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Abstract We establish the existence of a global solution to a regular reflection of a shock hitting a ramp for

the pressure gradient system of equations. The set-up of the reflection is the same as that of Mach’s experiment

for the compressible Euler system, i.e., a straight shock hitting a ramp. We assume that the angle of the ramp

is close to 90 degrees. The solution has a reflected bow shock wave, called the diffraction of the planar shock at

the compressive corner, which is mathematically regarded as a free boundary in the self-similar variable plane.

The pressure gradient system of three equations is a subsystem, and an approximation, of the full Euler system,

and we offer a couple of derivations.
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1 Introduction

We are interested in solving multi-dimensional systems of conservation laws. The primary sys-
tem is the well-known Euler system for compressible gases ([22]). Much effort has been devoted
to the system, see the survey papers [3,4,34,36,54], the conference proceedings [30] by Glimm
and Majda, the monograph [29], and the recent progress Shuxing Chen[16−18] , Chen, Xin,
and Yin[19,20], Zhang[69], and Guiqiang Chen and Feldman[14,15]. However, the Euler system
remains formidable because of its complexity. Simplified models that capture various isolated
features of the Euler system may be proposed and studied to pave the road. Immediate mod-
els are the isentropic case, the irrotational (potential) flow equations, and the steady flows
[53,64–66], some of these assumptions are already made in some of the aforementioned papers.
A remarkable and distinct model is the unsteady transonic small disturbance system (UTSD)
which was proposed and studied ([9–11,13,21,26,38,40,53,59,62]) for transonic solutions and the
transition from Mach reflection to regular reflection. Despite the conveniences these models
bring, all these models have their difficulties. In recent years, another model called the pressure
gradient system is proposed ([68,70]), which seems to exihibit new and complementary conve-
niences. See [12] for a similar system. In this paper we present further motivational work on
the pressure gradient system, and in particular we present the global existence of a self-similar
solution that is similar to the regular reflection seen in Mach’s experiment for the full Euler
system, see Section 4.
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We spend Section 2 deriving the pressure gradient model and providing supportive materials.
Section 3 covers the set-up of the shock reflection problem and basic classical treatment. The
precise statement of the entire result is given in Section 4. Sections 5–9 are devoted to the proof.
Section 10 is on fine properties of the velocity. And in Section 11 we offer some discussions. In
the Appendices we provide either details that are lengthy for the main body of the paper, or
theory that are somewhat implied by theorems in various papers but not yet clearly stated in
writing.

The highlights of the paper include the asymptotic derivation of the model, the use of
Hömander’s emergent type of degeneracy condition on the free shock boundary, the full three-
component set-up, and the successful complete road-map for a global existence of the regular
reflection.

2 The Pressure Gradient System

The pressure gradient system takes the form





ut + px = 0,
vt + py = 0,
Et + (up)x + (vp)y = 0,

(1)

where E =
1
2
(u2 + v2) + p.

The pressure gradient system is a reduction of a subsystem appeared in the flux splitting
scheme of Li and Cao[45] and Agarwal and Halt[1]. Its mathematical structure and numerical
simulations were studied in Zhang, Li, and Zhang[68], where one sees striking similarity to the
Euler system. The pressure gradient system was intuitively justified for its own physical validity
when the velocity is small and the gas constant γ is large in Zheng[70], where the existence of
a subsonic solution was also established, which adds on further attractiveness of the model.
Its regime of physical validity is clarified further in the formal presentation of an asymptotic
derivation to be presented later in this section. See the books by Li et. al.[44] or Zheng[71] for
more background information.

We recall that the full Euler system for an ideal fluid takes the form





ρt + ∇ · (ρu) = 0,
(ρu)t + ∇ · (ρu⊗ u+ pI) = 0,
(ρE)t + ∇ · (ρEu+ pu) = 0,

(2)

where
E :=

1
2
|u|2 + e,

where e is the internal energy. For a polytropic gas, there holds

e =
1

γ − 1
p

ρ
,

where γ > 1 is a dimensionless gas constant (the adiabatic exponent). More precisely γ =
1 +Rc−1

v where R is the constant in the equation of state for ideal gases and cv is the specific
heat at constant volume[22].

2.1 The Flux-splitting Derivation

Separating the pressure from the inertia in the flux of the Euler equations
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we obtain two systems of equations
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Agarwal and Halt[1] have used this splitting (4)(5) to form a scheme in numerical computations
for airfoil flows and observed a consistent improvement over other schemes (Roe, AUSM, CUSP,
and Van Leer). System (4) is called the zero pressure system, or the transport or convective or
pressureless system. System (5) is called the variable-density pressure gradient system. This
splitting corresponds to the separation of the two mechanisms– pressure difference and inertia–
that are causes for fluid motion.

We focus on system (5). Let us do some simple reduction. From the first equation of system
(5) we obtain

ρt = 0.

Thus ρ is independent of time. For simplicity, let us assume ρ = 1. Then system (5) can be
written as (1) with E = (u2 + v2)/2 + p/(γ − 1). It can be seen easily that the transformation

{
p = (γ − 1)P,
t = 1

γ−1T,
(6)

will effectively rescale the gas constant γ to 2. Thus system (1) with E = (u2 + v2)/2 + p will
be the primary system for us to study.

For smooth solutions or in regions where a solution is smooth, system (1) can be simplified
to be 





ut + px = 0,
vt + py = 0,
pt + pux + pvy = 0.

(7)

From system (7) we can find a decoupled equation
(pt

p

)

t
= pxx + pyy. (8)

2.2 The Asymptotic Derivation

Besides the previous somewhat brutal derivation, there is an asymptotic derivation. Let us
write the energy in the form
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E =
1
2
|u|2 + εp/ρ,

where
ε :=

1
γ − 1

.

We propose to look for an asymptotic solution of the form

ρ = ρ0 + ερ1 +O(ε2),
u = εu1 +O(ε2),
p = εp1 +O(ε2). (9)

This scaling corresponds to sound speeds of the order O(1):

c =
√
γp/ρ = O(ε0).

So we scale space and time variables by the same factor (order O(1)) to study acoustic phe-
nomena.

The leading order perturbation equation from conservation of mass is

(ρ0)t = 0,

so
ρ0 = ρ0(x).

The leading order equation from conservation of momentum O(ε) and conservation of energy
O(ε2) constitute the variable-density pressure gradient system

{ (ρ0u1)t + ∇p1 = 0,
(1

2
ρ0|u1|2 + p1

)

t
+ ∇ · (p1u1) = 0.

(10)

This is the same as in the flux-splitting derivation of the previous subsection.
John Hunter became interested in the system during the author’s talk on its Riemann

problem at a workshop of an FRG1 in Pittsburgh in 2003, and wanted to fix the handwaving-
type argument for the physical validity of the system loosely presented in the talk (based on
Zheng[70]). This formal derivation presented here is what he sent the author a few days after
the meeting ([37]). We note that this asymptotic regime lacks strong physical sense because
there is no such physical material for very large γ. There is no other nonphysical concerns
though. For example, it is physical to have p = εp1 + O(ε2) → 0 since p is an independent
variable and one can adjust the temperature to achieve it.

2.3 Progress of Research

Both Cauchy and Riemann problems for systems (5), (1), or (8) are open. The self-similar
coordinates

ξ =
x

t
, η =

y

t

can reduce the Riemann problem by one dimension. However, all three systems (5), (1), and
(8), and even their linearized versions are of mixed type in the self-similar coordinates. Peng
Zhang, Jiequan Li, and Tong Zhang[68] have given a set of conjectures for solutions to the

Focused Research Group, which is a program of the National Science Foundation.
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four-wave Riemann problem for these systems, see the book of Li, et.al.[44], or Section 9.3 of
[71]. Zheng has established the existence of solutions in the elliptic region [70,71].

More precisely, equation (8) in the self-similar coordinates (ξ, η) takes the form

(p− ξ2)pξξ − 2ξηpξη + (p− η2)pηη +
1
p
(ξpξ + ηpη)2 − 2(ξpξ + ηpη) = 0. (11)

The eigenvalues of the coefficient matrix of the second order terms of (11) can be found to be p
and p− ξ2 − η2. Zheng proved in [70] the existence of a weak solution for equation (11) in any
open, bounded and convex region Ω ⊂ R

2 with smooth boundary and the degenerate boundary
datum

p|∂Ω = ξ2 + η2

provided that the boundary of Ω does not contain the origin (0, 0).
Kyungwoo Song[61] has removed the restriction on the origin and the smoothness of the

boundary. Kim and Song[43] have obtained regularity of the solution in the interior of the
domain and continuity up to and including the boundary. Dai and Zhang[23] have obtained the
interaction of two rarefaction waves adjacent to the vacuum. Zheng has also obtained a global
solution involving shocks as free boundaries, see [72]. For numerical simulations, see [44].

2.4 Closeness to the Euler

How good does the pressure gradient system approximate the full Euler system? We will show
solid evidence in a future paper [74]. For now we notice that the full Euler system can be
rewritten in a form in which the pressure gradient system plays a dominating role.

First let us show the maximum principle for p of the full Euler system, although it is not
unexpected (see [60]). In the self-similar plane and for smooth solutions, the system takes the
form: 





1
ρ
∂sρ+ uξ + vη = 0,

∂su+
1
ρ
pξ = 0,

∂sv +
1
ρ
pη = 0,

1
γp
∂sp+ uξ + vη = 0,

(13)

where
∂s := (u− ξ)∂ξ + (v − η)∂η.

