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Two-Dimensional Round-Robin Schedulers for

Packet Switches with Multiple Input Queues

Richard O. LaMaire, Member, IEEE, and Dimitrios N. Serpanos, Member, lEEE

Abstmct— We present a new scheduler, the two-dimenswnal

round-robin (2DRR) scheduler, that provides high throughput and

fair access in a packet switch that uses multiple input queues. We

consider an architecture in which each input port maintains a

separate queue for each output. In an .V x .V switch, our scheduler

determines which of the queues in the total of .Y2 input queues

are served during each time slot. We demonstrate the fairness

properties of the 2DRR scheduler and compare its performance

with that of the input and output queueing configurations showing

that our scheme achieves the same saturation throughput as

output queueing. The 2DRR scheduler can be implemented using

simple logic components thereby allowing a very high-speed

implementation.

I. INTRODucTlON

T

HERE are many applications in the computer and com-

munications tields that require the scheduling of a system

(usually a switch) that has N input resources and iv output

resources. This gives rise to a scheduling problem in which

the resource requests can be represented by an N x N matrix

RM, where RAf[R. (‘] = 1 indicates that there is at least one

request for the Rth input and Cth output resource pair where R

and C denote row and column indexes, respectively. During a

time slot, only one request can be granted in any row or column

of this request matrix since a given input or output resource can

only serve one request per time slot. The scheduler determines

which requests are satisfied during successive time slots. The

objective of the scheduler is to provide high throughput, that

is, to serve as many requests as possible, while also providing

fair service to the different requests. The two-dimensional

round-robin (2DRR) scheduler that is described in this paper

satisfies these goals. The 2DRR algorithm can be efficiently

used for any such scheduling problem with AT input and N

output resources. Since we developed the algorithm for use

in a high-speed switch, we focus on a switch application

in the paper. One of the key characteristics of the 2DRR

scheduling algorithm is that it allows an efficient hardware

implementation so that it can be used in high-speed switches.

A related scheduling problem has been discussed in the

literature. In this related problem formulation, a o-aflc matri.r

represents the aggregate demand for input/output pairs over a

period of time slots. In a situation where the individual input

queues to a switch have more than one request in them, the

traffic matrix could be viewed as a tabulation of the queue
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contents for each inputioutput pair. This type of problem

formulation is common in the area of satellite-switched time-

division-mukiple-access (SS/TDMA) systems [6]. A class of

optimal algorithms (e.g., [6], [ 1I ], and references therein) have

been developed to satisfy a given traffic matrix within X time

slots where .Y is the maximum aggregate demand, from [he

traffic matrix, on any input or output.

Since the optimal scheduling algorithms are computationally

expensive they do not lend themselves to high-speed switch

applications, particularly for large AT. Since the centralized

optimal scheduler of [6] has a computation time that varies as

()(NZ), it is difficult to apply this scheduler to large switch

sizes. To apply optimal scheduling to situations in which A’ is

large, Rose has proposed an approach that uses .V2 processors

that run algorithms whose computation times vary as ()(N)

[ I I]. Thus, in high-speed packet switches with a large number

of ports, the computation of the optimal schedule can require a

prohibitive amount of hardware. While our approach is rather

different than [ 1I], our implementation is similar to [11 ] in that

we use N* cells (i. e., a few logic gates) each of which has a run

time that varies as ()(N). In contrast to [ 1I 1,our cells are very

simple and thus allow a simple high-speed implementation that

scales well to large values of iV.

II. ADVANCEDINPUT QUEUEING ARCHITECIWRE

The switch studied in this paper uses a type of advanced

input queueing in which a separate queue is maintained at

each input port for each output as is shown in Fig. 1. These

multiple input queues can be implemented in a shared memory

for efficiency. This architecture was chosen to prevent head-

of-line blocking. which occurs when a single queue is used at

each input port (see [7]). Tbus, in this switch, the utilization

can approach unity whereas in a simple input queueing switch

(i.e., one queue per input) the utilization cannot exceed 0.586

for a uniformly distributed traffic pattern and Bernoulli arrivals

of unit length [7].

Alternative approaches have been taken to avoid head-

of-line blocking. These approaches include window-based

scheduling algorithms [5] as well as reservation schemes [ 10].

An approach using the framework of the SS~DMA systems

[6], [1 1], [4] is also provided by Chen, Liu, and Tsay [3],

where an optimal time-slot assignment is calculated in an on-

line fashion. In addition, Bonuccelli, Gopal and Wong [21 have

considered the incremental time-slot assignment problem in

which newly arrived traffic requests are scheduled optimally

in a S! NTDMA satellite system. They proved that the optimal

scheduling algorithm for this problem is NP-complete and

10634692/94$04.00 @ 1994 IEEE
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developed several suboptimal heuristic algorithms. Karol, Eng,

and Obara [8] have also developed a suboptimal algorithm for

scheduling in a switch that has the advanced input queueing

structure that we have described. For a uniform traffic pattern,

their method of scheduling can provide an aggregate through-

put of 92% without speed-up and can yield up to 95% with

input grouping of size four.

