first experiment, a 2-D exponen.tial

function is transformed by RFFT and the results are

compared with DFT, FFT, and ideal spectrum. In the second

experiment, a more complicated function is shown, and in

the third one, a signal detection using the RFFT is

simulated.

The following is a calculational diagram of the

algorithm: when the new data appear, one dimensional RFFT

or revised FFT is first used to transform these data to

F2(wl,S2), and then F1(wl,w2) is computed by the

recursive formula; this process continues until all data

are used.
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N new data in

Z1(w1,hN-1,S2)=L1"(w1)Z1(w1,(h-1)N-1,S2)+

+LX(hN-1,(h-1)N,S2)

101 T1I

Z1(w1,-1,S2)=10), e=t0j, h=1,2,3,....H

Z2(0,w2,S2)=L2(w2)Z2(0,w2,S2-1)+

+Z1(w1,N1-1,S2)

TO;

Z2(w1,w21-1)=1.0j,

no

/all data

Xinished?

yes

F(w1,w2)1=:Z2(w1,w2,N2-1)1

Cw1 ,w2)=-UN1-1)w1Au+(N2-1)w2hv-

-arctg(-I(w1,w2)/R(w1,w2)))

Diagram of RFFT Calculation

Fig. 4



Experiment 1:

For a two dimensional signal:

X(u,v)=exp(-(u+v)) u>=0, v>=0,

its Fourier transform, i.e. the ideal spectrum, is

F(w1,w2)=(1/(jw1+1))(1/(jw2+1)),

and the amplitude and phase spectra are

F(w1,w2)1=1/[(w12+1)(w2 +1)].
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(14-1)

(4-2)

(4-3)

4(wl,w2)=-Earctg(w1)+arctg(w2)]. (4-4)

Table 1 shows the ideal spectrum. Fig.5, Fig.6,

Table 3 and Table 5 to 7 are the spectra by using 2-D

RFFT. From these experimental results, it is noticed that

as the data increase, the spectra tend to the ideal

spectrum monotonically.

Comparing Table 2, which represents the spectrum

obtained by DFT, with Table 3, it can be noticed that the

results of RFFT and DFT are identical. RFFT has the same

advantage as DFT that the number of sample data may not be

equal to the number of frequencies. The transform speed

of RFFT is faster than that of DFT because the fast

algorithm is used. Table 8 presents the spectrum obtained



37

by RFFT with half sample interval of Table 2. Compared

Table 8 with Table 3, it is seen that reducing sample

interval makes the spectrum closer to the ideal spectrum,

because reducing sample interval implies reducing the

overlap of the spectrum.

Comparing Table 4, which represents the FFT

algorithm results, with Table 6, it is seen that RFFT and

FFT yield the same result when the number of sample data

equals that of frequencies.

Experiment 2:

In this experiment, a complicated two dimensional

signal to be transformed comes from the model of an ideal

low-pass filter and is revised here for the purpose of

practical realization.

Definition:

exp(-(0.1v+u2/4v))/v'z u>=1,v>=0

X(u,v)=I
I 0 u<1,v<0

The Fourier Transform of X(u,v) is

(4-5)

F{X(u,v)}=ff[exp(-(0.1v+u2/4v))/v2]exp(-(jw2v+jw1u))dvdu
o

=f[4r/(0.1+jw2)]-exp[-u((0.1+jw2)4+jw1)]du
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exp(- (jw1 +(0.1 +jw2)2)]/(0.1 +jw2)2(jw1 +(0.1 +jw2)Z).

(4-6)

The amplitude spectrum of F {X(u,v)} can be obtained as

F{X(u,v) } = 'Tr exp(-(0. 12 +w22)14cos(9/2))/{[w1+(0.12+w22)

(sin(9/2))2+(0.12+w22)cos2(9/2)] ((0.12+w22},

(4-7)

where, 9=arctg(10w2).

The Fig.7 to Fig.13 show the convergence of the spectra to

the ideal spectrum by using 2-D RFFT. Fig.13 shows a good

agreement between the ideal spectrum and the result

obtained from 2-D RFFT.

Experiment 3:

This is a simulation of signal detection by using

RFFT. The signal g(u,v) is mixed with additive noise

n(u,v) and the time of the signal appearance (a,b) is

unknown. The input signal is

X(u,v)=g(u-a,v-b)U(u-a,v-b)+n(u,v)U(u,v), a>=0, b>=0,

(4-8)

where U(u,v) is a 2-D unit step function.

Assume that the noise n(u,v) is Gaussian, white noise with

zero mean and unit variance and has stationary and ergodic
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properties. Assume also that g(u,v) and n(u,v) are

uncorrelated. Resulting from these assumptions, the

autocorrelation function of X(u,v) is

Rx(z1,z2)=Rg(z1,z2)+Rn(z1,z2).

