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TWO-DIMENSIONAL RIEMANN PROBLEM
FOR A SINGLE CONSERVATION LAW

TONG ZHANG AND YUXI ZHENG

Abstract. The entropy solutions to the partial differential equation

(d/dt)u(t, x, y) + (d/dx)f(u(t, x, y)) + (d/dy)g(u(t, x,y)) = 0,
with initial data constant in each quadrant of the (x, y) plane, have been con-
structed and are piecewise smooth under the condition f"(u) / 0 , g"(u) ^ 0 ,
(f"{u)lg"(u))' t¿ 0 . This problem generalizes to several space dimensions the
important Riemann problem for equations in one-space dimension. Although
existence and uniqueness of solutions are well known, little is known about the
qualitative behavior of solutions. It is this with which we are concerned here.

1. Introduction

The Riemann problem [1,2] has been a key to the development of the the-
ory of one-dimensional conservation laws. For multidimensional conservation
laws, similar Riemann-type problems may be considered. Their study is inter-
esting and valuable not only in theoretical aspects but also in fluid mechanics;
for example, the diffraction of a planar shock along a compressive corner is a
special case. However, the problem in several space dimensions is much more
complicated. As a beginning towards a general theory, the present paper deals
with the problem for a single conservation law. Although existence and unique-
ness of solutions to the single conservation law with general initial data has
been obtained earlier, it is useful to solve the Riemann problem in an exact
manner both for understanding the qualitative behavior of solutions and for
applications to other problems.

The two-dimensional Riemann problem for a single conservation law is

(1) du/dt + df(u)/dx + dg(u)/dy = o,
' ux,       x> 0 ,y > 0,

,»v ,n .        u2,       x<0,y>0,(2) u(0 ,x ,y) = <    2 _ _
V V |M3' x< 0,y< 0,

k u4 ,       x > 0, y < 0,
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590 TONG ZHANG AND YUXI ZHENG

where / and g G C (-00 , + 00). Many papers deal with the problem [4-7].
Wagner [4] constructed the entropy solutions in the sense of Kruzkov [3] under
the hypotheses that / and g are convex and / = g, or / and g sufficiently
close with ux, u2, u3 and u4 satisfying a restrictive condition. He also cal-
culated an example and obtained a very interesting numerical configuration of
a solution which we shall construct and shall be called an envelope rarefaction
wave. [5] deals also with equation (1) when f = g, but with more general ini-
tial data piecewise constant in a finite number of wedges focused on the point
(0,0) in the (x, y )-plane. For the case f = g , equation ( 1 ) can be transformed
into du/dt + d(2f)/dx = 0 through the coordinate transformation x = x + y ,
y ' = x - y , and problem (1), (2) is, in fact, a one-dimensional problem which
can be handled easily. By contrast, it is easy to prove that equation (1) can-
not be transformed into a one-dimensional equation through linear coordinate
transformations whenever (f"Ig")' ^ 0. We have obtained some more general
results in the present paper. The entropy solutions to (1), (2) are constructed
if / and g satisfy f"(u) / 0, g"(u) ^ 0 and (f"(u)/g"(u))' ^ 0, and these
solutions u are piecewise smooth with the upper and lower bounds unchanged,
and consist of constant states, piecewise smooth discontinuity surfaces, centered
planar wave bodies and centered wave cones.

The condition (f"(u)/g"(u))' ^ 0 is natural according to the point of view
taken in [8]. In that paper the authors have worked out the concepts of con-
vex and nonconvex and corresponding entropy condition in multidimensional
space. Their results show that it is impossible for a single conservation law in
two space dimensions to be either convex or concave in all directions. On the
other hand (f"fg")' = 0 means the equation is either convex or concave in all
directions except one single direction (in this direction the equation degenerates
into a linear one); in fact the equation will degenerate into a linear one if it is
degenerate in more than one direction. It is, therefore, the simplest case to
require that equation ( 1 ) has at most one inflection point in any specific direc-
tion. That is the condition (f"Ig")' / 0. Incidentally, with a finer analysis,
this condition can be removed without too much change in the method used;
we assume this condition merely for simplicity.

In §2, we do some preliminaries. Through similarity transformations <j; =
x/t, n = y/t, problem (1), (2) then becomes a boundary value problem at
infinity for an ordinary differential equation in the (£, r/)-plane. In §3, we
classify problem (1), (2) and solve the simplest case. In the remaining sections,
we consider all other cases.

2. Preliminaries

For the Cauchy problem

m d" 1 df{u) 1 d8{u) = 0
( ' at     ax      dy
(3) u\t=Q = u0(x , y),
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TWO-DIMENSIONAL RIEMANN PROBLEM FOR A SINGLE CONSERVATION LAW 591

where / and g G C3(-oo, + oo) and u0(x ,y) is a bounded measurable func-
tion, Kruzkov [3] has obtained the existence and uniqueness of weak solutions;
these are defined as follows:

Definition. A bounded measurable function u(t,x,y) is a weak solution of
(1), (3) in the strip UT = [0,T)x R2 if

IIf[U~dt +f("U)dx+g^by   dxdydt + Jj<l>-u0(x,y)dxdy = 0
n, t=o

for all 0 G C™(TIT). A function is a weak solution in the large if it is a weak
solution for all T > 0. The entropy condition satisfied by this weak solution is

HI Sign(« - k) {(u - k)^ + (/(«) - f(k))00
dx

+ (g(u) - g(k))-^-\ dxdydt>0

for all real constants k and any 0 G C™(HT) such that 0 > 0.

For the Riemann problem (1), (2), we can obtain the existence and unique-
ness of solutions using the results of Kruzkov. However, we shall explicitly
construct these solutions in the class of piecewise smooth functions. In order
to do this, we use the similarity transformation

(4) { = */'.      V = y It.
Let u(t, x, y) = u(Ç , n). When u G Cx, we have

.    t%     .     dn        {.      i/.

: Ôi    1  . r.
M* = Miäx- = 7-V      uy = lun

except t = 0. Hence equation ( 1 ) becomes

(5) (f'(ü)-^)üí + (g'(ü)-r1)ün = ^
and the initial data become

ux , for £ > 0 ,n > 0,
w2 , for Ç < 0, r/ > 0,
«3, for «J < 0 , n < 0,
u4, for £ > 0, >/ < 0.