The advanced input queueing switch considered in this

paper operates in a slotted time-frame. That is, packets arrive

at the input queues at the time slot boundaries and then,

after scheduling to avoid switch contention, complete their

transmissions at succeeding time slot boundaries. We assume

throughout this paper that all packets require one time slot to

complete their transmission.

Contention in an advanced input queueing switch is resolved

through the use of a scheduling algorithm. This algorithm uses

a request matrix, an example of which is shown in Fig. 2. In

this request matrix, RM[R, C], a “l” denotes a queue that

has at least one waiting packet whose origin is input R and

whose destination is output C’, while a “O” indicates an empty

queue. At each time slot, the scheduler chooses, at most,

IV nonconflicting requests that will actually be satisfied and

produces an allocation matrix whose entries indicate which

inputioutput queues can transmit in the next time slot. In this

allocation matrix, the set of chosen request pairs do not use

any input or output more than once.

III. l’WE BASIC 2DRR SCHEDULING ALGORITHM

We introduce a new type of scheduler that is a two-

dimensional generalization of the one-dimensional round-robin

scheme that is used in allocation problems with a single

shared resource [9]. In this section, we describe the Basic

2DRR scheduling algorithm, while in a later section, we will

describe a second version of the 2DRR scheduler that we

call the Enhanced 2DRR scheduling algorithm. The Enhanced

2DRR algorithm provides improved fairness for certain traffic

patterns at the cost of some additional complexity.

In an IV x N switch, up to N different requests can be

simultaneously served by the switch in one time slot such

that no two requests are in the same row or column in the

request matrix. In order to select such N elements of the

request matrix, RM, we follow a method in which we examine

elements of RM that belong to generalized diagonals.

Definition 1: A generalized diagonal is a set of N ele-

ments in an N x N matrix, such that no two elements are in

the same row or column.

Note that there are N! different generalized diagonals in an

N x N matrix. In the Basic 2DRR algorithm we use only N

of these diagonals by selecting one basic diagonal and then

generating the remaining N -1 ones by shifting the basic

diagonal across the matrix (so that each matrix element is

covered by one of the N diagonals). That is, by sweeping a

generalized diagonal pattern of length N through the request

matrix, all N2 inputioutput pairs in the request matrix can be

satisfied in N time slots. We use this property to guarantee a

minimum amount of service to each input/output queue.

The Basic 2DRR scheduling algorithm operates in repeating

cycles of N time slots in which the time slots of each cycle

are indexed by the variable L, which takes on values from O

through N – 1,We assume that we are given the following

N x N matrices:

●

●

●

Request Matrix: Each entry RM[R, C] is binary with

the semantics:

f 1, if there is at least one request for

RM[R, C] =
{

a connection from input R to

output c;

(O, otherwise.

We use zero-based indexes for the inputs and outputs as

is shown in Figs. 1 and 2.

Diagonal Pattern Matrix: Each entry DM[R, C] con-

tains an integer between O and N – 1 inclusive where

DM[R, C] = (C – R) mod N. (1)

If DM[R, C] = K, then RM[R, C] is covered by

diagonal pattern K.

Pattern Sequence Matrix: Each entry PMII, J1 is an. .
integer between O and N – 1 inclusive with the semantics:

PMII, J] = K implies that when the time slot index L of

a cycle is equal to J, then the l-th diagonal pattern in the

sequence applied by the algorithm is the one numbered

K in the diagonal pattern matrix. The ordering index 1

varies from O to N – 1.

Using these matrices, the Basic 2DRR algorithm produces

the Allocation Matrix, AM, with binary entries and the

semantics:

{

1, if a connection is allocated

AM[R, C] = from input R to outputC;

O, otherwise.
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At the beginning of time slot L in a cycle, all entries of

the allocation matrix are set to zero. Then a sequence of N

diagonal patterns is applied to the request matrix in the order

specified by the pattern sequence matrix PM. That is, the

diagonal pattern with index Pll [0, L] is applied first followed

by diagonal pattern Pilf[l. L] . . . PAf[i\’ – 1.L]. As these

diagonal patterns are overlaid on the request matrix, the entry

.4 A4[R. C] is set to I at the l-th point (() ~ I < .’V– 1) in the

sequence if the following conditions are true.

1) Z?l’l[li’.c] = 1,

2) Input R and output (’ are still available for allocation

(i.e., they have not been allocated to a different connec-

tion by a previously applied diagonal in the current time

slot).

3) DLf[R. C) = K, where PM[l. L] = h’.

The above scheduling procedure is repeated for each cycle

of IV successive time slots. That is. after a cycle has been

completed with the use of column N – 1 of the pattern

sequence matrix. we begin the scheduling procedure over with

column O of the pattern sequence matrix.