And the power spectrum of X(u,v) is

Sx(w1,w2)=Sg(w1,w2)+Sn(w1,w2),

where

TIT/

Rx(z1,z2)=1im[jj X(u,v)X(u zl,v z2)dudv] /T1T2,
o 4

T2 OC

Ti Ti

Rg(z1,z2)=1im[SS g(u,v)g(u-z1,v-z2)dudv]/T1T2,
To.o. a 0
Ti*Qc

T2 TI

Rn(z1,z2)=1im[ff n(u,v)n(u-z1,v-z2)dudv]/T1T2,
->e. 0 o

Ti

toe 1 DO

SX(W1 042)=1f Rx(z1,z2)exp(-(jw1z1+jw2z2))dzldz2,

Sg(w1,w2)=f f Rg(z1,z2)exp(-(jw1z1+jw2z2))dz1dz2,

4.0 00

Sn(wl,w2)=fiRn(z1,z2)exp(-(jwlz1+jw2z2))dzldz2.

(4-9)

(4-10)

If no signal is present, i.e., g(u,v)=0, then

Sx(w1,w2)=Sn(w1,w2)=1.

The key point here is to obtain Sx(wl,w2) from the random
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signal X(u,v) directly, because the calculation of

correlation Rx(z1,z2) requires all sample data and

therefore does not allow the recursive method to be used

for on-line applications.

Assuming that X(u,v) is ergodic, the following formula can

be derived

Ti T2

SX(441,w2)=1iMiff X(11,V)eXp((jW1u+jw2V))dUdV12/T1T2.
11-, co 0 e

T1-0.00 (4-11)

Because the detection of sinusoidal/narrow-band

signals has received a great deal of attention (Kumaresan

& Tufts, 1983) (Glover, 1977), the sinusoidal signal is

selected as a signal to be detected in this experiment,

i . e. ,

g(u,v)=sin(tru-lv).

The discrete form of Eq.(4-11) is

SX*(kl,k2)=1:E X(m1,m2)exp(-(2 k1m1/A1+

2 k2m2/A2) :a /T1T2.

(4-12)

(4-13)

Fig.14 to Fig.17 illustrate the experiment results.

At the beginning, the result is only the noise power

spectrum because the collected data does not include the
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signal. When the signal appears, the spectrum is changed

and the signal is detected better and better with increase

of recursive steps ( Fig.14 to Fig.17 ). From the

experimental results it is indicated that, in the presence

of the additive white noise, RFFT provides an efficient

signal detection and accurate estimate of the signal

frequency despite a small signal-to-noise ratio (see

Fig.18).
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CHAPTER V

CONCLUSION AND POSSIBLE APPLICATIONS

The algorithm developed in this thesis provides a

recursive fast Fourier transform method, by which the

(A1xA2) values of frequencies are computed recursively

from the (N1xN2) sample data sequence. Because of no

constraints on the length of signal sequence and recursive

steps, the results of transform can approach monotonically

the real spectrum as the data sequence-length increases.

RFFT is a recursive version of FFT, and theoretically its

output is equal to that of general FFT for the same signal

sequence. Hence, the convergence of RFFT to the real

spectrum can be discussed similarly to that of FFT.

Studying the formulas in Chapter III, we notice that

the amount of computational operations of RFFT is larger

than that of FFT when the number of sample data is the

same as that of frequencies. But from the viewpoint of

on-line applications, the transform speed of RFFT might be

not lower than that of FFT because part or most

computational operations may be finished during the sample
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intervals of one segment. This is true if the computer

efficiency is relatively high when compared with the

duration of one data segment.

The above feature is very suitable for microcomputer

or microprocessor implementations. The processes of

sampling and calculating may be carried out by several

microcomputers or microprocessors seperately. This may

fully utilize the computer time and speed up the

transformation even further, making it very useful for

on-line spectral analysis and identification of two

dimensional systems.

RFFT may also have other applications. In many

cases, the analog-digital transform is necessary. For

example, digital Butterworth filter, digital Chebyshev

filter (Rader/Gold, 1967) and Elliptic filter (Gold/Rader,

1969) (Guillemin, 1957) (Storer, 1957) all present the

design methods for analog-digital transform according to

the desired frequency response specifications. Steiglitz

(Steiglitz, 1970) (Rabiner/Steiglitz, 1970) has proposed

an IIR (infinite impulse response) design procedure based

on minimization of mean-square error in frequency domain.

All of these methods require a given frequency response as

design bases. Thus, if the desired frequency

specification comes from a real analog system, all of the

methods require the solution to analog-digital transform
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problem. With RFFT, all the above procedures might be

realized on-line through the identifications of those

unknown analog systems in frequency domain. For one

dimensional system, the paper (Zhu & Wang, 1986) gives an

application of such concept to system identification

problem.

Another application of RFFT is to solve the problem

of processing a signal sequence which otherwise requires a

large computer memory. Especially, in 2-D applications,

the large-size data arrays are commonly encountered.

Although the signal sequence may be very long, the number

of frequencies does not have to be too large for the

computer memory to accept. This is because the

frequencies in the question are usually distributed in a

certain range only. For such a problem, it is difficult

to use general FFT (requiring the same number of

frequencies and sampling data) to process a large amount

of sample data. While selecting the number of data that

the computer could accept, the real spectrum will be

distorted. RFFT can solve this problem. By selecting the

necessary number of frequencies, the desired spectrum

could be obtained as the data are processed step by step,

regardless of the amount of samples.