By differentiating the fourth equation in (13) in the flow stream direction ∂s and using the
second and third equations, we obtain a second-order equation for p:

−∇ ·
(1
ρ
∇p

)
+ ∂s

∂sp

γp
−

(∂sp

γp

)2

− ∂sp

γp
+ 2(uξvη − uηvξ) = 0. (14)

The combination uξvη −uηvξ can be manipulated to depend on (vη, pξ, pη) homogeneously with
degree 2. In fact, using the last three equations in (13) we find that

uξvη − uηvξ =
vηpη

(v − η)ρ
− vηpξ

(u− ξ)ρ
− pξpη

(u− ξ)(v − η)ρ2
+

pηps

γpρ(v − η)
. (15)

When ∇p vanishes, so does uξvη − uηvξ. Therefore there holds the maximum principle for p in
the subsonic domains.
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Furthermore, we show that there holds the ellipticity principle. Let

ϕ := c2 − (u− ξ)2 − (v − η)2. (16)

Assuming the variables are in C2, we derive an equation for ϕ:

−c2∆ϕ+ ∂2
sϕ = O(ε) +

(∂sϕ

c

)2

− 4ϕ∂sϕ

c2
− 3∂sϕ+

3ϕ2 + (ϕ− c2)2

c2
+ c2. (17)

Thus so long as |O(ε)| < c2, there holds the ellipticity principle:

min
Ω
ϕ ≥ min

∂Ω
ϕ. (18)

This means that our solution will be subsonic in a region if we use a barrier to force the domain
subsonic.

Since the right-hand side of the ϕ equation is so much positive, the ellipticity holds uniformly
independent of ε > 0. That is, consider

F := ϕ− βω, (19)

where ω > 0 in Ω and
ω = 0 on ∂Ω. (20)

Then there exists a small β > 0, independent of ε > 0, such that

F > 0 in Ω, (21)

thus
ϕ > βω > 0 in Ω. (22)

For ellipticity principle for the potential equation (see [25]).

2.5 Comparison of Models

The Burgers’ equation ut + (u2/2)x = εuxx has played an essential role in the theory of one-
dimensional systems of conservation laws. No such a model has emerged for multi-dimensional
systems. Current various models seem to have different physics captured. As the names suggest,
the isentropic, the irrotational, and the steady flows are different. The UTSD model is regarded
as describing the transition between Mach and regular reflections; i.e., it is best used locally
at the triple point. The pressure gradient system can have global solutions that are similar to
those of Euler system seen in numerical simulations and physical experiments, established in
this paper. Thus this model possesses essential physics.

What separates this model from others is the series of features: It is a neat set of three
evolutionary conservation laws, the pressure variable can decouple from the other two to form a
single quasilinear equation whose quasilinearity is lower than that for the potential flow equation
(or the potential formulation of the pressure gradient system). By quasilinearity we mean the
order of the highest order of derivatives involved in the coefficients of the principal part of the
second-order equation. In the pressure gradient system, the coefficients of the principal part
of the second-order equation for the pressure do not depend on ∇p, thus its quasilinearity is
zero. In the potential flow equation (p.248 of [22]), however, the coefficients of the principal
part of the second-order equation for the potential depend on ∇p, thus its quasilinearity is one.
This small difference makes the pressure gradient system more accessible. The success here, as
intended as a model, may induce better utilization of the elliptic theory to handle the potential
flow in the near future.
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The model’s simplicity has allowed us to establish the existence of a global solution in this
paper that resembles the regular reflection of a straight shock hitting a ramp for the adiabatic
Euler system. This is the first of such a result.

So this model is simple enough for mathematical treatment and yet captures essential
physics. In addition, its potential to fully approximate a major part of the full Euler system is
promising, see a conference proceeding [73] or a forthcoming paper [74].

3 Set-up of Regular Reflection

So we consider pressure gradient system (1). We consider self-similar solutions. In the self-
similar plane (ξ, η) = (x/t, y/t), the system of conservation laws becomes






−ξuξ − ηuη + pξ = 0,
−ξvξ − ηvη + pη = 0,
−ξEξ − ηEη + (pu)ξ + (pv)η = 0.

(23)

For smooth solutions, we can simplify the system to





−ξuξ − ηuη + pξ = 0,
−ξvξ − ηvη + pη = 0,
−ξpξ − ηpη + puξ + pvη = 0.

Consider a flat shock hitting a wedge with half angle θw ∈ (0, π/2). The state ahead of the
shock is (p, u, v) = (p0, 0, 0) for some p0 > 0. The state behind the shock is (p1, u1, 0) with
p1 > p0. To connect the two states with a single forward shock, we need the relation

u1 =
p1 − p0√
p10

, p1 > p0. (25)

The overhead bar denotes the average: p10 = (p1 + p0)/2. Assuming the shock reflection is a
regular one, then it hits the ramp at the location

(ξ, η) = (ξ10, η10) := (
√
p10, tan θw

√
p10). (26)

See Figure 1 for the set-up.
Two free parameters: We see that system (1) is invariant under the translation (u, v) →

(u− a, v− b), which we have utilized in assuming that the velocity is zero ahead of the incident
shock. The system enjoys another invariance: (p, u, v, x, y) → (α2p, αu, αv, αx, αy) which we
can use to scale p0 = 1. Thus there is only one free variable p1/p0 in describing the data. The
entire experiment can thus be characterized by the two parameters (p1/p0, θw).

3.1 Algebraic Portion:

To find the reflected shock and the state between it and the ramp, denoted by state 2, we need
the Rankine-Hugoniot relation in 2-D. Let η = η(ξ) with slope σ = η′(ξ) be a shock curve.
Then,

(η − ξσ)[u] + σ[p] = 0,
(η − ξσ)[v] − [p] = 0,
(η − ξσ)[E] + σ[pu] − [pv] = 0. (27)
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Figure 1.  Regular reflection

η
I
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We can solve them to obtain the contact discontinuity σ = η/ξ = [v]/[u], [p] = 0 and the shocks

dη

dξ
= σ± :=

ξη ± √
p(ξ2 + η2 − p)
ξ2 − p

,

[p] = ξ[u] + η[v],
[p]2 = p([u]2 + [v]2). (28)

We use the minus branch for the reflected shock. A useful and equivalent form for the Rankine-
Hugoniot relation is

dη

dξ
= σ± =

ξη ± √
p(ξ2 + η2 − p)
ξ2 − p

, (29)

[u] =
ξp± η

√
p(ξ2 + η2 − p)

p(ξ2 + η2)
[p], (30)

[v] =
ηp∓ ξ

√
p(ξ2 + η2 − p)

p(ξ2 + η2)
[p]. (31)

We require that the state (p2, u2, v2) be such that the velocity (u2, v2) be parallel to the
wall; that is,

v2 = tan θw u2. (32)

This requirement and the Rankine-Hugoniot relation determine the state 2.

Proposition 3.1. (Regular reflection of the algebraic portion) There exists a critical θw =
θ0 ∈ (0, π/2), depending only on p1/p0, given by the formula

tan2 θ0 =
8p1(p1 − p0)
(p1 + p0)2

, (33)
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such that there exist two states (p2, u2, v2) for each θw > θ0, given by

p2 = p1 + p10 tan2 θw ± tan θw

√

p210 tan2 θw − 2p1(p1 − p0), (34)

u2 =
p2 − p0√
p10

1
1 + tan2 θw

, v2 = u2 tan θw. (35)

Both values of the pressure of the state 2 are greater than p1; the larger one goes to infinity
while the smaller one approaches

p∗2 := p1 +
2p1(p1 − p0)
p1 + p0

(36)

as θw → π/2−.
We comment that the p∗2 in (36) is the pressure that corresponds to the planar shock hitting
a vertical wall with zero velocity (u2, v2) = (0, 0) between the reflected backward shock at
ξ = −√

(p1 + p∗2)/2 and the vertical wall.

Proof. We manipulate the second equation in (28) to yield

p2 = ξ10(1 + tan2 θw)u2 + p0. (37)

Introducing the notation
ũ2 := (1 + tan2 θw)u2, (38)

we have
ũ2 =

p2 − p0√
p10

, (39)

or equivalently

ũ2 − u1 =
p2 − p1√
p10

. (40)

Manipulating the third equation of (28), we obtain

(p2 − p1)2/p12 = (u2 − u1)2 + tan2 θw u
2
2. (41)

This is a quadratic equation for u2, from which we find one branch

ũ2 − u1 =
√

1 + tan2 θw

√

(p2 − p1)2/p12 − sin2 θw u2
1. (42)

We have discarded the minus sign branch since it is irrelevant here. We equate the two equations
(40) and (42) to eliminate ũ2 and end up with the equation

(p2 + p1)(p2 − p1)2 = p10(1 + tan2 θw)[2(p2 − p1)2 − (p2 + p1) sin2 θw u
2
1]. (43)

Let x := p2 − p1, we rewrite the above equation as

x3 + (p1 − p0 − (p1 + p0) tan2 θw)x2 + (x+ 2p1) tan2 θw(p1 − p0)2 = 0. (44)

We observe by inspection that the equation has a solution x = p0 − p1, which helps to reduce
the equation to

x2 − (p0 + p1) tan2 θwx+ 2p1 tan2 θw(p1 − p0) = 0.

We thus find the two roots easily when the discriminant is nonnegative. The asymptotic be-
havior for p2 is obvious from the explicit formula. This completes the proof of the proposition.
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We will use the weak reflection (with the smaller pressure value), and ignore the strong one
(see p. 317 in [22] for a reason). We check easily to see that

ξ210 + η2
10 − p12 > 0 (46)

for the weak reflection as tan θw ≥ tan θ0, so the square root is well defined for the slope of the
shock wave. In fact, we use the explicit formula (34) to first obtain p2 < p1 + p10 tan2 θw, then
use tan θw > tan θ0 to derive

ξ210 + η2
10 − p12 >

(p1 − p0)(3p1 − p0)
2(p1 + p0)

> 0. (47)

Further, the slope satisfies
dη

dξ
= σ < tan θw (48)

through direct comparison for as long as p2 > p1. So locally at the reflection point, the regular
reflection is possible when θw ∈ [θ0, π/2).