For piecewise smooth solutions to problem (1), (2) with S the discontinuity
surface, S must be a cone through the origin (0,0,0), for reasons of self-
similarity. Suppose u~ and u+ (u~ < u+) are the values of u on both sides
of 5, and the ñ is the normal to S from u~ to u+ . Then the Rankine-
Hugoniot (R-H) relation and the entropy condition are

(7) ñ ■ (u+ - u   , f(u) - /(«"), g(u+) - g(u~)) = 0

(6) lim     m(£ , n) = -
C/rç=const.
í2+»;2-»oo
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592 TONG ZHANG AND YUXI ZHENG

and

(8) fl-(k-u~ , f(k) -/(«"),g(k) - g(u~)) > 0
respectively, for any constant k such that u~ < k < u+ ; these can be easily
deduced from the definition of a solution.

Using the transformation (4), we obtain the admissible condition for discon-
tinuity lines in the (Ç , n)-plane as follows. First,

(9)     g -Kj-g.°-^/^ -ff] -t
then

dÇ      y     u+ - u J I   \      u+ -u J
Second, assuming that (a , ß) is the projection of ft onto the (£, r/)-plane,

(10) F(k)-F(u~) >F(u+)-F(u~)
k - u~ u+ -u~

for any constant k such that u~ < k < u+ , where F = af + ßg.
Obviously, any piecewise smooth function ü(£ ,n) in R having piecewise

discontinuity lines on which (9), (10) are satisfied, satisfying (5) in smooth
regions and satisfying (6) in the infinity, is bound to be the unique weak solution
to the Riemann problem (1), (2) in the sense of Kruzkov after inverting the
transformation (4).

When we rewrite equation (5) in another form,

(5') (f(ü)-Zü)t + (g(Ü)-r,ü\ = -2ü,
we find that (9), (10) are just the R-H relation and the entropy condition for
discontinuity lines for equation (5'). Thus, we still call the discontinuities
satisfying (9), (10) shocks or contact discontinuities. We shall omit " ~ " on u
for brevity.

What we want to do is construct the piecewise smooth solutions to equation
(5) with boundary values (6), satisfying admissible discontinuity conditions (9),
(10). Let us consider first the smooth solutions to equation (5).

Equation (5) can be written in characteristic form

<fa«f,iy(Q)
dÇ

did)     g'(u) - n
dt        f'(u)-¿f

The characteristic lines are obviously any half rays starting at (f'(u), g'(u))
along which u is constant.   Therefore, we can easily obtain the continuous
solutions of the above equations.

Thus the curve
U = f'(u),
\n = g'(u),

(B) S i)  ( ' (-co < u < +00)
\n = g(u),

with u as parameter plays an important role. We call it a base curve and denote
it by (B). It is easy to show that the base curve is monotonically increasing and
concave under the condition /" > 0, g" > 0 and (f"/g")' > 0.
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constant state one-dimensional
planar wave

Figure 2.1

envelope rarefaction
wave

If we now consider piecewise smooth solutions, we can also construct the gen-
eral configurations of the solutions which consist of domains of constant states,
regions of nonconstant continuous solutions with characteristic lines or admis-
sible discontinuity lines as boundaries. For problem (5), (6), (9), (10) under the
hypothesis f" g"(f" /g")' /Owe shall show that continuous solutions take at
most three forms (see Figure 2.1); one form is the constant state, the second is
a one-dimensional planar wave, and the third is foliated by characteristic lines
generated tangentially from a half contact discontinuity. We call the last form
of solution an envelope rarefaction wave. When we transform these solutions
back into the (t, x , >>)-plane, we shall call them constant states, centered planar
wave bodies, and contered wave cones, respectively (see Figure 2.1).

3. Classification and simple cases
We simplify the general Riemann problem (1), (2) under the condition

rll     II, y.11  ,    Il7l     .  nf g (f Ig ) í o
as follows. First, we may assume /" > 0 and g" > 0 without loss of generality;
otherwise we may use one of the transformations x —► -x, y —* — y ; x —» — x,
y ^ y ;or x —* x, y -» -y . Next we can assume (f" Ig")' > 0 ; otherwise we
may uses the transformation x —► -x, y —» —y
the signs of /" and g".  Also we can assume
use the transformation x —* —y , y —* —x, u —<•

u —► -u without changing
w4 ; otherwise we mayu2 <

-u leaving the signs of f ',
g   and (/ /g )   unchanged. Thus we need only solve the Riemann problem
under the hypotheses f" > 0, g" > 0, (f"/g")' > 0 and u2<u4.

u2

l..?3.l)

u
"3

case (b) : m3 > «4 > u2 > «i
case (a

Figure 3.1
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594 TONG ZHANG AND YUXI ZHENG

Solutions to problem (5), (6) must be four one-dimensional planar waves
outside a bounded domain in (<!;, n)-plane. We can use these "exterior" waves
to classify problem (5), (6) into five cases: (a) no shocks, (b) no rarefaction
waves, (c) exactly one shock, (d) exactly one rarefaction wave, and (e) two
rarefaction waves and two shocks. We can easily construct the solutions to (a)
and (b) (Figure 3.1). There must be u3 < u2 < u4 < ux or u3 > u4 > u2 > ux
in cases (a) and (b) respectively. The interior shocks in case (b) satisfy the R-H
relation for u~ = u,'i ' u+ = u-,

dA
dH

#3.1 n
f.3,1

where f,, = /(«,-)-/(«,-)

The solutions to this equation are half rays starting at the point (f'3 x ,g'3 , ).
The entropy condition is obviously satisfied because the normals to the two
straight segments in the middle of Figure 3.1, case (b) make F concave. We
shall consider the remaining cases in the following sections.

4. Case (c): exactly one shock

ux >
In this case there are only two possible orderings of initial data: (c,) :  u4>

> u3 or (c2) :  u2< u3< u4< ux. We can construct the solutions as
in Figure 4.1.
Case (c,). It is sufficient to consider the case u4> w, = u2 = u3. In Figure 4.2,
the wave parallel to the r/-axis is a rarefaction wave ¡7, = f'(u), «, < u < u4,
and the wave parallel to the ¿;-axis is a shock n = g'x 4. We need to construct
the solution in the rectangle (Figure 4.2).