Presented here, a "signal detection" experiment

(Experiment 3) has shown another advantage of RFFT. Since



the time when the signal appears is unknown, it is

necessary to sample and detect the signal continuously,

which results in an increasing-size 2-D datum array. If

the signal appears after a long delay, then, the amount of

sample data will become very large, most of them being the

noise. This "useless" information will be transformed,

and the number of frequencies produced by FFT will

increase greatly because of the large amount of sample

data. This may set a big burden on the computers. On the

other hand, the signal detected by RFFT can produce the

spectrum whose frequency number is usually much smaller

than that of sample data in practical applications.

Hence, the demand for the computer memory and calculations

is relaxed. Moreover, because of the recursive property

of RFFT, it is possible to stop the transform as soon as

the signal is detected.

In the summary, the recursive property, speed and

flexibility of RFFT algorithm make it attractive for the

applications in a variety of signal processing and

analysis problems.
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THE EXPLANATION OF FIGURES AND TABLES

N1: the number of data along horizontal direction.

N: the number of data (per segment) along horizontal

direction.

H: the recursive times (for segments) along horizontal

direction.

N2: the number of data along vertical direction.

Au: the sample interval along horizontal direction.

Lv: the sample interval along vertical direction.

Al: the number of frequencies along horizontal direction.

A2: the number of frequencies along vertical direction.



47

IDEAL SPECTRUM

EXP. 1: X(u,v)=exp(-(u+v)) u>=0, v>=0

N1=128 (H=4, N=32) N2=128

Au=0.01 Av=0.01

A1=128 A2=128

Fig. 5
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IDEAL SPECTRUM

EXP. 1: X(u,v)=exp(-(u+v)) u>=0, v>=0

N1=256 (H=8, N=32) N2=250
4u=0.01 4v=0.01
A1=128 A2=128

Fig. 6



iexp(-(0.1v+e/Itv))/1/4
EXP. 2: X(u,v)=1

0

N1=64 (H=1, N=64)
Au=0.1

A1=128

Fig. 7

u>=1,v>=0

N2=50
4v=0.1

A2=128

u<1, v<0

lexp(-(0.1v+014v))/vY2- u>=1,v>=0

EXP. 2: X(u,v)=1
1 0 u<1, v<0

N1=64 (H=1, N=64)

Au=0.1

A1=128

Fig. 8

N2=100
Av=0.1

A2=128

149



:exp(-(0.1v4-uA/4v))/v*" u>=1,v>=0
EXP. 2: X(u,v)=1

0 u<1, v<0

N1=128 (H=1, N=128) N2=128
Au=0.1 4v=0.1
A1=128 A2=128

Fig. 9

:exp(-(0.1v4-114/4v))/v1/2 u>=1,v>=0
EXP. 2: X(u,v)=:

0 u<1, v<0

N1=128 (H=2, N=64)
Au=0.1

A1=128

Fig. 10

N2=128
Av=0.1

A2=128

50



51

lexp(-(0.1v+e/4v))/vv4' u>=1,v>=0

EXP. 2: X(u,v)=:
0 u<1, v<0

N1=192 (H=3, N=64) N2=200

Au=0.1 Av=0.1

A1=128 A2=128

Fig. 11

lig-
.4411111/

:exp(-(0.1v+11214v))/v u>=1,v>=0

EXP. 2: X(u,v)=:
0 u<1, v<0

N1=256 (H=2, N=128) .N2=200

411:0.1 4v=0.1

A1=128 A2=128

Fig. 12
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IDEAL SPECTRUM

:exp(-(0.1v+u2V4v))/v1/2: u>=1,v>=0
EXP. 2: X(u,v)=1

0 u<1, v<0

N1=384

tiu=0.1

(H=3, N=128) N2=350
Av =0. 1

Al=128 A2=128

Fig. 13
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EXP. 3: Spectrum of Two Dimensional White
Gaussian Noise n(u,v)

Fig. 14

/ 4.) AR6, 10. ,N44'41A
41bT4144444111kt.4414444W4lik'Vkalr"4M1.010.4,44411-644-

iw4WerAMMAIXZW:*'4VILAgattiRAWNV&-

111.4r:"-1

AOMWV*C4A$0440-4--)'
tAitZ*4Alp es,WmfaVAVArs"tiW4VatAinellt47aVelSWIPOPififtati

EXP. 3: X(u,v)=Sin(7(u-4)-n(v-4))1.1(u-4,v-4)+n(u,v)U(u,v)

N1=112 (H=7,N=16) N2=112

Lu=0.125 .sv=0.125

Al=64 A2=64

Fig. 15
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EXP. 3: X(u,v)=Sin(7(u-4)-7T(v-4))U(u-4,v-4)+n(u,v)U(u,v)

N1=128 (H=4,N=32) N2=128

Lu=0.125 Av=0.125

Al=64 A2=64

Fig. 16

EXP. 3: X(u,v)=Sin(7(u-4)-7(v-4))U(u-4,v-4)+n(u,v)U(u,v)

N1=160 (H=5,N=32) N2=150

Au=0.125 Av=0.125

Al=64 A2=64

Fig. 17



55

NOISE SPECTRUM

EXP. 3: X(u,v)=0.1Sin(Tr(u-4)-n(v-4))U(u-4,v-14)+n(u,v)U(u,v)

N1=640 (H:10,N=64) N2=640
Au=0.125 Av=0.125
A1=64 A2=64

Fig. 18



4.**45.44***4444.4,*k*4.+1,44*44***********4.kfe44

;PECTRUM F.,W1,W2):