The state 2 at the reflection point is also supersonic in the sense that

ξ2 + η2 − p > 0 (49)

when θw is slightly more closer to π/2; i.e., tan θw > tan θ1, where

tan2 θ1 :=
p1 − p0

(p1 + p0)2
(
4p1 +

√

16p2
1 + (p1 + p0)2

)
. (50)

The proof is straightforward so we omit it. The state (p2, u2, v2) will remain supersonic in a
neighborhood of the reflection point. So the constant state (p2, u2, v2) will be used as a solution
in the sector formed by the reflected straight shock and the wall until it hits the sonic circle

ξ2 + η2 = p2. (51)

3.2 Elliptic Portion:

Beyond the sonic arc, the state becomes nonconstant, and the reflected shock curls downward
to meet the ground, vertically at the ground. We propose the problem as a boundary value
problem with a free boundary on which the Rankine-Hugoniot relation holds. We convert the
Rankine-Hugoniot relation into a (degenerate) oblique derivative boundary value problem, as
in [13], see the next paragraph. On the wall, the boundary condition v2 = tan θw u2 becomes

∂np = 0 (52)

where n denotes the exterior unit normal to the wall. On the ground, we can use the Neumann
condition (52) or equivalently we convert the ramp problem into a wedge problem, so there is
no boundary. On the sonic arc, we use the Dirichlet problem. The decoupled p-equation in the
subsonic domain is derived from (23) and mentioned in (11):

(p− ξ2)pξξ − 2ξηpξη + (p− η2)pηη +
(ξpξ + ηpη)2

p
− 2(ξpξ + ηpη) = 0. (53)

Here is the derivation of the (degenerate) oblique derivative boundary value on the reflected
shock, which we call Σ from now on. We require that all three equations (23) (taken the limit
from the inside) and all three Rankine-Hugoniot relations (29–31) hold. We differentiate the
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last two equations in the Rankine-Hugoniot relations along the shock wave so we have five
differential equations for six derivatives (uξ, vξ , pξ, uη , vη, pη). Holding pη fixed, we solve for
the other five (uξ, vξ, uη, vη, pξ). The relation between pξ and pη decouples from the other
derivatives and is used as the oblique derivative condition on the shock wave:

ṗ
( [p]

4p
(ξ2 + η2) − (ξ2 + η2 − p)

)

+
(
ξη + η′(p− ξ2)

){
(−σ±pξ + pη) + (ξpξ + ηpη)

ξσ± − η

p

}
= 0, (54)

where [p] = p − p1, and the term ṗ denotes the tangential differentiation along the shock:
ṗ := pξ +σ±pη. The other relations are used for determining (u, v) once p is obtained. The first
equation in the R-H relation (29) is symbolically “reserved” for use to determine the location
of Σ. The oblique derivative condition (54) is in the form l · ∇p = 0 for a smooth vector field
l(ξ, η, η′), which is tangent to the shock boundary at its tip. The apparent p-dependence of l is
removed by the formula

p =
(η − ξσ±)2

1 + σ2±
(55)

obtained by inverting (29).
The sufficiency of the oblique derivative boundary condition is seen as follows. The second-

order equation for p plus the two first-order equations for (u, v) implies

(ξ∂ξ + η∂η)L+ L = 0 (56)

for
L := (ξ∂ξp+ η∂ηp)/p− uξ − vη. (57)

This ODE (56) in the form r∂rL+L = 0 has the only solution L = 0 if L(r0) = 0 at any point
r = r0 > 0. Thus the third equation of (23) will hold if it holds on the boundary Σ. From our
previous derivation of the oblique derivative boundary condition, we see that L = 0 on the free
boundary, provided that the oblique derivative boundary condition holds along with the other
four relations between (uξ, vξ, uη , vη) and pη in obtaining (u, v). We will use the four relations
to find (u, v). Thus the oblique derivative boundary condition is a condition that guarantees
that solutions of the second-order equation for p are solutions for the first-order systems for
(p, u, v) in the sectoral domain spanned by Σ. We point out that L = 0 holds automatically on
the sectoral domain spanned by the sonic arc if p is Lipschitz.

The free boundary problem: Find p satisfying the degenerate elliptic equation (53) in
the domain Ω bounded by the curved reflected shock Σ, the wall and the ground, and the sonic
arc (51). On the wall and the ground, it is the Neumann condition (52). On the circular
arc, it is the Dirichlet problem. On the free boundary Σ, it is the degenerate oblique derivative
boundary condition (54). The free boundary satisfies (29).

A trivial solution to the above free boundary problem is p = p2 in the entire domain Ω,
whose boundary Σ consists of two parts: The first part is the extension of the reflected shock R
to the tangent point with the circle ξ2+η2 = p12 while the second part is the circle ξ2+η2 = p12

between the tangent point and the ground. This constant solution does not result in a solution
(p, u, v) for the original problem. The reason is that the tangential oblique derivative boundary
value condition is completely degenerate on the circular free boundary which fails to impart
information from the second-order equation (53) for p to the first-order equation for p (i.e.,
the third equation in (23)). In short, the velocity field (u, v) caused by a circular shock wave
connecting two constant pressure is necessarily such that uξ + vη 	= 0. We avoid this trivial
solution by finding only nearly flat free boundary shocks.



188 Y. Zheng

Corner condition. Further restriction is possible. We can require our solution to have zero
speed at the corner of the wedge; i.e., u(0, 0) = 0. We can use the equation −ξuξ −ηuη +pξ = 0
along the ground to find

u(0, 0) = um −
∫ 0

ξm

pξ(x, 0)
−x dx, (58)

where (um, ξm) are the velocity and position at the shock foot on the ground, and are both
determined by the pressure there, denoted by pm, via the Rankine-Hugoniot relation

um = u1 − pm − p1√
pm1

; ξm = −√
pm1. (59)

In short, the value pm of the pressure at the foot of the shock satisfies

u1 − pm − p1√
pm1

=
∫ 0

−
√

pm1

pξ(x, 0)
−x dx (60)

in order for u(0, 0) = 0.

4 Result

Main Theorem. There exists an (entropy) solution (p, u, v) defined for all (ξ, η) ∈ R
2, provided

that the ramp angle θw is close to π/2. The structure is a regular reflection consisting of a
reflection point on the wall, a reflected bow shock, and a subsonic region. The shock curve is
C1 and piecewise C∞ smooth. The pressure p is C∞ smooth in the subsonic domain. The
velocity is bounded and Hölder continuous on the closure of the subsonic domain. Pseudo-
velocity stagnates only at the origin and is vorticity free everywhere.

See Figure 1 for an illustration, where only half of the wedge is presented. Our result is
complementary to (and consistent with) the asymptotic results of Keller and Blank[41] and
Hunter and Keller[39].

The proof is given in the next sections.

5 Linear Theory with Fixed Boundary

We consider a linear problem with a fixed boundary that forms the basis for our nonlinear
problem. The domain Ω is the region between the wedge and a pre-selected shock curve and its
corresponding sonic arcs. See Figure 2, where the shock curve is denoted by the curve AGB,
and also by Σ. The sonic arcs are AC and BD. We are interested in the case where AC and
BD do not degenerate to single pints.

More precisely, for a given θw ∈ (0, π/2), p1, pm (p1 < pm), and a β ∈ (0, β0), where

β0 :=
1√
pm1

, pm1 := (p1 + pm)/2 (61)

let

K = {η = η(ξ) ∈ C2,γ(R) | η(0) = ηm1, η
′(0) = 0, η′′(0) = β, 0 ≤ η′′ ≤ β0, η even }. (62)

Here γ ∈ (0, 1) and
ηm1 := −√

pm1. (63)

For an η ∈ K, we introduce

p =
(η − ξη′(ξ))2

1 + (η′(ξ))2
, (64)
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Figure 2. Domain for the linear theory
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where p stands for the average of p1 and the p from the inside of the shock. This p is always
well-defined and belongs to C1,γ(R) and C2,γ at the point ξ = 0 magically. In fact, it has the
expansion

p = pm1 + β
√
pm1(1 − β

√
pm1)ξ

2 +O(ξ2+γ) (65)

at ξ = 0. So p has a local minimum at ξ = 0 for the choices of β and β0. Furthermore, we have

ξ2 + η2 − p = ξ2
(
(1 − β

√
pm1)

2 +O(ξγ)
)

(66)

at ξ = 0. Thus the square root function

F (ξ) =

{ √
ξ2 + η2 − p, ξ > 0,

−
√
ξ2 + η2 − p, ξ < 0

is a smooth function at ξ = 0 along the curve η(ξ). Finally, through pure algebraic manipula-
tions, we find

p(ξ2 + η2 − p) = (η′(ξ2 − p) − ξη)2. (67)

We would like to invert (67) to find

dη

dξ
= σ± =

ξη + ξ
√
p(1 + (η2 − p)/ξ2)
ξ2 − p

=: σ, (68)

which is the standard Rankine-Hugoniot locus, but we need to prove that

η′(ξ2 − p) − ξη > 0, for ξ > 0. (69)

In fact, we use algebraic manipulations to find

η′(ξ2 − p) − ξη =
1

1 + (η′)2
(ξη′ − η)(ξ + ηη′). (70)

The term ξη′−η > 0 because it is positive at ξ = 0 and its derivative along the curve is ξη′′ > 0.
The other term ξ + ηη′ is positive:

ξ + ηη′ > 0, (71)

because it is zero at ξ = 0 and its derivative is 1 + (η′)2 + ηη′′ which is positive since η′′ ≥ 0 if
η > 0, or |ηη′′| ≤ ( max |η|)β0 = 1. So indeed (69) holds and we have (68).
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The pre-selected shock will be a curve from the set K. It is possible that only a portion
of an η(ξ) in K is actually used: We use the elliptic portion, corresponding to AGB. Let us
explain. For each η(ξ) ∈ K, we use the equation η′ = σ− for ξ < 0 and η′ = σ+ for ξ ≥ 0 to
locate p on the boundary; i.e., formula (64). Along this curve as ξ increases, both p and ξ2 +η2

increase (see (71)) until p− ξ2 − η2 = 0 from which point we stop using this boundary, i.e., the
point B. Use p2 to denote this value of p (at B) along the boundary where the ellipticity first
vanishes. Use this p from (64) in the vector field l of the oblique derivative condition. We then
have a linear tangential oblique derivative boundary value problem for p(1):

(p(1)
ξ + η′p(1)

η )
( [p]

4p
(ξ2 + η2) − (ξ2 + η2 − p)

)

+ (ξη + η′(p− ξ2))
{
(−η′p(1)

ξ + p(1)
η ) + (ξp(1)

ξ + ηp(1)
η )

ξη′ − η

p

}
= 0. (72)

The coefficients of (72) all enjoy C1,γ regularity or higher. Note carefully that we do not use
the value p in (64) as Dirichlet boundary value. We use Dirichlet value p2 on the sonic line and
pm at G:

p = p2 on ξ2 + η2 = p2; p = pm at G. (73)

The extra condition pm at G will be justified later by identifying the problem as an emergent
type (see [6,35]) since the obliqueness fails in an emergent type.