We solve the R-H relation first from the point A(f'(u4), g'x 4) :

dn = /g(ux) - g(u)       \  I (f(ux)-f(u)
dt,     y     u. - u m u. — u

-«) {= /(«).

9l<-í=/'(«4) g I ,4

case (c,) : «4 > «| > «2 > "3 case (c2) : i*2 < U) < U4 < Ui

Figure 4.1
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t=f\u

Figure 4.2

with u+ = u, u   = ux as values of u on both sides of the discontinuity. The
solution can easily be found. Let

^,«,)=/'(w(i!^M-/w);
then the solution takes the form

K = /'(«).

Ín = ns(u)= Í"a(s, ux)8^' _ g("') exp ( Í'a(X, ux)dx\ ds

f g\ 4exp (- /   a(X,ux)dXj , ux < u < u4.

It is easy to prove that this integral curve is monotonically increasing in (w, ,u4)
In fact, we have

u — u,
g(u)-g(ux) {     f   n       w^— 1s(u) = exp I - /   a(X,ux)dX\

\g(u)-g(ux) ( f" \       ,

- Í"a(s,ux)8^ ~ g(M'} exp (jSa(X,ux)dx\ ds

and

f'(u) < 0 («, < W < M4)./(«)-/(",)
u-u

Therefore, we have

d«/dt>0,       Çc(f'(ux),f'(u4)).
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596 TONG ZHANG AND YUXI ZHENG

In order to prove that the integral curve intersects the base curve at (/'(«,),
g'(ux)) tangentially (and also for later use), we prove that

ns(u) = g'(u) + 0((u - ux)2) - - I jjrf- J       • f"(ux)(u - ux)2ln(u - ux),3 l/>) u=u¡

(w-> ux +0).

Here, we assume /" ' and g" " are bounded when u is bounded.
Using a Taylor expansion, we get

f(ux) = f(X) + f'(X)(ux -X) + t-^-(ux -X)2

+ l-^(ux-X)3 + 0((X-ux)4);

therefore

«w..,)-yw/(/"j):{w-/w)
III,

M^ + ^K-a)2 + 0((A-M,)3))^- + ^7777

2f'"(X)
ux-X     3 f"(X)

Then

+ 0((X-ux)),       X>ux.

exp ( /   a(X ,ux)dX\

= expL2lnS-^-hnQ\ + 0((s-ux)2-(u-ux)2)

=   (U~Ul\
\s-uxJ

2   / r»,   A2/3

2

LM\     cxp(0(s-ux)2 + (u-ux)2)

= {s^t)  ((/>,))2/3^(M-M,))

rll I

2   '   ^-(S.ui) + 0((s-ux)2)
V(/>,))2/3   3(/>,))5/3

■(l + 0((u-ux)2))-(l + 0((s-ux)2))

■(l+0(u -«.)).
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Thus,

/   exp ( /   a(X,ux)dX j ds

= (u - ux) (1 +
n< ^ l i"      ds 2f'"(ux)  f"    ds
0(U-U.))[ -7   - ?   rll,     \    \      - A 0(1)

1      \Jut(s-Ux)2       ^f"(ux)Ju^-Ux

J_      2/>,)
^!'\ux-u     3f"(U]

2f'"(ux),      .. x2,.,..    _ . _

= (u-ux)(l + 0(u-ux))^_u     a ln(«-«,) + 0(l)

and

= (M,-M)-^-/ „v" '   (M-M,)   ln(M-M,)-r-0((M-M,)  );

/  (s-w,)exp( /  a(A,m3)itt) ¿s

= (w-",)(! + o(m-"'K£^+H
= («-«,) ln(w - ux) + 0((u - ux) ).

Therefore,

¿H^-fêi^M*
=/>(/>«.>-); W**^ (j-W,) + 0((s "i)')) úfí

c?     (",)
(«,-«) +

" /      \ rill 1      \ '" /      \ '
g   (Ux)f    (Ux)   ,   ¿?    (M.)

3/"(«,)
+

2 1
x (u - ux)  ln(u - ux) + 0((u — ux) )

I   11 I I g"\   « 2 2
= -2^"("1)(w-M1)+ 3  Í "w? )   /"lu,(M-"l)   ln(M-M,) + 0((M-M,)  ).

Finally we get

^g(u,) + ^T1-(u-Ux) +

I    g"(u)\
~ 3 U»,/ ■ f"(ux)(u - ux)2ln(u -ux) + 0((u - ux)2)

"1

f"(ux)(u-ux)2ln(u-ux) + 0((u-ux)2).
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This results in

lim t]s(u) = g'(ux),
U-*Ui     '

1 " I     \
lim —r¿- = —77—— = the slope of the base curve at u,.«-«, dt\      />,) v '

To prove n = ns(u) < g'(u) in the interval (ux ,u4], i.e., that the integral
curve is always under the base curve, we prove first the following inequality:
(A)

'g(u)-g(ux)
u - ux

-,M)/(/a=aü_/w)vi^  «„>„,
In fact, if we define

F(u,ux) = (g(u)-g(ux)-g'(u)(u-ux))-(f(u)-f(ux)-f'(u)(u-ux))jJ^,

then

F(ux,ux) = 0,       ÔF/du = -(f(u)-f(ux)-f'(u)(u-ux))(g"(u)lf"(u))' <0,
so inequality (A) holds.

We want to show that the integral curve is always under the base curve. In
fact, we first have tj = g'x 4 < g'(u4). We then suppose there is a u G (ux , u4)
such that n = ns(u) < g'(u) holds in the interval (u, u4], and that n = ns(ü) =
g'(u) ; then

dZ « - f"(u) ■
because dnjdi, ^ oo in the interval (m, , u4) ; namely,

{^^.,w)/{m^A^w)<_p&. . x<u<u4

d%\ ! l/("-".) ,     ,   , I,   n       c
^F   = 7777-T777-—-T7T\—„    ,w,-Mu)-g(u))<0,«{/     f (u)f (u)-(f(u)-f(ux))(u-ux)

11 /   /        \ ** —      1

which is impossible according to inequality (A). Therefore the integral curve is
always under the base curve.