SPECTRUM ANALYSIS WITH TPANSFER FUNCTION

FUNCTION: f(x,0=exp(-(x*c14-y*c2))
TRANSFER FUNCTION:F(S1,52)=1/(S1+C1)*<S2+C2))

FACTOR: C1=1.0000 C2=1.0000

5.**************4****************************
RE=REALP:W1,412)), IM=IMAG< F<W1,02)) MOD=MODEL,:F<W1,W2),, ANL=f4NGLE<r(.W1,W2))W1= 0 W2=
RE= 1.000t000 IM= 0.000000 MOD= 1.050000 ANL= 0.0000001A1= 1 142=
PE= .065d97 IM= -.239141 MOD= .246772 ANL=284 /166.e1.1U1= 2 W2= 0

RE= .01.5.37.7 IN= -.125293 MOO- .126304 ANL=277.255.100I41= 3 W2= 0

RE= 007154 IM= -.084275 MOD= .034578 ANL=274.851610
4 1.02-,

RE= .004036 IM= -.063405 MOD= .063533 ANL=273.642640Wl= 5 W2= 0

RE= .602597 IM= -.050799 MO= .050864 ANL=272.91553001= 6 W2= 0

RE= .001796 IM= -.042365 MOD= .042403 ANL=272.47.;0240U1= T W2=
RE= .001322 IM= -.036330 MOD= .036354 ANL=272.083370WI= 8 W2= 0

RE= .001012 11.1= -.031799 MOD= .031815 ANL=271.823180U1= 9 W2= 0

RE= .000850 111= -.028272 MOD= .029283 ANL=271.6207301)1= 10 W2= 0

PE= .000643 IM= -.025448 MOD= .025457 ANL=271.458740W1= 11 W2= 0

RE= .000536 IM= -.023137 MOD= .023144 ANL=271.326170U1= 12 W2= 0

RE= .000450 IM= -.021211 MOD= .021216 ANL=271.21570001 = 13 W2=
RE= .000364 IM= -.019581 MOD= .019585 ANL=271.122190U1= 14
RE= .000331 IM= -.018183 MOD= .019186 ANL=271.042050WI= 15 W2= 0

RE= .000299 IM= -.016972 mu.. .016974 ANL=270.972600U1= 0 W2= 1

RE= .060897 IM= -.239141 MOD= .246772 ANL=2.64..:96621.1U1= 1 W2= 1

RE= -.053480 IM= -.029126 MO= .060897 AHL=263.573210W1= 2 W2= 1

RE= -.029991 IM= -.011445 MOD= .031168 ANL=201.5,12690WI= 3 142= I

RE= -.019718 IM= -.006943 MOD= .020872 ANL=199.1384001.11= 4 02= 1

RE= -.014917 IM= -.004826 MOD= .015678 A1IL=197.929230U1= 5 W2= 1

RE= -.1-!11 111= -.007,712 Nr;b= .012552 ANI=197.202120

TABLE 1 Spectrum Analysis with Transfer Function: F(wl,w2)=1/((j0+1)(jw2+1))



4,4 4***********4 **4 4* 4 *4 4 4 ***** 4. 4** 4 V 4 4. 4

.i-,V.I.-JPUM HAAL.f.:.1',.. wIT0 OPT

SPECTRUM
W1= 0

F-:1.142)!
:12= 0

INPUT FUNCTION:
FACTOR:

(<-,,,v)=expc-Cx*c14.y4.:2+
C1=1..0000 C2=1.0000

HUMBER OF INPUT: MX= 28 HY= 30
101MBER OF SPECTFUN;WFX= 16 HEY= 16
INPUT SAMPLE STf-7: T= .1066

**************4***********.***************
RE=REAL,,F;WI,W2)). F<WI,W2)) MOD=MODEL:E(W1,W2)) ANL=ANCLUF:WI.W2).)
RE= .985468 IM= 0.000000 MOD= .965468 ANL= 0.000000m1= i 02= ft

.26t084 w4L=291.;,;,401= 2 02,, 0

PE= .670776 IM= -.125713 MOD= .144264 AHL=299.37726001= 3 02= 0
PE= .062469 IM= -.070594 MOD= .094265 ANL=311.505860W1= a W2= 0

RE= .(5)563 IM= -,04656 MOD= .069538 AHL=317.859890
!,I1= 5 W2=

RE,: .051508 IN= -.036494 MOD= .067126 AHL=324.6820701.11= 6 1,12= 0

F-= .056060 IM= -.021073 MOD= .060177 ANL=338.685550WI= 7 W2 0

RE= .053121 IM= -.006712 MOD= .053543 ANL=352.79907001= 8 W2= 0

RE= .049232 IM= -,000000 MOD= .049232 AHL=359.999800W1= :4 W2= 0

RE= .053121 Id= .006711 MOD= .057543 ANL= 7.200704W1= 10 W2= 0

RE= .056060 IM= .021873 MOD= .060176 ANL= 21.314533Ill = 11 W2= 0

RE= .051508 IN= .036494 NOD= .06 126 ANL= 35.31797001= 1,1 02=
RE= .051563 iN= .046656 MOD= .0b.7538 AWL= 42.140057WI= 13 1.12= 0