As was discussed above, the Basic 2DRR algorithm pro-

vides a fairness guarantee that each of the JV2 input/output

queues will receive at least one opportunity for service during

every cycle of N time slots. After providing this basic fairness

guarantee, there is a second problem of how to fairly serve

those requests that are not in the current diagonal, but for

which resources (i.e., input or output ports) are still available

after the basic fairness guarantee has been provided. In the

Basic 2DRR algorithm, if the diagonal patterns of Fig. 3

were used in numerically increasing order in the scheduling

sequence at every time slot, then the resulting algorithm would

yield significant unfairness by always favoring the elements of

a traffic pattern that were encountered first by the sweeping

diagonal, In our studies of this problem. we have found this

situation to be particularly apparent when the traffic pattern

in the request matrix is line-shaped. To solve this problem,

we seek a pattern sequence in which no pattern index is

consistently Favored over the other indexes. With this goal in

mind, we consider the pattern sequence matrix that is shown at

the top of Fig. 3. As is shown in the figure, a different ordering

of all diagonals is applied at different time slots. Note that a

different one of the N patterns is applied jirst during each time

slot to provide the aforementioned basic fairness guarantee.

Further, note that if the diagonal patterns are applied according

to the pattern sequence matrix of Fig. 3, then over a period of

IV = -1time slots, no pattern receives sequencing preference.

To illustrate the operation of the Basic 2DRR algorithm, we

show in the lower part of Fig, 3 an example for the request

matrix of Fig. 2. In time slot O, pattern O of [he diagonal pattern

matrix is applied resulting in the granting of request pairs (0.0)

and (1, I) and hence the allocation of inputs O and 1 and outputs

O and 1. Since some inputs and outputs are still unallocated,

we apply the next diagonal. pattern 1, as indicated by column

O of the pattern sequence matrix O. In this case, the request

pair (2,3) is granted, Note that request pairs ( 1,2) and (3,0)

could not be granted at this step because input I and output O,

respectively had already been allocated. After patterns 2 and

outputs
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slots.

3 have been applied in time slot O, the resulting allocation

of four request pairs for this time slot is shown. A similar

procedure is used for time slot 1, however, in this case the

pattern sequence of column 1 is now used.

The algorithm for generating the pattern sequence matrix of

the Basic 2DRR algorithm is shown in Algorithm I at the top

of the next page. In this algorithm, the modu/u.~ operator can

be implemented in the following simple form since we know

that 1’+OFFSET < 2L- 1 or i.)< 2,’+1 in the following:

{

Q.
7rto(hll /1s( (J. ,s) =

if Q < S

Q – S. otlwrwis[.

We note that the maximum number of times that the body of

the innermost do-loop executes is given by the integer part of

~ plus 1 (i.e., l~j + 1). Thus, when N + 1 is prime,

the do-loop body is only executed once and can be replaced

by a single statement in these cases.

The pattern sequence matrix P.lf that results from Algo-

rithm I can be expressed in the following iterative form for

l< I< A-1:

P.fvf[l. J] =

((PM[l -1, .1] + J + 1) HNN1,1/.

{ I
if F’Af[l- l.. J]< N-(.J+l,

(JW[l -1. .J] + [“’-p;:{-’’”] (.1+ 1)) lllo~l l~f. ‘2)

if~V–(.l +l)<P,\l[l–l. .J .

where P.11[(1, J] = .1 for () < .1 s N – 1. Further. if .V + 1

is prime, in which case M = N + 1, it can be shown that

P, If[I. J] = (I+ 1.1 + .1) 1110(] (iv + 1). (3)
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do from J = O until J = iv-l{ /“ sequence through N columns”/

OFFSET = J + 1

V=–1 /* setup to make J first pattern in sequence “/

do froml=Ountill=N–1{ /“ sequence through N rows “/

do { I* compute next pattern number in sequence “/

V = ?rtotiuius(v + OFFSET, M)

} until (V < N) /* ignore the values N, . . . . M – 2 *I

~lW[l, J] = V /* store the pattern sequence “/

} end.do

} end.do

Algorithm 1. For computing the pattern sequence matrix, P.lf[O... .%’ – 1,0. ..,V – I], where the modulus M is the smallest prime number that is

greater than or equal to ,Y + 1.

IV. ANALYSIS OF THE BASIC 2DRR ALGORITHM

ln this section, we consider the fairness, throughput and

delay properties of the Basic 2DRR algorithm. The fairness

properties of the Basic 2DRR algorithm are determined by

the properties of the diagonal pattern matrix and the pattern

sequence matrix. Our basic fairness guarantee is given by the

following.

Theorem 1: For the Basic 2DRR scheduling algorithm,

over every period of N time slots, each inputioutput queue

(i.e., each element of the request matrix, l?lk?[l?, C]) receives

at least one time slot of service.

F?oofi The N diagonal patterns, O, 1,... , (fv – 1), in

the matrix of (1) cover all N2 elements of an N x N request

matrix. Further, since the O-th row of the pattern sequence

matrix contains all N diagonal pattern indexes, O through

N – 1, we conclude that over every ~ time slot period, each

request element (i.e., each input/output queue) will have an

opportunity to transmit at least one of any waiting packets.