Thus,
d_

so n = ns(Ç) is a concave curve.
There exists a neighbourhood of the point (f'(u4), g'x 4) in which n = ns(Ç)

satisfies the entropy condition (10). In fact, the normal to n = ns(Ç) may
be taken as (1, - dÇ/dns) pointing from ux to u, and E(v) = f(v) -
(dÇ/dn )g(v). Noting that FJv) = f(v) + ag(v) has at most one inflection

O
point for any a, -00 < a < +00, we may denote this inflection point by u(a).
Then u(a) is a monotonically decreasing function in an interval c (-00,0)
and unbounded from both sides (Figure 4.3). Therefore there exists an M > 0
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such that when a < -M, u(a) > u4 holds. As dnjdl7\i=fl.^ = 0, we can
choose an e > 0 such that

0< dris 1
dÇ      M' ZG(f'(u4)-e,f'(u4)].

Thus, in this neighbourhood, the discontinuity line n = ns(Ç) with u   = ux,
u+ = u < u4, satisfies the entropy condition (10).

Figure 4.3 Figure 4.4

We next prove n = ns(£) satisfies (10) until u = w, . Otherwise there exists
a ü > ux, where

ü = inf{u\ris(C) satisfies (10) in [it, u4]}.

Then, at u = ü,  ns(Ç)  satisfies (10), too.   Noting that d2nsld^2 < 0 and
u(-d£/dn) decreases from +00 with ¡7, decreasing from f'(u4), we know that
the entropy condition satisfied by n = ns(^) at u = ü must be of the form
(Figure 4.4)

dFü(v)
dv

_ Fü(ü) - Fu(ux)
u — u

F.C)-/(.)-# g(v);

i.e.,

(11)
d%
dt {¿n-e^ftn-uscm).

This and the R-H relation result in ^(û) = g'(u) ; i.e., ü = ux. This contradicts
ü > ux. Thus the entire curve satisfies the entropy condition (10).

We may now obtain Figure 4.1, case (c,) in which the shock is a concave
curve ending tangentially with the base curve at the point (f'(ux) ,g'(ux)).
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Case (c2). As before, we solve first the R-H relation

dns     fg(u)-g(Uj)_r d\ _ (g(u)-g(
)  d£, '   \     u-u3
y l\(=f'{u2) = #2,3

•VFNt*-«)-   "'»■
to get

»1 = ?,(") = #2.3 eXP(~/    «(¿."3)^)

+ r exp C r a(A, u3) «ft) g^~g^g(j, w3) ds,

and

£ = /'(") -    u2<u<u3,

i dn
Jim »/,(«) = £ (m3) ,        -df>0   (u2<u<u3),

lim *fe = LM
«-3 ¿ç       />3) '

d\
di2      f"(u)   u3-u   (f(U3)-f(u))/(u3-u)-f'(u)

2 'g"{u) '

77-T * (?,(") - * ("))

3/"(«3) V/"(")

thus

U=U)

d\lim — 00.

It is easy to conclude from this that the integral curve must intersect the base
curve at a point ü G (u2 , u3) (Figure 4.5).

Figure 4.5
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At this stage, we first prove another inequality; namely,

(B)    g(u)-(g(u)-g(ux))l(u-ux)      g'(ux) - (g(u) - g(ux))l(u - ux)
f'(u)-(f(u)-f(ux))/(u-ux)     f'(ux)-(f(u)-f(ux))/(u-ux)

(u > ux).
Proof. Let

Fx(u) = (g'(u) - 8{U)u~_8u{Ul)) (/(",)(" - «,) - (/(«) - /(",)))

- (*'(«,)- g{u)uZsu{Ux)) (/'(")("-«,)-(/(")-/(«,)));

then F,(h,) = 0, and

^T = f"{u) \tÛ(/'("l)(M " Ml) "(/(M) "/(M,)))

+ g(u)-g(ux)-g'(ux)(u-ux)

Let

F2(") = j^(/'("i)("-"i)-(/(")-/("i)))+^")-^("i)-^'("i)("-"i);

then F2(ux) = 0, and
/

^-(^J<*».x»--.>-</m-.«»,>>>
+ 7¡rr,(/'(«,) - /'(«)) + «'(«) - «'(«,)•

There exists a 8 g(ux ,u) such that

g'(«,)-g'(») = g"(g)    g"(u)
f'(ux)-f'(u)      f"(d)      /"(M)'

Therefore

jj^(f'(ux)-f'(u)) + g'(u)-g'(ux)>0.

This completes the proof of inequality (B).

Suppose ü = sup{w|M2 < u <u3 and ns(v) > g'(v) for v g (u2 , «)} ; then
ß < u3. We consider the point u = suo{u*\ns(u) satisfies (10) in (u2 ,u**),
u** < u) . There are only two possibilities; i.e.,

or

F'a(u3) = F^l~F^\a   s u -u3
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The former is equivalent to n (u*) = g'(u*), i.e., u  = u. The latter means

, -,     g(u)-g(u3)     f'(u)-(f(u)-f(u3))l(u  -u3)n.(u ) =-—

(12)
u - u

X      g («i)

f>(u3)-(f(u*)-f(u3))l(u*-u3)
g(u*)-g(u3)\

u  - u.

According to inequality (B), we have

,_,       >,-.     g(a)-g(u})  ,   f'(ü)-(f(ü)-f(u3))l(U-u3)n.(u) = g (u)< —-——^- + -u - u,

x (g'(u3

f'(u3)-(f(ü)-f(u3))l(ü-u3)
g(u)-g(u3)

u-u.

and when u = u7,

ns(u2) = g'2,3 > g'2.3 + -FTrh—^(s'("3) - S2.3)
/'(«,) - /:2.3

holds. Thus there exists a u* G (u2, ü) satisfying (12). So we need only consider
the latter possibility of u G («2, u) such that ns(u) > g'(u) for u G [u2, u*],
and therefore

d ns/dÇ  > 0   for u G (u2, u\

For u > u* the shock continues as a half contact discontinuity which sepa-
rates the original rarefaction wave from a new, compactly supported rarefaction
wave which lies on the u3 side of the discontinuity (see Figure 4.1). The dis-
continuity is a half contact discontinuity on the w3 side because the tangency
condition (12) is satisfied at every point (£, n) on the discontinuity, with u3 re-
placed by u~ and u replaced by u+(Ç) = (f')~ (<7\). Consequently n = nc(Ç)
and u~ must satisfy (note that u~(Ç) is not required to be less than u+ )

' d% (iwrj (g(u+)-g(u~))l(u+ -u~)-nc
dt (f(u+)-f(u-))l(u+-u-)-t

(E)  g'(u   )~(g(U+)-g(U   ))/(u+-U   )

' f'(u-)-(f(u+)-f(u-))/(u+-u-)'
i = /V).