RE= .062469 IM= .070594 MOD= .094265 ANL= 4E1.49430101= 14 W2= 0

RE= .070770 IM= .125713 MOD= .144264 AHL= 66.62271901= 15 W2= 0

RE= .097249 IM= .242296 MOO= .261084 ANL= 68.131165U1= 0 W2= 1

RE= .098199 IM= -.228467 MOD= .248677 AHL=293.258910U1= 1 W2= 1

RE= -.046482 IM= -.046690 MOD= .065883 4411L=225. 127620WI= 2 W2= 1

RE= -.022093 IM= -.028934 MOD= .036404 AHL=232.63620001= 3 W2= 1

RE= -.010141 IM= -.021517 MOO= .02:3787 AHL=244.764680U1= 4
1

RE= -.005679 IN= -.016603 MOD= .01'.'548 ANL=51.11097001= 5 02= 1

RE= -.003328 IN= -.015578 MOD= .015930 ANL=257.940920

TABLE 2 Spectrum Analysis with DFT (N1=28, N2=30)



9************1,*******+4,******************4,*
SPECTRUM ANALYSIS WITH PITT

INPUT FUNCTION: E<H-,,,,),,c.xp!-1. x*c1+y*L.2))
FACTOP: c1=1,0000 L2=1.0000

NUMBER OF INPUT: NX= 4 NY= 30
NUMBER OF SPECTRUM :HEY= 16 NFY= 16

SPECTRUM P(W1,W2):

RECURSIVE TIMES: H= 7

INPUT SAMPLE fn-EPI T= ,100O

**++4,4...*******t****+********************+**4.

RE=REAL<F<1I1,W2)), IN=INAG< F(WI,W2). MOD=MODEL<E1W1,02)), ANL=ANC,LE(F(01,W2:,)
WI= 0 W2= 0

RE= .985467 IN= 0.000000 MOD= ,985467 ANL= 0.000000

01= 1 W2

U1= 0-D=

RE= .097249 IN= -.242296 HOD. .261994 ANL=291,969710

RE= .070770 IN= -.125713 MOD= .144264 ANL=299.777140
W1= 3 W2= U

PE= .062469 IN= -.070594 MOD= ,094265 .:,11L=311-505740

Wi= 4 W2= 0

PE= .051563 IM= -.046656 MOD= .069538 ANL=317.859920
11= 5 1J2= U

RE= .051508 IN= -.036494 MOD= .063126 ANL=324.622250
01= 6 W2= 0

111= 7 02= U

RE= .056060 IN= -.021073 MOD= .060174 ANL=330.606040

PE= .053121 IM= -.006711 NOD= ,053543 AHL=352.799190
W1= 8 142- 0

RE= .049232 IN= ,000000 NOD= ANL= .000546

W1= 9 W2= U

PE= .053121 IN= .006712 MOD= .053543 ANL= 7.201861

Li1= 10 1J2= 0

RE= .056060 IN= .021875 NOD= .060176 ANL= 21.315987
W1= 11 W2= 0

RE= .051507 IM= .036496 MOD= .063126 ANL= 35.319954
1)1= 12 1.12= 0

RE= .051561 IN= .046659 NOD= .069538 ANL= 42.142700

01= 13 W2= 0

RE= .062468 IN= .070595 MOD= .094265 ANL= 48,495110

111= 14 W2= 0

RE= .070773 IN= .125711 MOD= ,144264 ANL= 60.621155

111= 15 W2= 0

RP= .097257 IM= .242292 NOD= .261083 ANL= 68.129373

Wl= 0 W2= 1

RE= .098198 IM= -.228467 NOD= .248476 258E.7 C'

W1= 1 112= 1

RE= -.046483 IN= -.046689 MOD= .065993 AHL=2:5.127080

I,11 2 42= 1

RE= -.022093 IN= -.028934 NOD= .036404 ANL=272,675680

Wl= 3 W2= 1

RE, -,i00141 IN,- -.021517 NOT., .027787 AML=244.744740
U1= 4 1

RE= -.005678 IN= -,016603 HOD= .ol?7,48 11111 =2!1:.1.118'7460

W1= 5 142,--- 1

PE= -.00332E. IN= -.015578 MOD= .01t,970 ANL=257.940860

TABLE 3 Spectrum Analysis with RFFT (N1=28, N2=30)



V****44**********4.,*,C****************4.4,1,4***
SPECTRUM ANALYSIS WITH FFT

INPUT FUNCTION! I( x , y :/=e..-xpr, -( x*.:: I +y*c2 )

FACTOR: 'I-1=1.0000 c2=1.0000
-IUMEIER OF SPECTRUM:HFX= 16 NFY= 16
INPUT SAMPLE STEP: 1= ,1000

4:****************+++4,4,4,***************+****
SPECTRUM F(W1,W2): RE=REAL(F(W1,142»,
w l= 0 W2= 0

l= 0

RE= .703374
u 1 W2=

2 W2= 0

RE= .074790
U1=

W I= 3 02.