Q.E.D. ❑

The pattern sequence matrix of Fig. 3 has some important

properties that help provide fair scheduling in the Basic 2DRR

algorithm. In preparation, we define the following properties:

1)

2)

Maximum Direct Ordering: The maximum, for all

index pairs, of the number of times that the two di-

agonal pattern indexes follow one another in the pattern

sequence matrix. If this property is greater than one,

then some indexes receive preference in sequencing over

others.

Maximum Row(Column) Frequency: The maximum,

for all indexes, of the maximum number of times that the

diagonal pattern index appears in any one row (column)

of the pattern sequence matrix. If this property is greater

than one, then (on average) some indexes are tried in

sequence earlier than others across the N time-slot cycle

of the Basic 2DRR algorithm.

As an illustration of these properties we see that, in Fig. 3,

no pattern index follows any other index more than once. For

example, the column sequence O-1 only appears once in the

matrix. Thus, the maximum direct ordering is one for this

pattern sequence matrix. Further, in any row of the pattern

sequence matrix of Fig. 3, each index appears only once, so

the maximum row frequency is also one. Using the above

definitions, we cart prove the following theorem.

Theorem 2: If N + 1 is prime, then the maximum direct

ordering is one and the maximum row frequency is one for

the pattern sequence matrix that is defined by Algorithm 1.

Proof If IV + 1 is prime, then M is equal to N + 1

by the definition of lvl in Algorithm 1. Further, if we assume

that V < N in each step of Algorithm 1, then by expanding

the iteration with the initial condition of PiVf[O, J] = J we

find that

PA4[1,.J] = (1+ lJ+ J) mod (N+ 1),

o< I<lV-l, o< J< N-1.
(4)

We verify that V < N in each step when N + 1 is prime by

noting that if V was equal to N in a step then

I+ IJ+J=N (5)

and

(l+l)(J+l)=N+l. (6)

Since N+lisprime andl<N and J< N,(6) isa

contradiction and therefore V < N in each step of Algorithm

1. Having verified (4) we use it to show that both the maximum

direct ordering and the maximum row frequency are one when

N + 1 is prime,

To show that the maximum row frequency is one, we must

show that

F’lkf[l, J] # PM[l,K], for O s K < N – 1 where K # J.

(7)

Using (4), (7) is equivalent to

(I+lJ+J)-(I+ IK+K)#Q(N+l), (8)

where Q is an integer. This in turn is equivalent to

(I+l)(J-K)+Q(N+l). (9)

Since l<l+l<N, –(N–l)s J–K ~N–l, K#J

and N + 1 is prime, we conclude that there is no integer Q

that satisfies (9). Thus, we have proven that if N + 1 is prime,

then the maximum row frequency is one.
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Next, we prove that the primeness of N + 1 also implies

that the maximum direct ordering is one. We assume that two

different elements, PJ[ [11. .ll ] and F’M[12. .12], both take on

the same value, S’. From Algorithm 1 and the earlier part of

this proof. in which we proved that 1’< N, we conclude that

/’1l[l.. )] = (PJIII – 1..1] + .1+ 1) 1110(1 (iV + 1),

l<l<A-l, ()< J< A-1.
(lo)

Thus, the elements that follow Pilf[ll, .ll] and F’JW[12. ,12]

are given by

(Ls+.l, +l)lllo(l(lv+ l). OS S< N-1. () <J, <.V–2.

(11)

and

(IS+.12+ 1)111()(l(.V+ l). ()<s<,V–l. ()<,12<A’–2,

(12)

respectively. For these two elements to be equal, it must be

true that

,11– .12= Q (N + 1), where Q is an integer. (13)

Since –(A’ – 2) < (Jl – ,12) < N – 2 and .J1 # ,12 (see

Corollary I), we conclude that ( 13) is not true. Thus, we have

proven that it’ .V + I is prime, then the elements that follow a

value ,S ha\’e distinct values in each of the N — 1 columns in

which S is not the last column element. That is, if N + 1 is

prime, then the maximum direct ordering is one. Q.E.D. •l

Remark 1: From (4), it is clear that if A’ + 1 is prime,

then the pattern sequence matrix yielded by Algorithm 1 is

symmetric, [n this case, only ~ elements of the N x N

pattern sequence matrix need to be computed.

C’orollor,v I: The maximum column frequency is one for

the pattern sequence matrix that is defined by Algorithm 1.

That is. each of the indexes (), N – 1 appears once and only

once in each column.

Proof When V + I is prime, Theorem 2 tells us that

the maximum row frequency is one which implies that the N

entries in each row of the pattern sequence matrix are distinct.

Since the pattern sequence matrix is symmetric when A’ + 1

is prime. wc conclude that the N entries in each column of

the pattern sequence matrix are distinct so that the maximum

column frequency is one.