We shall change the form of ( 13) and then prove the existence of n and u
until the shock hits a point on the base curve.
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Differentiating (E) in (13), we get

'',-sdu-     (g'("+)^-g'("-)^)("+-"-)-M"+)-g("-))(^-^7)
g   I"   )~3T_(U+-U-)2_

f(u-)-m=m
\2

.u. -.duf (w  )-*~
(f(u-)-^^7iyi      #

(f'(u+)% - f'(u-)d-%r) (U+ -U')- (f(U+) - /(«-)) {%■-%)'

(u+ -u~)2

(g'(u+)<$--g'(u-)<tfc)(u+-u-)-(g(u+)-g(u-))(<£-*fc.)       d   {()
_ {U+-U-)2 ~ dj

g(U+)-g(U-)   _ /B\
,_U+-U- "c^> J _

(*Sfe^-A«+->)2L
(/Vffi - f'(u~)djk) (U+ - U~) - (f(U+) - f(u~)) (%■ - ¿fr)'

(u+-u~)2

After some calculations, we have

du~ 1 f'(u-)-f'(u+)   f'(u-)-f'+_
dt      f"(u+)g"(u-) '

(g'(u-)-g^

g'(u-)-g'+,_u   - u
-Il -.+

VA«-)-/;.- /V)-/;,_;/ u'c«-)-*;,-  *>~).
This equation combined with the first equation in (13) gives the existence of
f = '/c^) an<l M_ = M~(£) witn initial data (u+ ,u~) = (u* ,u3) (u < u3)
until a point u+ = w~ (denoted by it) or u+ = u3. When u~ > u+, i.e.,
u+ < ü, we know that dnc/d£, > 0 from (E) in (13), and from inequalities (A)
and (B), we know that du~ /d£, < 0. Moreover,

dt =    lim    —¡S- =    lim
g'(u~) i

g"(ü)
/"(")"u-,u+-~ü d£      u+,u-->üf'(u )-f'+

Thus, from (E) in (13),

..     g'+,--%      g"(ü)

This gives nc(u~) = g'(u~) ; i.e., the half contact discontinuity line >/ = r/c(^)
ends at a point on the base curve and is tangent to the base curve at this point.
Because u~ decreases from u3 with increasing u+, we know that ü = u+ =
u~ < m, .
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From (13), we have
d% _ g'{u~) - nc
#       />-)-£'

This means that the tangent line of n = nc(u) at u = u+ is just the characteristic
line generating from the point (f'(u~), g'(u~)) on the base curve.

We show that n = nc(£) is convex as follows:

d\ 1      / d   (dr¡\\       d   (dn\du
r"(u+)\du+ \dZ)J + du~ \dZjdi2   " f"(u+) \du+ V di JJ ' du~ V di )  di

/>+)(/'(io-/;j2
(g'(u-)-g'+,_)(^P + ̂ ^P)

f"(u+)(f'(u-)-f'+_)2
riu~   e"(u~) + g'{u~} - y<»+)-g(«pOU        S   V"   ) T U+-U- (U+-U-)1

+ dz       /'(«-)-/;._
du- (¿i*-) - *'+.-) (r («-) - ¿^ - f-m^P-)
# (f'(u-)-f'+_)2

i (g'(u+)-g'+ _ _ g(«-)-g+ _A
(M+-M-)/"(M+) U'(»+)-/;,_ f(u-)-f+j

>0.

We have shown that the solution for this case has the properties depicted in
Figure 4.1, case (c2).

5. Case (d): exactly one rarefaction wave

In this case, there are two possible orderings of initial data: w, < u2 < u3 <
u4 or u2 < ux < u4 < u3. For the former ordering, we construct the solution
as in Figure 5.1. The shock n = g[ 4 penetrates the planar rarefaction wave
i = f'(u), u3<u<u4 similar to case (c,). At the end-point, the slope of the
tangent line is

dn      gi .3 -1
^        /l',3-/'("3)'

(We assume here that ux ¿ u} since we have considered the case ux = u2 =
u3 < u4 in the first part of case (c,).) Therefore, it passes through point
(/,' 3,g'x 3) and satisfies the R-H relation and the entropy condition as well.
The other discontinuity lines are obviously admissible.

There are quite different configurations of solutions to the other ordering of
initial data. The simplest case is (d2): u2 < ux < u(u2, u3) < u4 < u3. The
shock T] = g'2 3 penetrates the rarefaction wave Ç = /'(«), u2 < u < ux and
the solution can be constructed as in case (d2) (Figure 5.2).
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»2

S
«!

S

Afl.i,
#1.3)

<3

1 =S\A
Ui

R
case (d,) : u\ < «2 < «3 < "4

Figure 5.1

case (d2) : «2 < "1 ^ "*("2 . "3) < "4 < «3

Figure 5.2

Figure 5.3
The solutions for the other cases contain envelope rarefaction waves similar

to the one which occurs in case (c2). These waves differ from the previous case
in that the characteristics terminate in discontinuities at both ends. At one end
we have a half contact discontinuity, r\ = nc(Z), as in case (c2). At the other
end we have a shock wave, with u = u~(l7) on one side, and u = ux (or u0 )
on the other. This new shock curve n = n(Ç) (or n = r\d(Z)) satisfies

g(u (Q.ri))- g(un)
w  (Z,ri)-u0

where u~(Ç ,n) = u~ satisfies

g'(u~)

-1 f(u-(C,n))-f(u0)
u-(C,ri)-uQ

-Í

(15.1)

(15.2)

(15.3)

with

n-nM )

n-nc(u~) =

n - g'(u~) =

s+.
/'(«-)-/;,_
g'(u~)-nc(u~)

(C-/V)).

f'(u-)-f'(u+)
11 —\      'g(u )-g+

rK-AO).

f'(u-)-f'+_ « -/("")).