RE= ,044721
= 0

4 W2= 0

RE= ;74.03854
U1=

RE= .036803
W1= 5 W2= 0

RE= .035883
01= 6 W2= 0

RE= ,035425
1.11= 7 W2= 0

W1= 8 W2=
RF= .035205

0

R

N1= 9 W2= 0

RE= ,035139

RE- .035205
WI= 10 W2= 0

RE= ,035425
W1= II W2= 0

RE= .035883
101= 12 W2= 0

W1= 13 W2=
PE= .036903

0

RE= .038854
W1= 14 W2= 0

RE= .044721
W1= 15 W2= 0

RE= ,074791
W1= 0 W2= I

RE= .074790
W1= 1 W2= 1

W1= 2 =
RE= -,027402

W2 1

W
RE=

3 W2= 1

E= -.013075

U
RE= -.007020

1= 4 W2= 1

PE= -,003561
141= 5 W2= 1

RE= -.001186

IM=IMAG( F(W1,W2)), mOD=MODEL<F(w1,W2):=,

111- 0,000000 MOD= ,703374

IM= -.157873 MOD= .174693

IM= -.079440 MOD= .091163

IM= -.049685 MOD= .063073

IM= -.033301 M013= ,049673

IM= -.022282 MOD= ,042236

IM= -.013222 MOD= ,038026

IM= -.006640 MOD= .035826

IM= 0.000000 MOD= 075139

IM= .006640 MOD= .075826

IM= .013822 MOD= .038026

IM= .022262 MOD= .042238

IM= .033301 MOD= .049633

IM= .049695 MOD= .063073

IM= .079440 MOD= ,091163

IM= .157973 MOD= .174693

IM= -.157273 MOD= .174693

IM= -.033574 MOD= .0437W

IM= -.018485 MOD= ,022642

IM= -.014004 MOD= ,015665

IM= -.011801 MOD= .012327

IM= -.010427 MOD= .010491

TABLE 4 Spectrum Analysis with FFT (N1=16, N2=16)

ANL=ANGLE(F(W1,142))

OWL= 0,000000

HL =295.748630

O NL=299.377260

AML=308.025940

AWL=317.860050

(4L=328. 161870

ANL=338.685490

ANL=349.319340

ANL= 0,000000

ANL= 10.680649

ANL= 21.314526

AHL= 31.838135

ANL= 42.139961

ANL= 51.974068

ANL= 60,622765

ANL= 64.651352

AHL=295.348630

ANL=230.697330

AN1=234.725920

O NL=243.374600

ANL=253.208740

ANL=263.510560



*t.C************+k***41.**************4*4,44.*

SPECTRUM ANALYSIS WITH RFFT

INPUT FUNCTION: f( .,:,Y)=expe.-(x*ct-t-y4,c2))
FACTOR: c1=1..0000 .-2=1,0000

NUMPER OF INPUT: 11, 4 tEi- 10
NUMBER OF SPECTRUM:Mt:X.= 16 MEV= 1E.,

SPECTRUM
W1= 0

F(411,W2):
W2= 0

RECURSIVE TIMES: H= 2
!NFU., SAMPLE STEP: T= .1000

**************************************4.****

RE=REAL<F(W1,W2)1, IM=IMAG F<W1,W2, MOD=MODEL.:.F.:141,1.12)), ANL=AMGLE(F(W1,W2))

RE= .384379 IM= 0.000000 MOD= .384379 ANL= 0.000000
1.11= 1 W2= 0

RE= .107571 IM= -.227069 MOD= 251260 ANL=295.348630
U1= 2 W2= 0

RE= .024439 IM= -.043412 MOD= 049819 ANL=299.377200
1,11= 3 W2= U

RE= .055884 111= -,071461 MOD= 090718 AHL=300.026000
W1= 4 W2= 0

RE= .020112 IM= -.018198. MOD= . 027123 ANL=317.860050
U1= 5 W2= 0

RE= .051611 IM= -.032048 MOD= 060751 ANL=320.161800W1= 6 W2= 0

RE= .019359 IM= -.007553 MOD= 020781 ANL=338.695550
111= 7 W2= 0

RE= ,050636 IM= -.0.09550 MOD= 051529 ANL=349,319210
W1= 8 W2= u

PE= ,019207 /hi= -.000001, 1.1 0 .01.42.07 ANL=351.999880
W1= 9 W2= 0

PE= .050636 IM= . 009550 MOD= 051528 ANL= 10.680559
W1= 10 W2= 0

PE= .019359 IM= . 007557 MOD= 020791 ANL= 21.314236
111= 11 W2= U

RE= 051611 IM= .032047 MOD= , 060751 ANL= 31.837975
U1= 12 W2 0

RE= .020112 IM= 018198 MOD= 027123 ANL= 42.140003
W1= 13 W2= 0

RE= .0550.94 IM= 071462 MOD= .0907'18 ANL= 51.974243
111= 14 1J2= U

RE= .024437 IM= 043412 MO D= .049811 ANL= 60.622467
W1= 15 W2= U

RE= .107570 IM= .227069 m = .251260 ANL= 64 651505
U1= 0 W2= 1

RE= .045973 IM= -.188808 MOD= .194324 AML=297.684750
W1= 1 W2= 1

PE= -.099671 IM= -.071997 MOD= .127025 ANL=211.033400
W1= 2 W2= 1

RE= -.018401 IM= -.017197 MOD= .025186. ANL=223,061950
N1= 3 W2= 1

-,02841f.': IM= -.035997 MOD= .045863 414L=271 .7(0720
N1= 4 (J2= 1

RE= -.006534 111= -.012056 MOD= .013712 ANL=241.544000
11= 5 W2= 1

RE= -.001569 IM= -.029184 HH.-= .030717 ANL=251.846596

TABLE 5 Spectrum Analysis with RFFT (N1=8, N2=10)