Now, we consider the case when N + 1 is not prime. In this

case, we can show that the pattern sequence matrix produced

by Algorithm 1 corresponds to taking a larger pattern sequence

matrix for the case of .~ = ltf – 1 and omitting: 1) columns

with indexes N through ~j – 1 inclusive, and 2) the entries in

the remaining columns that have values of N through ~ – 1

inclusive. The column entries are compacted upward to remove

any gaps that are created by omission 2. Thus. the fact that

the ,~ entries in each column of the pattern sequence matrix

for the ~ + 1 case are distinct implies that the N entries in

each column of the pattern sequence matrix for the N case are

also distinct so that the maximum column frequency is one.

Q,E.D, ❑

While Theorem 2 shows us that no diagonal pattern index

receives preferred treatment when N + 1 is prime, we cannot

make this same claim when V + 1 is not prime. However,

when N + I is not prime, we attempt to come close to the

TABLE I
PROPERTIESOF THE PATTERN SEQUENCE MATRIX FOR Dlmm?mm SWITCHS m.s

.Y MUX. Direct MUX, Row .Y Mar. Dirccr M(M. Row

Ordering Frequent> Ordering Frequenck

1 26 2 3

2 1 1 27 2 2

3 2 2 28 1 1

4 1 1 29 2 2

5 2 2 30 1 1

6 I 1 31 3 5

7 3 4 32 3 4

8 2 2 33 3 4

9 2 2 34 2 3

10 1 1 35 2 ~

11 2 2 36 I 1

12 1 I 37 3 4

13 3 4 38 2 3

14 2 3 39 2 2

15 2 2 40 I 1

16 1 I 41 2 2

17 2 2 42 I 1

18 1 I 43 3 4

19 3 4 44 2 3

20 2 3 45 2 2

21 2 2 46 1 I

22 1 1 47 3 4

23 3 4 48 3 4

24 3 4 49 3 4

25 3 4 50 2 3

desired properties of Theorem 2 by using a value of Af that

is the smallest prime that is greater than N + 1. [n Table I,

we investigate the properties of the pattern sequence matrix

for N < 50. Note, in Table 1, that when N + 1 is prime,

the maximum direct ordering and maximum row frequency

numbers are both one, as expected. The extent to which our

pattern sequence matrix comes close to achieving the ideal

properties specified in Theorem 2 depends on how close N + 1

is to Al. the smallest prime number that is greater than or

equal to N + 1. That is, in Table 1, the value of both the

maximum direct ordering and the maximum row frequency

are monotonically decreasing as the difference between N + 1

and M decreases.

Returning to our earlier example, in Fig. 3, we see that

N + 1 = 5 is prime, so for this case the maximum direct

ordering and the maximum row frequency are both one.

However, when N + 1 is not prime as is the case in Fig. 4

where N + 1 = 4, both the maximum direct ordering and

the maximum row frequency are equal to two. This results

in a slight unfairness, in that certain diagonal pattern indexes

receive sequencing preference relative to other indexes. For

example, in Fig. 4, the index O receives some preference at

the expense of index 2 because diagonal pattern O is applied,

on average, earlier in sequence than diagonal pattern 2.

We now consider the saturation throughput of the Basic

2DRR scheduling algorithm. Consider a situation in which

all elements of the N x N request matrix continually have

a backlog of requests in them. In this case, the Basic 2DRR

algorithm will serve all N elements in each of the N diagonal

patterns over the repeating N time slot cycle of the Basic

2DRR algorithm. Thus, the advanced input queueing structure

and the Basic 2DRR scheduling algorithm avoid head-of-
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Time Slot Index ~

Pattern

Sequence

Fig. 4. An example pattern sequence matrix when .Y + 1 is not prime.

line blocking and achieve a saturation throughput of one

for all input and output links in this uniform traffic pattern

case.

To examine the delay characteristics of the Basic 2DRR

algorithm, we use the well-known case of a uniform traffic

pattern with Bernoulli arrivals. Specifically, we assume that

unit-length packets arrive on the N input links according to

independent and identically distributed Bernoulli processes.

That is, the probability that a packet will arrive on a given

input link is p. A packet has an equal probability of being

destined for each of the .V outputs. For comparison, we

consider the cases of pure input queueing and output queueing

(see [7]). For the input queueing case, one can use random

scheduling (see [7]) when a conflict arises between multiple

input queues that have a head-of-line packet with the same

output destination. Alternatively, a one-dimensional round-

robin ( 1DRR) scheduling algorithm can be used. In our

implementation of this well-known scheduling policy, we used

an N-element storage vector to keep track of the input queue

that was last served by each of the IV output links. At a time

slot, for a given output, we scan the input queues (modulo N)

looking for a head-of-line packet that seeks the given output.

We begin this scanning with the input queue that follows the

one served during the last time slot in which a service occurred

for this output. In this way, no input queue is preferred over

others in the resolution of output conflicts.

In Fig. 5, we show the mean waiting time (not includ-

ing the packet transmission time of one slot) for an 8 x 8

switch in which the following queue structures and scheduling

types were used: 1) input queueing with random and lDRR

scheduling, 2) advanced input queueing with Basic 2DRR

scheduling, and 3) output queueing. These simulation results

were produced by using very long runs (many batches) that

yielded very small confidence intervals. As can be seen from

Fig. 5, the random and lDRR scheduling yield nearly identical

mean waiting times for the input queueing case. For the input

queueing case of IV = 8 with random scheduling, a saturation

throughput of 0.618 has been observed [7]. (Note that the

saturation throughput as h’ - m is 0.586. ) For both the

advanced input queueing case with Basic 2DRR scheduling

and the output queueing case, the saturation throughput is one.