nc(u-) = g+,_ + (f'(u+)-f'+_)(g'(u-)-g'+_)i(f(u-)-f'+_),
u   = u+(u~), and u*(u2, u3) < u0 < u3; u   and ü are both determined by
u2 and u3 (Figure 5.3).
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We start by considering the general properties of integral curves of equation
(14). The singular point of equation (14) can be obtained from (15.3) and

«       /("")-/(«p) = g{U~)-g{U0)

u~ - u0 u~ - u0

This is equivalent to obtaining u~ from

'/ — \      ' i/ -\      ig(u  ) - g+ _ = g(u  )-g_i0

f'(u-)-f'+_~ f'(u-)-f'_0

We prove an inequality:

'/ -\       ' 11 —\      ig(u )-g+_     g(u )-g_0
—.-^r— > —.-t^ ,    for u
f'(u-)-f'+_     f'(u-)-f'_(C) T77-        -TT^>^n-        -TT1-     for «T < U0 < tT

Let

i7¡ +    -x     8^u )_^+.F(u   -u   ) = T77
/'(«-)-/;,_'

then

9F(M+,M-)_        1 f\u+)-f+¡_
du+ u+-u'' f'(u-)-f'+_

/    11    —\ I I,    + \ /( g(u )-g+ _     g(u )-g+

f(u-)-f'+,_     f'(u+)-f^
< 0,        u   <u

i.e., F(u+ ,u  ) is a monotonically decreasing function of u+ for m+ < u   .
Thus inequality (C) follows. Note that (C) is equivalent to the inequality

no - «eg >  (0 + «V) - 4.- (/en - /(uo) _ /V)\ _
u   - u0 f (u  )-f+_\      u   -UQ J

for any u+ < uQ < u~ < u3. We will use (16) later.
Thus, the singular points of equation (14) are either £ = f'(u0), n = g'(u0),

or

t = f(u0 ) - f(u0) g(u0 ) - g(u0)
uo ~ uo uo ~~ uo

where u7 denotes the corresponding point of u+ = u0 < ü.
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Assume n = nd(Z) is a solution to equation (14), with u    the value of u on
the inner side u~ = u~(Ç) = u~(Ç, nd(Z)) ■ Then, we differentiate (15.2) to get

dr\d     dr\c(u~)   du~
dZ '     dvT    '  dc¡

Z-f'(u+)      (r"h.-.du-     dnc(u-)du~
' />-)-/V)V        *      rf«_   *
+ gV)-^M")/r1_/V)fr+^^

/'(«") -/'(w+) V ¿""   * )
g'(u-)-nc(u-) r(i_/(M+)) (/V)_/V)^ ¿u"

(/'(«-) -/V))2 V ¿M~/ *"
Making use of

dnc(u~) _ dnc    a%    du+ _ g'(u~)-nc(u~) _   „   + _ dtt_
du~ dZ    du+   du~     f'(u~) - f'(u+) du~

we have
j   - dry       g'(u   )-ric(u   )
du    __~3t - f'\u-)-f'(u+)_

(r¡-ric(u ;; V*'(u-)-i,/(u-)     P(u-)-p(u+))

and

*2"«"-«o   /(";-):¿("o)-^   V/'("")-/-.o   <#/#"

By contrast, if we assume ¡t, = Zd(n) is a solution, u~ = u~(Zd(r¡), n), we have
analogously

,  - i _ d$¿ . g'(»~)->?,(»")
«W *        ¿«      f'(u-)-f'(u+)

dr> " o? - *¿u-)) (g,/-;U-) - f'J-TA^)
,2d% 1        g(u~)-g-,o    f(»~)-fL,o     dZAdu
dr\2 '   u   - u0       gifí-n     \g'(u ) - g'_ 0     dn J  dn '

Suppose, on the integral curve n = nd(Z), there is a point w~ at which the
discontinuity in « is a half contact discontinuity on the u~ side. Then, as in
(11), we must have

dnd = g'_ Q - nd _ g'(u~) - g'_ 0 = g'(u~) - nd
dZ     f'_,-Z     f'(u-)-f'_ß     /V) -£'

Making use of (15.3), we have
'/• -\       ' 11 -\      ig(u ) - g_ 0 ^ g(« )-g+i_
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[   »    o.

^_ f(u )-/(«p)
u~—u0

Uo>u

Figure 5.4

Consequently u+ = u0 or u   = uQ due to inequality (C)
We rema

assumption
We remark that it is obvious to deduce u+ = u0 or u    = uQ under the

dvd     g'(u  )-g-
dZ      f'(u-)-f'_0-

We shall consider equation ( 14) with different initial data in order to get solu-
tions we need later.

1°.   Let (£a, t]a) be a point on the characteristic u~ = u3 connecting
(/'("*). ?,("*)) and (f'(u3), g'(u3)) such that f'(u3) >Z°a> /3i0. and let

a
i    _   o

gj ,0       na

^3,0      "»a

Let na(Z) be the integral curve of (14) through (<J;  , n ). Then

dZ = a < g'(U-j) - ns(U*)

i«5.ti) f'(u3)-f'(u)'
Since the right-hand side of this inequality is the slope of the characteristic
u~ = u3, one branch of the integral curve must enter the region of the envelope
rarefaction wave (see Figure 5.4). We shall prove that the integral curves will
not leave the region R (cf. Figure 5.4):

-={R = \ (<J, y\)\(7,, n) exists between the four curves

x   f>, ï        ', \     a*   f(u~(Z',n))-f(u0)      .Z = f(u),n = g(u), and £ =-—-—-«- , and
u  (t,ti)-u0

u~ (Z , n) = u3, and u~(Ç, r¡) = uT, , u0(uq) < u~ <u}>

except at the singular points

(/(«o) •*'("<>))   or
'f(u0)-f(u0) g(u0)-g(u0y

uo -"o "o -"o
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dn       =a<g'(u3)-g'    and  f(u3)-f(uo)<0
*«S3È) /("3)-/3,o M3-"o

before the integral curves leave R , there must hold

f(U-(Z,T1a))-f(u0)   <it
u (Z."a)-uo

and
dna     g'(u-(Zlna(Ç)))-g-.o - _   -
~dZ<fl(u-(ç,na(m-f7/       U   -U  (í''-(í))

in view of the previous remark. Therefore,

d(2 - di     f'(u-({, n,«))) - f_ „
Hence, when the integral curves intersect the curve

z =f(u~(Z,y))-f(uQ)
u  (Ç,n)-u0

it must be that
g(u~(Z,tp)-g(u0)

u'(Z,n)-u0

simultaneously. Thus from (C) and (13), we have t, = f'(uQ), n = g'(u0) or

x= f(uo~)-f(uo) g(u7)-g(u0)
u~ -u0 u~-u0     '