Figure 3. Directions of the tangential oblique derivatives.

1

subsonic

η

ξ

p

2
p

The direction field l(ξ, η, η′(ξ)) of the oblique derivative condition is drawn for a flat shock
in Figure 3. This vector field has a natural extension into the domain by simply letting η free
everywhere including in the formula for p, while holding η′(ξ) fixed as the slope of the fixed
boundary.

We linearize equation (53). Fix an α ∈ (0, 1). And fix a positive constant εe > 0. For any

Q ∈ C1,α(Ω), pm < Q < p2 in Ω, (74)

we consider the equation

εe∆p+
(
(Q− ξ2 − η2)+ + η2

)
pξξ − 2ξηpξη +

(
(Q− ξ2 − η2)+ + ξ2

)
pηη

+ {ξQξ + ηQη

Q
− 2}(ξpξ + ηpη) = 0, (75)
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where the regularization term εe∆p is added to ensure uniform ellipticity. Or in short, we
consider an equation like this:

Lu :=
∑

ij

aijuxixj +
∑

i

biuxi = 0 in Ω. (76)

We point out that we have to linearize the equation to utilize the established theory on (tangen-
tial) oblique derivative boundary value problems of Lieberman and Guan and Sawyer, although
some quasilinear and even fully nonlinear theory, which unfortunately do not apply to our case,
is available (see [32,58]).

The boundary condition on the wall is the Neumann condition (52)

∂np
(1) = 0. (77)

We introduce a couple of notations. Let

dx = distance {x, {O,A,B,C,D}},

and for δ > 0,
Ωδ := {x ∈ Ω |dx > δ}.

Let |u|a be the Ca norms on the usual Ca functions, a ≥ 0.

Theorem 5.1. (Existence for the linearized and fixed boundary problem). There exists a
classical smooth solution p(1) ∈ C1,α′

(Ω)∩C2(Ω∪{Σ\{A,B}}) for some α′ > 0 to the linearized
equation (75) with the Dirichlet (73), Neumann (77), and the tangential oblique derivative
boundary conditions (72). The solution satisfies the following basic estimates:

pm < p(1) < p2 in Ω,

|p(1) − pm|1+α′(Ω) ≤ C|p2 − pm| for α′ ≤ α1

( θw

π − θw

)
,

|p(1) − pm|2+γ′(Ωδ) ≤ Cδ|p2 − pm| for γ′ ≤ min{γ, α}, 0 < δ  1, (78)

where α1 is a positive number depending on
θw

π − θw
.

Remark: We remark that it is possible to express these estimates more neatly by using
the intermediate spaces H(b)

a (Ω), introduced in Gilbarg-Hörmander[27]. The H(b)
a (Ω) consists

of functions u such that
|u|(b)a (Ω) := sup

δ>0

{
δa+b|u|a(Ωδ)

}
<∞. (79)

The numbers a and b satisfy a ≥ 0 and a+ b ≥ 0.

Proof. The proof is based on a series of four papers [46–49] from Lieberman, one paper from
Azzam[2], and one paper from Guan and Sawyer[32]. The paper of Guan and Sawyer helps
us to solve the tangential oblique derivative problem at the point G locally. The paper of
Azzam provides higher regularity of solutions at corners C and D, where higher compatibility
conditions than Lieberman’s[49] are satisfied. All other difficulties are handled by the papers
of Lieberman. Paper [46] provides the frame-work of Perron’s method and handles the oblique
derivative part. Paper [47] handles the mixed case and in particular points A,B,C, and D.
Paper [49] gives optimal regularity at those points. And paper [48] handles the point O where
two oblique derivative boundary conditions are satisfied simultaneously. As for the interior
and the Dirichlet boundary condition on the sonic arcs, they are classical, see Gilbarg and
Trudinger[28] or Zheng[70].
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We mention here the key points of the proof, details are given in Appendix A. First we
verify the obliqueness of (72) on the boundary. An interior normal of Σ is (−σ±, 1). The
obliqueness is defined by the inner product of a unit (interior) normal with the oblique direction

(−σ±, 1) +
ξσ± − η

p
(ξ, η). We ignore the tangential direction. We ignore the normalization of

the interior normal for now as well. Thus

Obliqueness = (−σ±, 1) ·
{

(−σ±, 1) +
ξσ± − η

p
(ξ, η)

}
. (80)

We do some simple algebra to yield,

Obliqueness =
p− ξ2

p

{(
σ± +

ξη

p− ξ2

)2

+
p(p− ξ2 − η2)

(p− ξ2)2
}
. (81)

The obliqueness is obvious provided that p − ξ2 − η2 > 0 along the curve. It is true in a
neighborhood of G, and recall we stop when it ceases to be true. The other factor ξη+η′(p−ξ2),
which we do not place in (80), has been shown in (69) to be less than zero for ξ between G and
B.

Regarding point O, we realize that the interior angle COD is not less than π, thus Lieber-
man’s theory does not apply directly to yield C1,α estimate. But, we realize that the solution
is symmetric with respect to the η axis. Hence, the left-half of the domain enjoys an interior
angle COG which is π − θw ≤ π. Therefore Lieberman’s theory can apply in this case to yield

C1,α1 solutions where α1 is a positive number depending on
θw

π − θw
.

Regarding point B, where p2 = ξ2 + η2, the oblique derivative boundary condition becomes

K2(pξ + η′pη) − η′pξ + pη + (ξpξ + ηpη)(ξη′ − η)/(ξ2 + η2) = 0, (82)

where

K2 =
p1

p1 + p2

√
p2 − p1

p2 + p1
.

We rewrite (82)

pξ +Hpη = 0, where H :=
K2η′ + 1 + η(ξη′ − η)/(ξ2 + η2)
K2 − η′ + ξ(ξη′ − η)/(ξ2 + η2)

. (83)

We claim that the direction of the oblique derivative points in between the tangential directions
of the shock curve and the sonic circle; i.e.,

ξ/(−η) > H > η′, (84)

assuming ηB < 0. To prove the claim, we consider the two separate cases ηB ≥ 0 and ηB < 0.
First let ηB < 0. Then the denominator of H is positive since

−η′ + ξ(ξη′ − η)/(ξ2 + η2) = −η(ξ + ηη′)/p2 > 0.

(See (71) for ξ+ηη′ > 0). Using cross multiplication, the inequalityH > η′ becomes (ξ+ηη′)2 >
0, while the inequality ξ/(−η) > H becomes K2(ξ + ηη′) > 0. So they are both valid. For
the case ηB ≥ 0, we note that the numerator of H is always positive: 1 + η(ξη′ − η)/p2 =
ξ(ξ + ηη′)/p2 > 0. When the denominator is positive or zero, the proof for inequality H > η′

is the same as before. When the denominator is negative, there holds H < 0 < η′. When
the denominator is positive or zero, the inequality ξ/(−η) < 0 < H is trivial. When the
denominator is negative, then both denominators of ξ/(−η) and H are negative, thus the proof
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for the case η < 0 is still applicable. Thus, in all cases, we have proved our claim: The vector
field l points from the exterior to the exterior of the domain, see Figure 3. By Lieberman’s[47],
the solution p(1) enjoys C1,α2 regularity at the point for some α2 > 0. This α2 depends on
p1, pm, and the upper bound β0 of β, as well as εe.

Regarding point C, Lieberman’s yields only Hölder continuity Cα3 for any α3 < 1. But the
constant value of p on the sonic arc has zero tangential derivative while the normal of the wall
is tangent to the arc, which allows for higher C1,α4 regularity for some α4 > 0 by Azzam[2].

Regarding point G, we realize that Theorem 1.1 of Guan and Sawyer does not apply directly
since its requirement include that the boundary Σ be in C3+λ (λ > 0). Fortunately, its Remark
1.3 indicates that the boundary regularity can be reduced to C2+γ when the structure of the
tangential manifold is simple, which is our case.

We use the Perron method for existence, as framed in Lieberman[46]. The basic local
existence at point G is the only new case we need to provide a proof for. It is formulated as a
Dirichlet and tangential oblique derivative boundary value problem, which is slightly different
from a pure tangential oblique derivative problem. More precisely, let B2 be a neighborhood of
G with smooth boundary. Let h be any continuous function on ∂B2 ∩Ω. Consider the problem

p = h on ∂B2 ∩ Ω (85)

for equation (75) restricted to the domainB2∩Ω with the oblique derivative boundary conditions
(72) restricted to Σ∩B2. The local existence for some such B2 implies global existence of solution
in Ω by Lieberman[46]. We know that the elliptic estimates are local, so Guan and Sawyer’s
estimate applies in this case. More details on the local existence are provided in Appendix A.