However, the output queueing case has a lower mean waiting

time, but this approach requires the internal switching fabric

to have a speed-up of N as compared with that of the input

and advanced input queueing approaches.
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Fig. 5. Mean waiting time for a uniform traffic case and an 8 x 8 switch.
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Fig, 6, Request matrix for cross-shaped traffic case,

It is also interesting to consider the case of having traffic

hot-spots. Consider the cross-shaped traffic pattern of Fig. 6.

The arrivals on the input links are independent and identically

distributed Bernoulli processes. Packets arrive, with equal

probability, on input links O through 7, but all packets arriving

on input links O through 2 and 4 through 7 are destined

for output link 4, whereas each packet arriving on input

link 3 is destined with equal probability for one of the

8 outputs. We have found this pattern to be particularly

stressing of the fairness properties of schedulers. In a single

switch network, this pattern is not likely to arise, since the

center input/output pair of the cross would correspond to

a connected entity sending packets to itself. However, for

multiple switch networks, input and output ports would not

necessarily correspond to the same entity and this traffic

pattern could arise. This is particularly true of client/server

applications, where multiple requests are targeted to the server,

which in turn transmits to many clients.

We compare the mean waiting time results for input queue-

ing with 1DRR scheduling and advanced input queueing with

Basic 2DRR scheduling. For the (0,4) input/output request

pair, the lDRR and 2DRR scheduling algorithms yield similar

mean waiting times. The 2DRR result for the (0,4) pair is

slightly larger than the 1DRR result for this pair since in the

2DRR case, the central (3,4) element receives fairer treatment

(i.e., a greater portion of Output link 4’s utilization). The

most dramatic effect is the increased throughput and greatly
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decreased delay that is provided to the (3,0) pair with 2DRR as

compared with IDRR and input queueing. This performance

improvement is the result of the advanced input queueing and

Basic 2DRR scheduling overcoming the head-of-line blocking

effect that occurs in the input queueing case for packets that

arrive on input link 3. Note that input/output pair (3,4) obtains

service for a fraction of time that is no more than 1/N due

to contention for output 4. Thus, for the input queueing case,

packets from input 3 to output 4 frequently block other packets

in the input 3 queue.

V. THE EPJHANCED 2DRR SCHEDULING ALGORITHM

The Basic 2DRR scheduling algorithm uses a total of N

diagonal patterns in an attempt to provide fair scheduling.

There are actually .’V! different diagonal patterns that can

be considered for a N’ x N request matrix. We will show

that the fairness properties of the Basic 2DRR scheduling

algorithm can be improved by using a larger number of

diagonal patterns than .V. In this section, we introduce the

Enhanced 2DRR scheduling algorithm which uses a total of

.Vz different diagonal patterns.

The Enhanced 2DRR scheduling algorithm uses .V different

diagonal pattern matrices (each of which is comprised of JV

diagonal patterns), but still uses the same pattern sequence

matrix that is used in the Basic 2DRR scheduling algorithm.

As was shown in Fig. 3, the patterns in the diagonal pattern

matrix of the Basic 2DRR scheduling algorithm are generated

by shifting the main diagonal. Thus, the diagonal pattern that is

composed of the elements (0,0), (1,1), . . (,V– 1. N- 1), is the

getzerzitor of the diagonal pattern matrix of the Basic 2DRR

scheduling algorithm. In the Enhanced 2DRR algorithm, N

different generators are used to generate the N different

diagonal pattern matrices. These generating diagonal patterns

are derived from the pattern sequence matrix by applying a

new interpretation to the meaning of the matrix, We interpret

the row index of the pattern sequence matrix as corresponding

to the input link index as is done in the request matrix. Further,

we interpret the entries of the pattern sequence matrix as

column indexes of a diagonal pattern, so that each column

of the pattern sequence matrix represents a different diagonal.

To illustrate the operation of the Enhanced 2DRR scheduling

algorithm, we show in Fig. 8, the N = 4 diagonal pattern
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matrix when .Y + 1 is not prime. Note that the ( 1,2) and (2,0) request pairs

are not covered while the (1,0) and (2,2) request pairs are double covered by

the three diagonal patterns.

matrices that are used during .V phases of N time slots

each. The generators of these diagonal pattern matrices are

the elements that are marked with bold boundaries. Note how

diagonal patterns 1, 2, and 3 are obtained by shifting the

generating diagonal pattern to the right. The same pattern

sequence matrix is used for each diagonal pattern matrix.

When N+ 1 is not prime, the N generators can still be obtained

from the pattern sequence matrix, but now the generators do

not have the property that they provide a complete covering

of the N* elements of the request matrix (see Fig. 9). This is

not a problem for the Enhanced 2DRR algorithm since it does

N shifts in each stage to cover all of the N2 request elements.