***** ********************************4, 4.*

SPECTRUM ANALYSIS WITH RFFT

INPUT FUNCTION: f(x,y)=Exp( -(x*c14-y*c2))
FACTOR: c1=1.0000 c2=1.0000

SPECTRUM' F(1:11,142 )
IA11= 0 W2= 0

NUMBER OF INPUT: NX= 4 NY= 16
NUMBER OF SPECTRUM:HFX,- 16 HEY= 16
RECURSIVE TIMES: H= 4

INPUT SAMPLE STEP: T= .1000

*******************************************

: RE=REAle. (111,1,:12 ) ), I M= MAO( W1,102 ) ) , MO D=MODEL( W I , W2 ) ), ANL=ANGLE(F(411,1423)

RE= .703374 IM= 0.000000 MOD= .707374 ANL= 0,000000'

171= 1 W2= 0

RE= .074790 IM= -.157874 MOD= .174693 ANL=295.348630

Ul = 2 W2= 0

RE= .044721 IM= -.079440 MOD= .091163 ANL=299.377200

W 1 = 3 W2= 0

RE= .038854 IM= -.049685 MOD= .067073 ANL=308.025760

WI= 4 W2= 0

RE= .036803 IM= -.033301 MOD= .049633 ANL=717.859920

W1= 5 W2= 0

RE= .035883 IM= -.022282 MOD= ,042238 ANL=328.161320

U1= 6 W2= 0

RE= .035425 IM= -.013922 MOD= .032026 ANL=738.685060

WI= 7 W2= 0
RE= .035205 IM= -.006640 MOD= .035826 ANL=349.319210

W1= 8 W2= 0

RE= .035139 IM= .000000 MOD= .035139 ANL= .000109

W1= 9 W2= 0
RE= .035205 IM= .006640 MOD= .035826 ANL= 10.680996

W1= 10 W2= 0

RE= .035425 IM= .013822 MOD= .038026 ANL= 21.314674

W1= 11 W2= 0

RE= .035883 IM= .022282 MOD= .042238 ANL= 31.838631

W1= 12 W2= 0

RE= .036803 IM= .033301 MOD= ,049673 ANL= 42,140083

W1= 13 W2= 0

RE= .038853 IM= .049686 MOD= .063073 ANL= 51.975555

W1= 14 'W2= 0

RE= .044719 IM= .079441 MOD= .091163 ANL= 60,623779

W1= 15 W2= 0

RE= .074788 IM= .157875 MOD= .174693 ANL= 64.652390

W1= 0 W2= 1

PE= .074790 IM= -,157674 MOD= .174693 ANL=295.348510

W1= 1 W2= 1

RE= -.027483 IM= -.033574 MOD= .043388 ANL=230.697110

W1= 2 W2= 1

RE= -.013075 IM= -.019485 MOD= .022642 ANL=234.725650

W1= 3 W2= 1

RE= -.007021 IM= -.014004 MOD= .015665 ANL=243.374080

U1= 4 W2= 1

PE= -.003561 IM= -.011801 MOD= .012727 ANL=253.208470

171= 5 W2= 1

-,00lie6 IM= -.010423 MOD= .010490 ANL=263.509950

TABLE 6 Spectrum Analysis with RFFT (N1=16, N2=16)



4 1' .f 4 '411 .1" :f +41 '11 f -f .1" f" f 1 1 f lc 4, :4c *44 I + 4- I f

8FE,::TRUM ANOLYSIS WITH RFFT

INPUT FUHLTION: r..x,.),)=exp<-;x4,c1+1,c:-:))
FiA:TOR: .'.1=1.0000 c2=1.0000.

HUMBER OF INPUT: 1.4= 4 HY= 25
HUMBER OF SPECTRUM :HEX= 16 NEY= I

SPECTRUM F<W1,W2>:

RECURSIVE TIMES: H= 5
((RUT SAMFLE STEP: T= ,1000

,:********.:*******4:4:*****************:::****:1.,f
RE=REAL.:E.:Wl.W2 . ; IN=IMAG< F(W1,W2)), HOD=MOLEL<F<W1,WL). .L=ANGLE<F<1..1

'dl= 0 W2= 0

1.11= 1 W7= U

PE= .87431 IM= 0,000000 MOD= 6431 OHL= 0.000000

PE= ,13567 IM= -.21292fi MOD= :254079 AHL=703.055910
1Jl= 2 W2= 0

RE= .073167 IM= -.129972 NOD= .149151 ANL=299.377140
W1= 3 W2= U

RE= .046301 IM= -.079177 MOD= .091721 ANL=300.319480

1.11= 4 W2=
O.