We comment that there is a lot of interesting work on the topic of tangential oblique
derivative boundary value problems, (see [5–7,24,32,35,42,50,52,55–58,63,67]).

6 Quasilinear Theory with Fixed Boundary

Now we take away the linearizing function Q. This step is simple by the estimates of the
previous theorem. So we consider

Q ∈ C1,α(Ω), pm < Q < p2 in Ω. (86)

Let α1 be the least of the three exponents given at the points A, O, and C. Recall that α1 is
determined by the local geometry and is independent of α ∈ [0, 1), i.e., we can obtain α1 by
setting α = 0. We choose α so that 0 < α < α1. So our previous section yields a solution
p(1) ∈ C1,α1(Ω) and satisfies the same lower and upper bounds in Ω.

For each fixed positive εe, the estimates make the mapping Q ∈ C1,α → p(1) ∈ C1,α1

compact.
We quote from Gilbarg and Trudinger[28] the following fixed point theorem: Corollary 11.2,

p. 280:
Let C be a closed convex set in a Banach space B and let T be a continuous mapping of C

into itself such that the image TC is precompact. Then T has a fixed point.
We let B be the Banach space C1,α(Ω). We let C be all Q ∈ B such that pm ≤ Q ≤ p2 in

Ω, Q = pm at the point G, Q = p2 on the sonic arcs AC and BD, and the B-distance from p2

be less or equal to 1. This C is a bounded, closed, and convex set.
Let T be the mapping from Q ∈ C to B constructed above. Each TQ satisfies pm < TQ < p2

in Ω and the corresponding boundary values at G, AC and BD. The image TC is in C1,α1(Ω)
for α1 > α and the C1,α1(Ω)-norm is bounded by a constant times the factor p2 − pm. Letting
p2 − pm be sufficiently small, we obtain TC ⊂⊂ C. The continuity of T follows from the
precompactness and the linearity. So there exists a fixed point Q = p(1) ∈ C1,α1(Ω).
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The maximum principle still holds for the quasilinear problem:

pm < p(1) < p2 in Ω. (87)

We still have that p(1) is C2,γ′
in Ω ∪ {Σ\{A,B}}. The ellipticity holds

p(1) − ξ2 − η2 > 0 in Ω. (88)

To prove this, we write an equation for the variable w =: p(1) − ξ2 − η2 and show that there is
no interior minimum for w. Thus the sign restriction is redundant and our solution satisfies

εe∆p+ (p− ξ2)pξξ − 2ξηpξη + (p− η2)pηη +
(ξpξ + ηpη)2

p
− 2(ξpξ + ηpη) = 0. (89)

The solution p(1) is monotone on either arms of the edge Σ, ξ < 0, or ξ > 0. The proof is
similar to that for Proposition 2.4 of [12]. The idea is to use contradiction method. Suppose
p(1) is not monotone on the right arm. Then a typical case would be that there will be a local
max at ξN and a local min at a ξn > ξN in the interior of the arm, with the local max greater
than the local min. Since these values are not permitted to be global extremes in the closure of
the domain, we can find a curve leading from the max into the domain along which the value
of p(1) will be increasing; Similarly we find a curve starting from the min and leading into the
domain along which the value of p(1) will be decreasing. These two curves will have no where
to end due to the geometry and data we have for our problem. A more elaborate proof is given
in Appendix B.

The solution satisfies
|∇p(1)| ≤ C1(p2 − pm), in Ω (90)

for some constant C1 = C1(εe).

7 Free Boundary

We handle the free boundary problem. Instead of considering the set K and a mapping from
K to itself, we will use a different set, set B.

We first deal with an idealized situation. We take two values of pressure p2 > p1 > 0 and a
small number δ ∈ (0, δ0] where

δ0 := 1 −
√
p12√
p2
. (91)

We introduce the point B with coordinates

(ξ, η)|B = (
√

(p2 − p1)/2,−
√

(p2 + p1)/2) =: (ξ12, η12), (92)

and A is its symmetric counterpart. Let Bδ be the intersection point of the circle

ξ2 + η2 = p2 (93)

with a straight line of slope δ that is tangent to the circle

ξ2 + η2 = p12. (94)

Denote the coordinates of Bδ by (ξ12δ, η12δ) that is the closest to the point B. Let Aδ be its
symmetric part. We consider the pressure equation in the domain Ω bounded by the upper
boundary (93) and the free boundary connecting Aδ and Bδ. The δ will be the slope of the free
boundary at the point Bδ. See Figure 4, where a is inside or on the circle (93) for δ ≤ δ0.
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Figure 4. Domain for the free boundary.
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On the upper boundary we impose p = p2; Below the shock wave we take p = p1. The free
boundary is required to start at point Bδ, have slope δ at point Bδ, be even and convex in ξ.
A typical approximate free boundary is this

η = ηX(ξ) := η12δ +
δ

2ξ12δ
(ξ2 − ξ212δ), ξ ∈ [−ξ12δ, ξ12δ]. (95)

We now introduce a set

B =
{
η ∈ C2,γ [−ξ12δ, ξ12δ]

∣
∣η(ξ12δ) = η12δ,

η′(ξ12δ) = δ, 0 ≤ η′′ ≤ 1
4
p
−1/2
2 , [η′′]γ ≤ 1, η(ξ) = η(−ξ)

}
, (96)

where γ ∈ (0, 1), δ ∈ (0, δ0], and [η′′]γ denotes the γ-Hölder modulus of continuity. The set is
closed and convex in C2,γ [−ξ12δ, ξ12δ].

For any η ∈ B, we find p on it by (64). We estimate the minimum of p, called pδ
m. We

differentiate (64) along the boundary to find

dp

dΣξ
=

2σ′

(1 + σ2)2
(ξσ − η)(ξ + ση). (97)

We show that this derivative is nonnegative for ξ ∈ [0, ξ12δ]. First σ′ ≥ 0 is given. Second
ξσ − η ≥ 0 trivially, assuming η < 0. Third we estimate that σ ≤ p

−1/2
2 ξ and

|η| ≤ δ0ξ12δ + |η12δ| ≤ δ0
√
p2 + |η12| ≤ p

1/2
2

by the choice of δ0, thus ξ + ση ≥ 0. So the derivative is nonnegative. And the derivative is
bounded from above by Cσ′ from which we integrate (97) in ξ to find that pδ

m deviates from
p2 at most by Cδ. In terms of the previous sections, we have pm = pδ

m = p2 −O(δ). This is a
crucial estimate as it is the starting point for a mapping to be defined to take B to itself. Thus,
there exists a δ∗ ∈ (0, δ0], such that pm − p1 > Cδ0 for all δ ∈ (0, δ∗).
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We show that p − ξ2 − η2 > 0 between Aδ and Bδ. At Bδ it is zero. We show that its
derivative is nonpositive for ξ ∈ (0, ξ12δ). The derivative along the shock is

d

dΣξ
(p− ξ2 − η2) =

4η′′

(1 + (η′)2)2
(ξη′ − η)(ξ + ηη′) − 2(ξ + ηη′). (98)

Its nonpositivity is equivalent to

2η′′(ξη′ − η) < (1 + (η′)2)2.

We use the bound η′′ ≤ 1
4
p
−1/2
2 , δ ≤ δ0 to derive

2η′′(ξη′ − η) < 2 · 1
4

1√
p2

(
√
p2δ +

√
p2) <

1
2
(δ + 1) <

1
2
(δ0 + 1) < 1.

Thus the nonpositivity holds and p− ξ2 − η2 > 0 between Aδ and Bδ.
And the choice of the upper bound of the second-order derivative of η is such that ξη +

η′(p− ξ2) < 0 for ξ > 0, see (69)(70), thus the obliqueness holds.
For completeness we mention that ξ2 + η2 − p > 0 for ξ ∈ (0, ξ12δ) because the second-order

derivative of η is less than β0 defined in (61), see (66), (67), (69).
We impose the condition that the solution p takes on the old value at the point G: pm = pδ

m,
which is part of the condition for the emergent type of tangential oblique derivative boundary
condition. By the previous sections, there exists a δ∗∗ > 0 such that a solution p exists for all
δ ∈ (0, δ∗∗). The solution is smooth every where in the closure of the domain including A and B
since the higher order compatibility condition is satisfied. The oscillation maxΩ|p−p2| ≤ p2−pδ

m

is bounded by K1δ where K1 is determined by the upper bound of the C2,γ norm of η ∈ B.
Now we define a mapping on B: The mapping J . Given a boundary Σ(0) from B, we let

p(1) denote the unique solution. Restricted to the old Σ(0), we can regard p(1) as a function of
the single variable ξ. We use p(1)(ξ) to define Σ(1) in the standard formula:

dη(1)

dξ
=
ξη(1) ±

√

p(1)(ξ2 + (η(1))2 − p(1))

ξ2 − p(1)
; η(1)(ξ12δ) = η12δ, (99)

up to a point ξ9 ∈ (0, ξ12δ) where either

η(1) = −
√

p(1) − 4K3δξ2, (100)

or
η(1) = −

√

p(1)(0). (101)

The constant K3 is explained below.
First, the tangential oblique derivative boundary condition (72) implies

|p(1)
ξ + η(0)′p(1)

η |
∣
∣
∣
[p]
4p

(ξ2 + η2) − (ξ2 + η2 − p)
∣
∣
∣ ≤ |ξη + η′(p− ξ2)|K2 |∇p(1)|. (102)

Recalling (67), we can move the term

ξ2 + η2 − p = O
(|ξη + η′(p− ξ2)|)

to the other side to obtain

|p(1)
ξ + η(0)′p(1)

η | [p]
4p

(ξ2 + η2) ≤ |ξη + η′(p− ξ2)|K′
2 |∇p(1)|. (103)
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We have
|ξη + η′(p− ξ2)| ≤ |ξ|

(√
p2 +

1
4
√
p2

(p+ p2)
)
≤ K2|ξ|.