478 IEEEfACM TRANSACTTONS ON NETWORKING, VOL. 2, NO. 5, OCTOBER 1994

The Enhanced 2DRR scheduling algorithm operates in

repeating cycles of IVz time slots in which the time slots of

each cycle are indexed by the variable L which takes on values

from O through N2 – 1. The Enhanced 2DRR algorithm can be

viewed as applying the Basic 2DRR algorithm in N different

phases, where a different diagonal pattern matrix is used during

each phase of N time slots. The main steps of the Enhanced

2DRR scheduling algorithm are as follows.

1)

2)

3)

4)

Define the N diagonal pattern matrices, labeled matrix

O through N – 1, and the pattern sequence matrix that

will be used.

In the first scheduling phase, which lasts from time slot O

to IV – 1, use diagonal pattern matrix O and the pattern

sequence matrix as was described in the Basic 2DRR

algorithm.

In the second phase, which lasts from time slot N to

2N – 1, use diagonal pattern matrix 1 and the same

pattern sequence matrix.

Continue the procedure of steps 2) and 3) for the

remaining phases and dlagonrd pattern matrices until

phase N – 1 is completed at time slot N* – 1. At

this time, the entire process that begins with step 2) is

repeated.

We can formalize this procedure by defining a set of N

different diagonal pattern matrices, DA4P[R, C], one for each

phase P as follows:

DMP[R, C] = (C – PM[R, P]) mod N.

N
L

where P = — ,0~L<N2–1.
N–

(14)

VI. ANALYSIS OF THE ENHANCED 2DRR ALGORfTHM

In this section, we consider the fairness, throughput and

delay properties of the Enhanced 2DRR scheduling algorithm

and compare it with the properties of the Basic 2DRR sched-

uling algorithm. Since different diagonal pattern matrices are

used for consecutive sets of time slots, the Enhanced 2DRR

algorithm has a looser fairness guarantee than the Basic 2DRR

algorithm.

Theorem 3: For the Enhanced 2DRR scheduling algorithm:

a) over every period of 2N – 1 time slots, each inputloutput

queue (i.e., each element of the request matrix, RM[R, C])

receives at least one time slot of service; b) over every period

of N2 time slots, each inputioutput queue receives at least N

time slots of service for an average of one time slot of service

for every N time slots.

Proof For each diagonal pattern matrix D&fP (O s P <

N – 1), the N diagonal patterns cover all N2 elements of an

N x N request matrix. Since two consecutive phases of the

Enhanced 2DRR algorithm use two different diagonal pattern

matrices, we must consider the relationship of the these two

matrices. In the worst case situation, one diagonal pattern

matrix will cover a given input/output queue in diagonal

pattern O and the diagonal pattern matrix of the next phase

will cover the given input/output queue in diagonal pattern

N – 1. In this case, the worst case time between services will

be 2 N – 1 which implies a). Now, to prove b), we note
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Fig. 10 Request pattern for line-shaped traffic case.

that since the O-th row of the pattern sequence matrix contains

all N diagonal pattern indexes, O through N – 1, we conclude

that over every iV2 time slot period, each request element (i.e.,

each inputloutput queue) will have an opportunity to transmit

at least N of any waiting packets. Q.E.D. ❑

The saturation throughput of the Enhanced 2DRR sched-

uling algorithm for a uniform traffic pattern is one since it

is really just N phases of Basic 2DRR type of scheduling. In

the next example, our motivation for developing the Enhanced

2DRR scheduling algorithm becomes clear. We consider the

vertical line-shaped traffic pattern of Fig. 10. To compute the

saturation throughputs for this pattern, we assume that requests

are always present for the three inputloutput pairs that are

indicated with a one in Fig. 10. In this case, we obtain the

throughput results of Fig. 11 for the Basic and Enhanced

2DRR algorithms. We have considered many types of traffic

patterns in our investigation of the properties of these two

scheduling algorithms. For the example of Fig. 10, the Basic

2DRR algorithm provides somewhat unequal throughputs to

the three input/output pairs [see Fig. 11(a)]. If the line-shaped

pattern included all IV = 8 of the inputioutput pairs in

the column for output 2 (see Fig. 10), then each one would

have a saturation throughput of ~ = 0.125 since each pair

is guaranteed to receive one time slot of service during

every period of N time slots. In the reduced length line of

Fig. 10, the (4,2) pair receives its basic throughput guarantee

of 0.125, but the other two elements receive greater amounts

of throughput. For the five elements of column 2 that are zero,

the pattern sequence matrix does not serve a request using the

diagonal pattern index that is in the Oth row of the pattern

sequence matrix. In these five cases, the pattern sequence

matrix is used to sequence through the diagonal patterns until a

pattern hits one of the three elements of the line-shaped traffic

pattern. As can be seen, the (5,2) pair is the most common

hit that occurs during this procedure, In the Enhanced 2DRR

algorithm, we use a larger number of diagonals, N* as opposed

to N for the Basic 2DRR algorithm, which tend to hit the three

elements of the line-shaped pattern in a more even manner

over the N2 time-slot cycle of the Enhanced 2DRR algorithm.