Similarly as in case (c,), we can prove that the integral curves cannot intersect
the base curve (using (A)). It is easy to show that the integral curves will not go
out through the line u~ = u3 using the geometric theory of ordinary differential
equations. Also when u0 < ü, u~(¡7\,n) = Ú7 is an integral curve; thus, the
integral curves must end at the singular point. Thus we have proved what we
claimed and

dn d2n      „ ,    du~(^,n (£))     „-4§->a,    —'? < 0,    and    -vs' 'a^" > 0.
dZ  ~ dIT2 d£,

We next prove that this solution satisfies the entropy condition (10). Suppose
the normal to the discontinuity is n = (a, ß) pointing from u0 to u~ . If a < 0
and ß < 0, then F = af + ßg is concave and thus the entropy condition is
satisfied. For the other cases, we need only prove that the entropy condition
(10) is not violated because of a half contact discontinuity on the side of the
integral curve which faces the region of constant state u0.  In fact, we have
a > 0, ß < 0,  (g"/f")(u) = a/(-ß), and u(a/ - ß) decreases from +00
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with Ç decreasing from £° or some value less than £°.   This is enough to
ensure what we want to prove.

2°.   Suppose  n = %(Z)  is an integral curve through the point  (£°, rfa)
satisfying

f(u0)<£ = f(u) + J-f'(u3)-f'(u*)r o
g (k3) - nM (la - %(U3))

f(u3)-f(u0)
u3-u0

Then,

Therefore,

dJk
dZ

= a> s'(u3) - ns(u3) (C) g'(u3)-g'30

an .i?, f'(u3)-f'(u) '   f'(u3)-f3ß

du
dZ <0, d2n

if! dZ¿ >0.
if!

We know that if

dg       g'(u-(Z,ria(t)))-ric{u~)
dZ f'(u-)-f'(u+)        '

then from (15.2), (15.3) and (14)

dt]a = g'(u~)-g'_0

dZ      f'(u-)-f'_0

holds. This will imply u~ = uQ or u+ = u0. Therefore if only n = na(Z) is in
the region of envelope rarefaction wave, we have

dna        g'(u')-nc(u~)
dZ      f'(u-)-f'(u+(u-)Y

We have d2na/d£2 > 0 when

f(u-((,n))-f(u0)
u~(Z,n)-u0

and na will not meet the line u~(£, ,n) = u3 again. If the curve

t_f(u-(Z,y))-f(u0)
u'(Z,n)-u0

intersects the integral curve na at a point A(ZA yi]a(ZA)), we let the correspond-
ing u~ be denoted by uA . We then change na(Z) to <* = Ça(n) to consider

dr,
'f(u~)-f(u0) g(u  )-g(uA

«      -Mr, U     - Un
â I        = £
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At a neighbourhood of point A , we have

g(uA)-g(u0)

UA~U0

dr\
= 0,

>nA,

du

f(u-)-f(uQ)

dn <0, d2Z
dyf <0.

Therefore, the integral curve n = na(Z) can be extended further along n-axis.
After passing through A , dna(¿,)/d¿, < 0. Similarly as in case 1° , we can prove

2 2 _that for the integral curves, d na/d£, < 0 and du /dÇ > 0, and the integral
curves are bounded by the base curve from above. It is obvious that the integral
curves cannot enter into the region Ç < f'(u0). Thus the solutions must end
at the line u~ = u0 or u~ = u7 according to uQ > ü or u0 < ü. The line
u~ = u0 or u~ = u7 , however, is also an integral curve of equation (14). That
is, the integral curves must end at the singular points.

Similarly, we can prove the entropy condition is satisfied if at point (Ça , na),
the inflection point « of F is less than u0 .

We can picture all the integral curves in Figure 5.5.
3°. Take w+ = u** such that u  < u** < u0 and let the corresponding point

be denoted by u . Given a point (i ,i/) on a" u       such that

dA
dZ

g(u"  )

(i° .n°)

- g(uo)     ^o
-u0

f(u

f(u*  ) ■/(Mp)       ^0 <o,

)-/K) C(e0

"0

-un

c0       0Nthen we can solve equation ( 14) through the point (£  , n ) to get an integral
curve satisfying the entropy condition ( 10) which will exist until u+ = u0 or
u~ = un

«0 <u

Figure 5.5. The integral curves to equation (14)
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(A.t'g^.t) S

U2<U'   <«l<« áK4    ^u3

case (d3)
u2<u S«! Sm4 g«3

case (d4)

(/3.4<£Í.4>

Figure 5.6

Now we can solve the remaining subcases of case (d).
(d3) : u2 < u < ux < ü < u4 < u3 and the point (f3 4,g'x 4) is below the

line u~ = u3. In this case, the shock connecting (/,' 3,g[ 3) and (f3 4,g'x 4)
penetrates the envelope rarefaction wave to arrive at the contact discontinuity
line u~ = u\~ (Figure 5.6, case (d3) ).

(d4) : u2 < it < ux < u4 < u3 and the point (f4 3,g[ 4) is below the line
u~ = u3. The shock connecting (f3 4, g'x 4) and (/,' 3,g'x 3) penetrates the
rarefaction wave to arrive at the point (f'(ux), g'(ux)) on the base curve and
thus vanishes (Figure 5.6, case (d4) ).