Thus
|p(1)

ξ + η(0)′p(1)
η | ≤ K′

2|ξ| |∇p(1)| (104)

for all ξ ∈ [0, ξ12δ] and all δ ∈ (0, δ∗∗). Now, our solution p(1) is a smooth solution satisfying

|∇p(1)| ≤ K2(p2 − pδ
m), (105)

where K2 is independent of δ, but it may depend on the parameter εe, the size of the domain
Ω, and the C2 norm of Σ(0) which is bounded. So,

|p(1)
ξ + η(0)′p(1)

η | ≤ K3ξδ (106)

for all ξ ∈ [0, ξ12δ] and all δ ∈ (0, δ∗∗).

∗ξ

Σ
9

(0)

9

(1)η
δB

ξ

ξ

η

O

Figure 5. Definition of the mapping J.

R

ξ

Thus in the definition of the mapping, if the curve η(1) hits the upper boundary (100),
then it is still a distance away from the singularity boundary η(1) = −

√
p(1) − ξ2, assuming

4K3δ < 1. So we can and will continue the curve from the upper boundary (100) to ξ = 0,
C3,γ−smoothly, keeping convexity, (η(1))′(0) = 0, and with second-order derivative bounded by
β0. This can be done, we omit the details. See the upper thin curve in Figure 5.

Second, if the curve goes below the line η = p(1)(0) at a point ξ9, see the lower thin curve
in Figure 5, then from the definition formula expressed as

dη(1)

dξ
=

p(1) − (η(1))2
√

p(1)(ξ2 + (η(1))2 − p(1)) + ξ(−η(1))
> 0, for ξ > ξ9, (107)

we find that there will be a point ξ∗ ∈ (0, ξ9) such that the curve η(1) has zero derivative at
that point. We find that the second-order derivative formula

d2η(1)

dξ2
=

1
p(1) − ξ2

( 2p(1) − (ξ2 + (η(1))2)
√

p(1)(ξ2 + (η(1))2 − p(1))
− dη(1)

dξ

) dp(1)

dΣ(0)ξ
(108)



198 Y. Zheng

and the estimate (106) yield a uniform estimate

0 ≤ d2η(1)

dξ2
≤ K5δ, for all ξ ≥ ξ∗ (109)

for all ξ∗ ≥ 0. We can then start at the point ξ9 (not ξ∗) and modify the curve so that it
remains convex with convexity less than or equal to β0, gets to ξ = 0 with ending slope zero.

From the construction it is clear that the mapping is defined on B and takes B to itself
when δ is small enough. In addition, the solution p(1) is in C2,γ , thus η(1) is C3,γ . Hence the
mapping J is pre-compact. We obviously have continuity of J , assuming that our modification
at the upper and lower boundaries are smooth. So J is a continuous mapping from a closed
and convex set B of the Banach space C2,γ to itself whose image JB is pre-compact, thus, by
Schauder Fixed Point Theorem (see [28], Corollary 11.2, p.280) quoted already earlier, we have
a fixed point for J , which is the existence of the free boundary.

7.1 Free Boundary for the Wedge Problem

We now consider the wedge problem. Since the corners C,D,O are a fixed distance away
from the free boundary, we can similarly obtain the existence of a free boundary for the wedge
problem. The mild dependence of p2 on tan θw is trivially allowed. The main change is the
handling of the value pm. We build an extra mapping to handle it.

The value pm is from an equation derived from the requirement that v(0, 0) = 0: i.e.,

v1 − pm − p1√
pm1

=
∫ 0

−
√

pm1

pη(0, y)
−y dy. (110)

We observe that the vm formula

vm = v1 − pm − p1√
pm1

(111)

is monotone with respect to pm and vanishes at pm = p∗2. Recall that p∗2 is the limit of p2 as
θw → π/2. Now for a given free boundary η ∈ B, we can find its foot location on the η-axis
with coordinate ηm, velocity vm, and a pressure pδ

m, which are related by the Rankine-Hugoniot
relation. Suppose we take pm to be a value less than p∗2, we build a solution p to the oblique
derivative boundary value problem with p(G) = pm, we calculate the integral

∫ 0

−
√

(pδ
m+p1)/2

pη(0, y)
−y dy =: vv, (112)

then use this value to invert
v1 − pm − p1√

pm1

= vv (113)

for a new pm, thus define a mapping from pm to pm, and it preserves the upper bound pm < p∗2.
To find a lower bound, we observe that pδ

m approaches p∗2 as δ → 0, and thus vm approaches
zero. Thus we can manage to have pm in such a way that vv goes to zero slower than vm as
δ → 0, thus the mapping will map a p∗ to a number greater than p∗. Thus we have a mapping
that maps [p∗, p∗2] to itself. The continuity of the mapping follows from the fact that the solution
p is C1,α1 , and hence we have a fixed point, which is a solution to the equation for pm.

Once we have a fixed point for the free boundary Σ, the new value of p on the shock is, on
the one hand, pm, but also the old value pδ

m on the other hand. Thus they are equal, and the
fixed point is a solution to the free boundary problem and the velocity v is zero at the origin.
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8 De-regularization -εeεeεe and Lipschitz Continuity

We obtain uniform estimates with respect to εe > 0. We use barriers to find the bound of
the gradient of p on the sonic boundary. Then we use maximum principle to establish global
bound of the gradient of p on the entire closure of the subsonic domain. Thus the solution p is
Lipschitz at the sonic arcs.

First, the maximum principle implies p ≤ p2. Second, the uniform ellipticity implies p ≥
ξ2 + η2. Combining the two, we obtain that 0 ≤ ∂np ≤ 2

√
p2 on the sonic arcs where n is the

unit exterior normal to the arcs, independent of εe ∈ (0, 1].
We let (r, θ) denote the polar coordinates of the (ξ, η) plane. In polar coordinates, the p

equation can be written as

(p− r2)prr +
p

r2
pθθ +

p

r
pr +

1
p
(rpr)2 − 2rpr = 0. (114)

We omit the term εe∆p since it does not present any help or trouble. Multiplying with
r2

p
, we

obtain

r2
(
1 − r2

p

)
prr + pθθ + rpr +

r2

p2
(rpr)2 − 2r3

p
pr = 0. (115)

Taking the derivative ∂r, letting Z := pr, we obtain

r2
(
1 − r2

p

)
Zrr + Zθθ + rZr +

2r4

p2
prZr − 2r3

p
Zr + ∂r

(
r2 − r4

p

)
Zr − ZF (Z, r, p) = 0, (116)

where

F (Z, r, p) :=
6r2

p
− 1 − 6r3

p2
Z +

2r4

p3
Z2. (117)

Near p = r2 = p2, the function F is bounded from below by 1/2 for all Z ∈ R. We select a
thin shell domain immediately inside the sonic arc. We choose δ small, so all the derivatives
are small depending on δ and εe. We then apply the maximum/minimum principle on Z. Thus
|Z| < 2

√
p2 in a small neighborhood of the sonic arc.

In the interior of the domain Ω, the limit εe → 0+ does not cause trouble since there holds
uniform ellipticity.

9 Recovering the Velocity

Now that we have obtained p in the entire subsonic domain, we can integrate the first two linear
equations in (23) for u and v to obtain (u, v). More precisely, we integrate

rur = ξuξ + ηuη = pξ, u = u2 at r =
√
p2 (118)

in the subsonic sector spanned by radial rays of the sonic arc to find

u(r cosα, r sinα) =
∫ r

√
p2

pξ(τ cosα, τ sinα)/τ dτ + u2 (119)

for 0 < r <
√
p2 and α stretching between θw and θA (the polar angle of the point A, see

Figure 2). For α between θA and π, we use in (118) as data the velocity obtained by (30)(31)
on the free boundary shock to obtain u in the subsonic sector spanned by radial rays of the free
boundary Σ. We evaluate v similarly. Thus (u, v) are defined, and the first two equations in
(23) are satisfied in the subsonic domain.
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We verify the third equation in (23). As previously discussed, the second-order equation
written in the form r∂rL + L = 0 implies the third equation if the third equation holds at a
single point on each ray. Thus it suffices to show that L = 0 (defined in (57)) on the inside edge
of the sonic arc and the free boundary Σ. To achieve that for the sonic arc we first note that
our p is Lipschitz up to the boundary from the previous section. Our (u, v) are also Lipschitz
at the boundary. Note further that (u, v) are constant on the arc, thus their derivatives along
the sonic arc are zero:

−ηuξ + ξuη = 0, −ηvξ + ξvη = 0. (120)

Using these relations in the equation

ξuξ + ηuη = pξ, ξvξ + ηvη = pη (121)

we obtain
(ξ2 + η2)(uξ + vη) = ξpξ + ηpη. (122)

Recall that ξ2 + η2 = p on the sonic arc, we obtain

L := (ξpξ + ηpη)/p− (uξ + vη) = 0 (123)

on the sonic arc! Thus the third equation of (23) holds in the entire sector spanned by the sonic
arc.

The oblique derivative boundary condition ensures, as previously mentioned, that L = 0 on
Σ. Recall that we derived the oblique derivative boundary condition by assuming that L = 0
on Σ. Now we want to reverse the process; i.e., we want to derive that L = 0 on Σ from p and
the oblique derivative boundary condition. From the three facts that (i) p is known and the free
boundary satisfies equation (29), (ii) the values of (u, v) on the inside edge are obtained from
(30), (31), (iii) the first two equations of (23) hold on the edge, we can differentiate (30), (31)
along (29) to solve five variables (uξ, uη , vξ, vη, pξ) from the five equations in terms of the sixth
pη, using the condition ξ2+η2−p 	= 0 for η > 0. It can be verified that the five variables depend
on the sixth linearly, and the relation L = 0 holds identically on the inside edge of Σ, where we
use the fact that (p1, u1, v1) is a constant state. Then the second-order equation r∂rL+ L = 0
implies L = 0 in the interior of the domain. Thus the solution p of the second-order equation
is a solution to the system of first order equations in the sectoral domain spanned by Σ.