RE= .04rJ.953 IM= -.041494 MOD= .051244 4NL=317.859920

wt. 5 W2= 0

RE= .056055 IM= -.025112 MOD= :061423 ANL=335.858710

111= 6 W2= 0

RE= .05-795'....1 IM= -.022514 MOD= .062215 A11L=338.685550
W2= U

PE= .044439 IM= -.016474 MOD= :052098 ANL=341.612120
wi= 8 W2= 0

RE= .003785 1M= .000000 MOD= .043785 ANL= .000546

W1= 9 W2= 0

RE= .04439 IM= .016475 MOD= .052093 ANL= 18.380947
WI= 10 W2= 0

W1= 11 W2= 0

RE= .57950 9 IM= .022615 MOD= .062215 ANL= 21.315113

(0..'.055RE= , 6 IM= .025112 MOD= 061423 ANL= 24.131992

U1= 12 W2= 0

RE= .045578 IM= .041495 MOD= .061844 ANL= 42.140953

WI= 13 W2= 0
RE= .016290 IM= .079179 MOD= ,091721 ANL= 59,693945

Wl= 14 W2= 0

RE= .073165 IM= .129973 MOD= :149151 ANL= 60.623779

Wl= 15 W2= 0

RE= ,1738561 IN= .212924 MOD= ,254039 ANL= 56.945747
U1= 0 W2= 1

RE= .102492 IM= -.233750 MOD= .255232 ANL=293.676030
1.11= 1 W2= 1

RE= -.040583 IM= -.061356 MOD= :073981 ANL=235.731840
W1= 2 W2= I

RE= -.026108 IN= -.034717 MOD= .043435 AHL=233.053160
W1= 3 W2= 1

RE= -.015702 IM= -.021603 MOD= ,025711 4111 =233.994290

U1= 4 W2= 1

W 1= 5 W2= 1

PE= -.0''370( IN= -.017033 MOD= .018010 OHL=251.535010

RE= -.000142 IN= -.017807 MOD= .017038 ANL=249.544980

TABLE 7 Spectrum Analysis with RFFT (N1=20, N2=25)



***********************************4T

SPECTRUM ANALYSIS WITH RFFT

INPUT FUNCTION: f(x,5)=expe.-(x*ci+y*c2))
FACTOR: c1=1.0000 c2=1.0000

SPECTRUM
W1= 0

F(WI,W2):
W2= 0

NUMBER OF INPUT: NX= 8 NY= 60
NUMBER OF SPECTRUM:HFX= 32 HFY= 32
RECURSIVE TIMES: H= 7
INPUT SAMPLE STEP: T= .0500

*******************************************

RE=REAL<F(W1,W2)), IM=IMAGC F(W1,W2)), MOD=M7DELF(WI,W2)), ANL=ANGLEKF(1411,W2))

PE= .97991 IM= 0.000000 MOD= .',37991 AHL= 0.000000
WI= 1 W2= 0

PE= .069763 IM= -.237266 MOD= .247310 AHL=286.394770
U1= 2 W2= 0

RE= .042537 IM= - .127783 MO= ,134677 AHL=288.411870
W1= 3 W2= 0

RE= .076375 IM= -.077777 MOD= .085662 AHL=295,064760
Ul= 4 W2= 0

PE= .026763 IM= -.054986 MOD= At'.1153 ANL=295.9:.3000
W1= 5 W2= 0

RE= .024325 IM= -.047083 MOD= ,052995 ANL=297.322570
U1= 6 W2= 0

RE= .027924 IM= -.038587 MOD= .047631 ANL=305,892780
U1= 7 W2= 0

RE= .027667 IM= -.028057 MOD= .039404 ANL=314.599300
WI= 8 W2= 0

RE= .024016 IM= -.022844 MOD= .033146 Al:L=716.4326SO
W1= 9 W2= 0

RE= .024159 IM= -.021503 MO= .032346 AHL=318.321960
Ul= 10 W2= 0

RE= .026769 IM= -.017246 MOD= .031844 AHL=327.207760
WI. II W2= 0

RE= .025928 IM= -.011478 MOD= .028355 AHL=336.121700
U1= 12 W2= 0

RE= .023543 IM= -.009467 MOD= .025375 ANL=338.094060
wi= 13 W2= 0

RE= .024570 IM= -.008904 MOD= .026134 ANL=340.080380
U1= 14 W2= 0

RE= .026506 IM= -.005137 MOD= .026999 ANL=349,032900
wi= 15 U2= 0

RE= .025115 IM= -.000880 MOD= .025130 AH1. =357.994140
U1= 16 W2= 0

RE= .023445 IM= -.000002 MOD= .023445 ANL=759.96150
U1= 17 W2= 0

RE= .025115 IM= .000876 MOD= .025130 ANL= 1,998240
W1= 18 W2= 0

RE= .026507 IM= .005133 MOD'- .026999 ANL= 10.959450
WI= 19 W2= 0

RE= .024571 IM= .008900 MOD= .026134 OHL= 19.911915
U1= 20 W2= 0

RE= .023544 IM= .009464 MOD= .025375 ANL= 21.899247
Ul= 21 W2= 0

RE= .025929 III- .011474 MOD= .029355 ANL= r'3.97058
WI= 22 W2., 0

RE= .026772 IM= .017242 MOD= .071844 ANL= 32.72037

TABLE 8 Spectrum Analysis with RFFT (N1=56, N2=60)
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