(d5) : u2 < u* < ux < ü < u4 < u3 and (f34,g[ 4) is above the line
u~ = u3 but below u ux . In this case, the shock £ = /-,' 4 should penetrate
the envelope rarefaction wave to reach the point

'f(u7)-f(u4)   g(u7)-g(u4)
(f'(u4),g(u4))   or

u4 -u4\ "4        "4

However, it intersects n = g'x 4 at a point A which satisfies the requirements
of 3° . In fact,

f(uA)-f(u4)
ZA> >. /(«;)-/(«,)

uA -u,"A       l*4 <A A       •*]

u3>u~ >u4>ux, n = g'x 4<(g(u~)-g(ux ))/(u'A-ux), therefore dn/d£\A <
0. Thus we continue the shock by the integral curve obtained in 3° to arrive
at

(f(ux) -f(u~)   g(ux)-g(u-x)\
\    Mi-"7    '    "i-"7    /

in this case or (f'(ux) ,g'(ux)) incase (d6) :
(d6) :   u2 < ü < ux < u4 < u3 and (f3 4, g\ 4) is above the line u~ = u3

(Figure 5.7).
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Ut<U'<U\<U   ^Ut^U3

case (d5) Uï <U á«l S«4 S«3
case (d6)

Figure 5.7

We next prove that point A cannot be above the line u~ = u7 . In fact, we
may assume w, < it, u4 < u^ , since the other cases are obvious. The shock
£ = f3 4 penetrates upward, and when it arrives at u~ = u\~ , its tangent line
must pass through the point

f(u7)-f(u4)   g(
"l   -M4

"l )~g(«4A
U~ - M4        )

which is above the line u~ = u\~ in view of inequality (16). But the penetrating
line from u~ = u3 to u~ = u\~ is on the right of the straight segment connecting
(f'n i - . g'n i - ) and the intersection point of Ç = f3 4 with u~ = u3. Noting
that f4 ,_>/,',_ , and g'x 4 < g'x , _ , we conclude that point A is in the region

{(í,r¡)\í>f'xx_, n<g[,i-}-

We denote (/(wj~) - f(ux))/(u\~ -ux) by /,' ,_ , and the result follows (Figure
5.8).

(f\-.*,g[-,tY

\(f3.i<gi.A
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We have constructed completely all solutions to case (d), each of which sat-
isfies the entropy condition.

6. Case (e): exactly two rarefaction waves and two shocks

We divide case (e) into two subcases, case (e,) and case (e2). Shocks in
case (e,) are not neighbours to each other. There are also two possible cases in
this subcase:

Case (e,), : u4> ux >u3> u2. This case is simple. We picture it as in Figure
6.1.
Case (e,)2 : u4> u3> ux> u2. We can picture the solutions in this case as in
Figure 6.2 from the proof of case (d), 1°.

Shocks in case (e2) are neighbours to each other. There are four possible
orderings of initial data in this case.

\Ut >«i a«3 >U2
case (e,;,

Figure 6.1

Case (e2), :  u4 > u2 > w, > «3. We picture the solution as in Figure 6.3.
We know from case (c) that there exists a region in which the solution pieced

together is over-determined. Thus from the intersection point A , we solve the
following equation:

dn _fg(u')-g(u+)      \   I (f(u~)-f(u+)      \
dZ~\      u--u+ n)l \      u~-u+ Ç    ' Z = f'(u),

where u   =u  (Z ,n) satisfies
dZr

and

dn

Z-Zc(u-) = -^(n-g'(u++)),

g'++--g'(u++)     g'(u-)-g'++_'
n = g'(u++).

A smooth solution exists in a neighbourhood of point A having one branch
entering the region of the envelope rarefaction wave. dn/dÇ remains finite until
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Ut>U3>U  >«1>«*>K2

case (e,)2

Figure 6.2

u+ = u~ on the base curve, and the inflection point of F(v) = (dn/d£)f(v) -
g(v) at point A is larger than u+ at A. Thus the entropy condition (10)
begins to be violated only when

dn K--1 i ¡i +\g+,--g(u )
dz   /;,_-/V)   fi,_-f(u+)'

i.e., n = g'(u+). Therefore, the solution will satisfy the entropy condition if
it remains in the region of the envelope rarefaction wave. We claim that the
solution does not intersect the base curve at a point u+ / u~ . Otherwise, there
exists a u+ > u~ such that

dn     g'+,_-g'(u+)     g"(u+)
dZ     fi_-f'(u+)~ f"(u+)'

and this is impossible. In order to prove that the solution does not intersect the
line u~ = ux anymore, we suppose that at a point, it is tangent to a line u" =
constant, then at the tangent point we have

g+.-~1 g'(u )-n g'(u )-g'+i_dn _ dn
dZ~dZ~c~- f'+_ -f'(u+) - f'(u-)-f'(u+) - f'(u-)-f'+_

This means that the solution is a half contact discontinuity at this point, and
this is impossible except if u~ = u+, due to (B). Thus the solution remains
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Figure 6.3

in the region of the envelope rarefaction wave until u+ = u~ < ü on the base
curve. Now we can give Figure 6.3
Case (e2)2 : ux > u3 > u4 > u2. There are two possible cases in this case.
The first case occurs when the shock £ = f3 4 meets n = g'(u4) earlier than it
meets the envelope rarefaction wave. The solution is similar to that in case (e2),
(Figure 6.4). The second case occurs when the shock Ç = f3 4 meets the lower
boundary of the envelope rarefaction wave earlier than it meets n = g'(u4).
In this case, the shock £ = f3 4 first penetrates the envelope rarefaction wave.
After intersecting n = g'(u4), the shock continues in a way similar to that in
case (e2), . Noting that dn/dÇ < 0 before the solution intersects rj = g (u4),
we can prove analogously to case (e2), that the solution satisfies the entropy
condition. We also note that the intersection point A is always under the base
curve. We can give the solution as in Figure 6.4, case (e2)2 .

(e2)|: A1 higher than A (e2)2: A' lower than A

case (e2).

Figure 6.4
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(fi.i.gi.i)

ui^u2>u3^u'{ul,u2)>u1
Ui^U2>U'>U3>U  >«!

with A higher that A'

UA^,U2 >U  â«3>2<1

with A higher than A'

u  >u3>u
with A lower than A'

«i Ê»2 >U   S«3 >«!
with A lower than A'

«3 close to «i

case (e2)3

Figure 6.5

Case (e2)3 :   u4 > u2 > u3 > ux. There are many subcases in this case. We
picture them all in Figure 6.5. The proofs are easy, so we omit them.

Case (e2)4 :  u3 > w, > u4 > u2. We only depict all cases (cf. Figure 6.6).
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case (e2)4

Figure 6.6
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