Furthermore, the velocity (u, v) are smooth in the interior of the subsonic domain. On the
wall and the ground we show that the velocity is parallel to the solid surface. Our p satisfies
∂np = 0. Our (u, v) from (121) satisfies the equation

ξ(un)ξ + η(un)η = ∂np

where un := (u, v) · n. Thus, un = constant . The constant is zero in the state (2) and at the
tip of the bow shock. So un = 0. Thus, the velocity is parallel to the solid surface. Finally, the
velocity is bounded at the origin O since ∇p is Hölder continuous and vanishes at O.

10 Fine Properties of the Velocity

One might ask if there is a stagnation point of the flow in the subsonic domain, or at the
corner in particular. One might also ask if the velocity remains uniformly small to fulfill the
condition posteriorly, under which the model is derived. Furthermore, one might ask what
exactly determines the position of the free boundary shock, if the pressure equation decouples
from the velocity field.

We first observe that a key condition to locate the free boundary shock is the condition
u(0, 0) = 0 (in the vertical set-up of Figure 1), although this condition can be expressed entirely
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in terms of the pressure pm. To answer the other two questions, we find it is necessary to study
qualitatively the velocity field of the solution in the subsonic domain.

Proposition 10.1 (State 2). As cos θw → 0+, we have

p2 = p∗2 +
p2
1(p1 − p0)2

2p310 tan2 θw
+O(tan−4 θw), (124)

where p∗2 is defined in (36).

Proof. This is an easy consequence from the explicit formula in Proposition 3.1.

Proposition 10.2 (State 2 on Σ). The velocity on the free boundary Σ is nonnegative

u ≥ 0, v ≥ 0 on Σ (125)

for large wedge angles.

Proof. In fact, we find from (31) that

[v]
[p]

=
p− ξ2

ηp− ξ
√
p(ξ2 + η2 − p)

> 0

on the shock, thus v > 0 on the inside of the shock. We present the calculation for u, at the
point G only for brevity. At the point G, we use the R-H relation (30) to find

u2G = u1 − p2G − p1
√

(p2G + p1)/2
. (126)

In (126), we see quickly that u2G is a decreasing function of p2G, holding p1 and u1 fixed and
unrelated to p2G. In addition, if we use p2G = p∗2 from (36), we find u2G = 0. So, to show
u2G > 0, it suffices to show that p2G < p∗2 for all large wedge angles.

From Proposition 10.1, we have p2 = p∗2 +O(cos2 θw). On the other hand, we show that p2G

will be smaller than p2 by an amount C2δ at the least, which is C2 cot θw, C2 	= 0. This follows
from the oblique derivative boundary condition written in the form (in the swapped coordinate
where the free boundary shock is basically horizontal)

η′′(p− ξ2){ [p]
p

(ξ2 + η2) − 4(ξ2 + η2 − p)}
2p− ξ2 − η2 + 2η′{ξη + η′(p− ξ2)} = −η′p(1)

ξ + p(1)
η + (ξp(1)

ξ + ηp(1)
η )

ξη′ − η

p
. (127)

We have 0 ≤ pη ≤ C2δ since p2 − p2G ≤ C2δ. So η′′(ξ) ≤ C2δ. From formula (97) we have

dp

dΣξ
≥ C2ξσ

′ (128)

which implies

p(B) − p(G) ≥ C2

∫ ξB

0

ξσ′ dξ = C2

(
ξBδ −

∫ ξB

0

σdξ
)
. (129)

But we have
∫ ξB

0

σ dξ ≤
∫ 1/C2

0

ξσ′(ξ) dξ +
∫ ξB

1/C2

δ dξ

≤1
2

( 1
C2

)2

(C2δ) +
(
ξB − 1

C2

)
δ = ξBδ − 1

2C2
δ. (130)
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Thus p2G = p2 − C2 cos θw < p∗2. Thus u2G > 0. This completes the proof.
As fluid particles flow toward the wedge wall, the build-up of fluid raises the pressure in

the subsonic region. In the extreme case of a vertical wall, there is no escape for the fluid,
thus the velocity (u, v) = (0, 0) and the pressure is p = p∗2 in the subsonic region. For a wall
with θw ∈ (0, π/2), fluid particles can slide along the wedge surface: The fluid particles get
deflected at the corner. Both the zero pressure gradient on the wedge surface and the zero
head-on velocity at the corner are used to send a signal to the decoupled second-order pressure
gradient equation to take care of the build-up of fluid at the corner.

To explain the changes of velocity in the subsonic domain in response to the pressure
gradient, we find that our (u, v) from (121) satisfies the equation

ξ(uα)ξ + η(uα)η = ∂αp

where uα := u cosα + v sinα and ∂αp = pξ cosα + pη sinα. Thus, for example uα for α = π/4
is decreasing from the shock wave toward the origin, provided that the pressure is increasing in
the direction (1, 1), see Figure 6. Overall, the velocity remains small, which answers our second
question proposed earlier.

We need to find more information to answer the question of stagnation points.

Figure 6.  Flow pattern of the regular reflection
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10.1 Vorticity

We study the vorticity in the subsonic region to reveal more refined properties of the velocity.
As is usual, the vorticity is defined by ω = ∂xv − ∂yu. We can show that the vorticity is zero
at time t = 0 for our configuration. Furthermore, it is easy to check that

∂tω = 0, t > 0

for smooth solutions of the pressure gradient system. So we expect that our solution has zero
vorticity.

We show that our solution indeed has zero vorticity. Although it might seem unnecessary to
do the proof, we feel that our construction of the solution has been a guess work, and piecewise,
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so it is a good idea to verify the end result. In addition, curved oblique shock waves in a gas
are known to generate vorticity, see e.g. the appendix of [33], or p.431 of [51]. Thus, first, from
(120), (121) we obtain

vξ =
ξ

p
pη, uη =

η

p
pξ (131)

on the sonic arc, and thus

vξ − uη =
ξpη − ηpξ

p
= 0 (132)

on the sonic arc, since p = p2 is a constant there. Thus, there is no vorticity along the sonic
arc in the subsonic region.

In the self-similar plane we denote for convenience ω = vξ − uη although the physical
quantity t(∂xv− ∂yu) scales to be vξ − uη. We use equations (23) to easily find that ω satisfies
the equation

−ξωξ − ηωη + ω = 0 (133)

in any region where the solution is smooth. Using equation (133) and boundary data (132), we
obtain that vorticity is zero in the subsonic domain spanned by the sonic arc.

We show then that the vorticity is zero on the free boundary shock. From the original form
of Rankine-Hugoniot relation we can obtain that

[u] = − σ

η − ξσ
[p], [v] =

1
η − ξσ

[p]. (134)

We differentiate the [u] equation along the shock to find

d[u]
dΣξ

=
−ησ′

(η − ξσ)2
[p] − σ

η − ξσ

dp

dΣξ
. (135)

Using the fact that u1 is a constant and the first equation in (23) we obtain

(ξσ − η)uη = −pξ − ξησ′

(η − ξσ)2
[p] − ξσ

η − ξσ

dp

dΣξ
. (136)

Similarly we obtain

(η − ξσ)vξ =
ξησ′

(η − ξσ)2
[p] +

η

η − ξσ

dp

dΣξ
− σpη. (137)

Combining the two terms we obtain vξ − uη = 0 on the shock. Thus vorticity is zero in the
subsonic domain spanned by the free boundary. So the flow is irrotational in the entire subsonic
domain.

We can now use vξ = uη to manipulate the first two equations of (23) into

u = (ξu+ ηv − p)ξ, v = (ξu+ ηv − p)η. (138)

We call
ψ := ξu+ ηv − p (139)

the potential. Thus we have a nice formula

p+ ψ = ξu+ ηv. (140)

So we have
∆ψ = uξ + vη =

ξpξ + ηpη

p
(141)
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by the third equation of (23). Replacing the derivatives pξ and pη from the first two equations
of (23), we obtain

p∆ψ − (ξ2ψξξ + 2ξηψξη + η2ψηη) = 0. (142)

We can replace p to obtain a decoupled equation

(ξψξ + ηψη − ψ)∆ψ − (ξ2ψξξ + 2ξηψξη + η2ψηη) = 0. (143)

The boundary data for ψ are the Dirichlet on the free boundary and the sonic arc, and Neumann
∇ψ · n = 0 on the ground and the surface of the wall. Since we have obtained p already, we
choose to use equation (142). We are mainly interested in regularity of the solution. First we
find that the only stagnation point is at the origin. Second, the solution ψ is in Cα(Ω) where
α = π/(π − θw) ∈ (1, 2), and the solution ψ is unique, see Grisvard[31]. Further, we have the
asymptotic formula

ψ = rα cos(α(θ − θw)) + o(rα) (144)

in polar coordinates (r, θ), at the origin. This formula is useful for explaining the existence of
a stationary point in the pseudo-velocity (u− ξ, v− η) of the full Euler system on the wall (but
not the corner), see [74].

Thus we conclude that the velocity is uniformly small in the region, the only stagnation
point of the pseudo-velocity is at the origin, and the pseudo-flow field is vorticity free.

11 Further Discussions

It remains open to calculate the threshold at which regular reflection gives way to Mach re-
flection in the whole (not just locally at the Mach stem). Further in depth questions include
solutions to the Riemann problems and the Euler system.

Appendix A Linear Theory

A1 Local Existence

We provide details on the issue of local existence. Recall that B2 is a neighborhood of G with
smooth boundary and h is a continuous function on ∂B2 ∩ Ω. Consider the problem

p = h on ∂B2 ∩ Ω (145)

for equation (75) restricted to the domain B2∩Ω with the tangential oblique derivative boundary
condition (72) restricted to B2 ∩Σ. This is a mixed-type boundary value problem on which we
do not find any clear literature. So we give an existence proof here. We chop off the tip G; i.e.,
we replace Ω by Ωδ which is δ-distance shorter than Ω from the point G upward. See Figure
A1. On the bottom straight boundary of Ωδ, we impose the Dirichlet boundary condition

p = pm on bottom of Ωδ.

Now by Lieberman[47], there exists a solution pδ in C(Ωδ ∩B2)∩C2,α(Ωδ ∩B2). The maximum
principle holds for pδ, thus there is a subsequence of pδ, which converges locally in C2(Ω∩B2)
to a solution in C2,α(Ω ∩B2) as δ → 0+.

We use a barrier function at G to obtain continuity of p at G. We note that our l is not
degenerate (|l| 	= 0) and well-defined for (ξ, η) ∈ B2 provided that B2 is sufficiently small and
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Figure A1.  Domain with tip G removed.

δmp
Σ

Ω

B

δ

G

the variable p is regarded as given by formula (64) where η′(ξ) is given, but η can be free (well,
we choose η = η(ξ) to be given). So we can introduce integral curves in B2 by

(dξ

ds
,
dη

ds

)
= l(ξ, η(ξ), η′(ξ)).

The vector field enjoys C1,γ(B2) regularity, so the integral curves enjoy C2,γ regularity. We
now perform a coordinate transformation to straighten the vector field so that the boundary
condition becomes

∂p

∂ξ
= 0 (147)

and the equation becomes
aijDijp+ biDip = 0, (148)

where the usual summation convention is used. We omit introducing new notation for p for the
new coordinate system. We consider the auxiliary function

v = pm + c(1 − e−N(η−ηm1)), (149)

where c > 0 and N > 0 are to be chosen large. This v satisfies the oblique boundary condition
and is greater than pm on each of the bottom boundary of Ωδ, δ > 0. For the equation, we have

aijDijv + biDiv = −ce−N(η−ηm1)(N2a11 −Nb1),

which can be made less than a negative constant by choosing N > |b1|0/λ where λ ≤ a11(ξ, η).
Now we can choose c so that v is greater than sup |h|. Thus all our solutions pδ are bounded
from above by the super solution v and below by the constant pm (we consider the case h ≥ pm

only). So p is continuous at the point G. The continuity of p at other points follows from
Lieberman’s aforementioned work.

We establish the regularity C2,α′
(Ω∩B2) for p for α′ = min (α, γ). Take a domain B3 ⊂⊂

B2 so that ∂B3 intersects Σ with infinite order of contact. Extend the vector field l from
the (only two) contact points to ∂B3 ∩B2 C

∞-smoothly so that there is only one point on the
boundary ∂B3∩B2 that is tangentially degenerate, thus this portion is rather like the Σ. Propose
the corresponding tangential oblique derivative boundary value problem onB3∩Ω: The equation
is the same, the boundary condition on Σ is the same as before, but the (nonhomogeneous)
tangential oblique derivative boundary condition on ∂B3 ∩ B2 is the newly-invented one. We
know that this problem has a solution p that is continuous on the closure of B3 ∩Ω by design.
But this problem has maximum principle, so any C2,α solution (kept the nonhomogeneous data
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unchanged) will coincide with the solution p. The homogeneous problem will have only the zero
solution, thus the null space has dimension zero. Hence, there is no compatibility condition for
this problem, since this problem is Fredholm (p. 158, [24]). Thus smooth data imply existence
of smooth solutions by Theorem 5.3 of Egorov and Kondrat’ev[24]; I.e., there exists a solution
p in the Sobolev space W 1,2(B3 ∩ Ω). By the smoothness theorem, Theorem 5.2, of the same
paper [24], the solution is as regular as the data, which we can make very smooth to start with
the curve η(ξ) and the linearization Q. For smooth solutions, we then use Guan and Sawyer[32]

to obtain uniform estimates in the space C2,γ(B2 ∩ Ω) in terms of C2,γ regularity of η(ξ) and
Q.

A2 Corner O

The angle 2θw will be close to π, but strictly less than π. Thus the interior angle is more than
π, so Lieberman[48] does not apply. We extract an example from Grisvard[31].

Example Consider the Laplace equation

∆p = 0

in a sector of angle ω ∈ (0, 2π) in R
2, in the polar coordinate (r, φ). See Figure A2. Consider

the function
p1 = rπ/ω cos(φπ/ω).

It is harmonic in the sector and satisfies ∂φp = 0 on the edges of the sector (see [31]). If
ω ∈ (π, 2π), this function is only Hölder continuous at the origin. This example illustrates the
requirement 0 < φ ≤ π in Theorem 1 of [48] in order for p to be in ∈ C1(Ω) ∪ C2(Ω).

r

Figure A2.  Laplace at a big corner.

φ

ω Ω

So we use the symmetry of the problem with respect to ξ to cut the large angle in half.
Then the solution at the corner has Hölder continuous gradient: p ∈ C1,θw/(π−θw).

Appendix B Monotonicity

We establish in details the fact that p (i.e., p(1)) is monotone along the shock boundary Σ from
the point G to B, See Figure 2. The procedure is similar to that of [12].

Along the boundary Σ, the pressure p is a function of a single variable, say ξ. Assuming
that p is not monotone, we can then find two points c and d on Σ such that p has a maximum
at c over the interval of Σ from G to d, p has a minimum at d over the interval of Σ from c to
B, and p(c) > p(d).
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Figure B1. Hypothetical curves cx and dy.

Now we consider p in the domain Ω, formed by the boundary G,B,D,O,G, see Figure B1.
We will partition Ω into three subdomains with two curves Γc and Γd from c and d respectively
to points x and y respectively on the η-axis or the wall, in such a way that p(x) > p(y) and so
we can conclude that there is a point z on the η-axis or the wall at which the pressure obtains a
maximum on either the subdomains, and there is a point m on the η-axis or the wall at which
the pressure obtains a minimum on either the subdomains, thus at least one of the pair (z,m)
will violate Hopf maximum principle, even if one of them happens to be the origin O.

One wishes to find smooth curves on which p is monotone, but we know of no way to achieve
that. An approximation is, however, possible. We construction Lipschitz curves on which p is
monotone on the joints. Let

µ :=
1
4

min
{
p(c) − p(d), p(B) − p(c), p(d) − p(G)

}
. (150)

We plan to construct curves on which

p(x) ≥ p ≥ p(c) − µ, on Γc, and p(x) > p(c),
p(y) ≤ p ≤ p(d) + µ, on Γd, and p(y) < p(d). (151)

We let M be a bound of |∇p| in Ω, which may depend on εe. Let R = µ/(2M). Then the
oscillation of p in any ball of radius R inside Ω is bounded by µ. We can construct Γc now.
Consider a ball BR(c). In BR(c)∩Ω, p(c) cannot be the maximum value of p (because c is not
a point of local maximum in Ω), therefore there are points of ∂BR(c) ∩ Ω where p > p(c). Let
X1 be a point at which p attains its maximum value in BR(c) ∩ Ω. The first segment of Γc is a
straight line from c to X1. There holds p(X1) > p(c), and p(X1) > p ≥ p(c)−µ on the segment.

We use induction to form a sequence of line segments with corners at {Xi} (where c = X0),
along which holds p ≥ p(c) − µ and such that p(X1) < p(X2) < · · ·. Let

Ωj = Ω
∖{∪j−1

0 BR(Xi)}; (152)

we have Xj ∈ ∂Ωj and we consider BR(Xj). We note that p(Xj) is the largest value of p on the
part of BR(Xj) inside the complement of Ωj . However, p(Xj) is less than the maximum value
of p on BR(Xj), by the maximum principle. Therefore, there is a point Xj+1 ∈ ∂BR(Xj) ∩ Ωj

at which p attains its maximum value in BR(Xj) ∩ Ωj . Also, along the straight line from Xj

to Xj+1 there holds p ≥ p(Xj) − µ > p(c) − µ.
So we have dist(Xi−1,Ωi) = R, and Ωj ⊂ Ωj−1 ⊂ · · · ⊂ Ω1, thus dist(Xi,Ωk) ≥ R for

k ≥ i+ 1, and since Xk ∈ ∂Ωk, there holds the estimate

dist(Xj+1,Xi) ≥ R, for all i < j. (153)
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Hence the distance between any pair of points Xi,Xj in the sequence is greater or equal to
R. The domain Ω is finite, so the process will end at a finite step when we reach a point
XL = x ∈ ∂Ω. By construction, Γc has the property (151). Similarly we construct Γd with
termination point y ∈ ∂Ω.

We now locate x and y. We note that the two curves cannot cross each other because at
every point on Γc, p ≥ p(c)−µ > p(d)+µ, while at every point on Γd there holds p < p(d)+µ.
Further, Γd cannot terminate on the sonic arc, because of its lower value, and it cannot come
back to Σ between the points c and B because it is a minimum to start with. So it has to end
on the wall or the η-axis. Similarly, Γc cannot terminate on the sonic arc and must terminate
as Γd does.

We drive further to find a contradiction. Since p(x) is greater than p(G) and p(y), there
is a z along the boundary G − O − y at which p attains a maximum. Assume first that z is
not the origin, then z cannot be a local maximum for the domain Ω by the Hopf Lemma. But
along the entire boundary of the domain formed by G, c, d, y,G, the value of p are all less or
equal to p(z), so it is a maximum. This is a contradiction. Now if z coincides with O, then a
similar minimum point m resembling y cannot coincide with O, and we can find that there is
no place for such an m, either. Thus there is always a contradiction. So we conclude that p is
monotone along Σ from G to B.
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