Thus, the throughputs that are shown in Fig. 11(b) are closer

to being equal than in the Basic 2DRR case.

We now consider the delay performance of the Enhanced

2DRR algorithm. For the uniform traffic pattern case that
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Fig. II. Saturation Lhroughputs for each inputloutput pair. (a) Basic 2DRR.

(b) Enhanced 2DRR.

was discussed in Section IV, the Enhanced 2DRR algorithm

yields results that are identical to those of the Basic 2DRR

algorithm (see Fig. 5). Further, for cases in which the traffic

patterns occupy an entire row andlor column, such as the cross-

shaped traffic pattern of Fig, 6, the Basic and Enhanced 2DRR

algorithms yield similar delay performance. However, in cases

in which the traffic patterns do not fill entire lines in at least

one dimension, the delay results of the two algorithms can

differ significantly, as is suggested by the throughput results

of Fig. 11.

Consider again the line-shaped traffic pattern of Fig. 10. To

examine delay properties, we assume that the arrivals on the in-

put links are independent and identically distributed Bernoulli

processes. Packets arrive, with equal probability, on input links

3-5 and are all destined for output link 2. In Figs, 12 and

13, we show the mean waiting time results for the Basic and

Enhanced 2DRR algorithms, respectively. As expected from

the throughput results for the Basic 2DRR algorithm, we see

that the mean waiting times for the three input/output pairs

differ greatly from their composite mean. In contrast, in the

Enhanced 2DRR case, all three input/output pairs have similar

mean waiting times. That is, the Enhanced 2DRR algorithm

is fairer for these types of traffic patterns. We note that the

composite mean waiting time is the same for both algorithms.

VII. IMPLEMENTATION

One of the key characteristics of the Basic and Enhanced

2DRR algorithms is that they can be easily implemented
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in hardware and thus incorporated in high-speed switches.

In the following section we describe the architecture and

design of a high-speed scheduler that implements the Basic

2DRR algorithm as well as the architecture of a scheduler

for the Enhanced 2DRR algorithm. The characteristics of a

prototype implementation of the Basic 2DRR scheduler are

also discussed.

A. Basic 2DRR Scheduler

Fig. 14 shows the architecture of the Basic 2DRR design for

an N x N switch as well as the clocks required for the system’s

operation in the case of a 4 x 4 switch, The time-slot clock

(TSC) is the switch clock, i.e. a packet is transferred from an

input to an output during one period of the TSC clock. The

interval clock (lC) has a frequency that is N (in this case 4)

times that of the TSC clock, and regulates the application of

the diagonals within a time slot. The use of the clocks in the

calculation of the granted transfers can be simply described as

follows: during each time slot (one TSC period), a column of

the pattern sequence matrix is used; within a TSC cycle, the

N lC cycles are used to apply the N diagonals, one during

each lC cycle.

The scheduler uses as input the transmission requests,

i.e., the data of the request matrix (RM) as Fig. 14 shows.
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Fig. 14 2DRR design.

R&l[R, C] is an input signal that is asserted when there is a

request for at least one packet transfer from input R to output

C. If the scheduler grants a transfer from input R to output

C, then the output signal G[R, C] is asserted. The scheduler

is composed of two main modules as Fig. 14 demonstrates:

the pattern sequence matrix Jinite state machine (PSM-FSM)

and the cell matrix (CM). The PSM-FSM is responsible for

generating the control signals that apply the diagonals. It has

as inputs the TSC and the IC clocks. During each IC cycle,

the PSM-FSM asserts one signal of the IV diagonal signals

Do, D1 . . . . . D,v - ~. The signals are asserted within each

TSC cycle in the order directed by the pattern sequence

matrix. The PSM-FSM can be easily implemented, since it

simply executes Algorithm 1.

The cell matrix is an N x N matrix of functionally equiva-

lent cells. Each cell CM[R. C] inputs the request RA4[R, C]

and is responsible for asserting its grant signal, G[R, C], when

the corresponding request is granted. The cells in CA4 operate

in parallel, so that the delay of each calculated grant signal is

minimized.

Each of the diagonal signals is provided as input to the cells

of the cell matrix that are in the given diagonal pattern, e.g., DO

is input at cells C&f[(), O], CA4[1, 1], . . .. CA4[ZV – 1, IV – 1].

Note that there is exactly one diagonal signal that is input

to each cell. This occurs because each entry of the request

matrix is covered by exactly one diagonal as is described in

Algorithm 1.

The grant signals, G, are calculated (asserted) by the cells of

the cell matrix, which employ the design shown in Fig. 15(a).

The cell asserts its grant signal when the request signal,

RM[R, C], the diagonal signal, D~ (O s K S N – 1), and the

signals AVl[R] and AVOIC] are asserted, or if the aforemen-

tioned grant signal was asserted in the previous lC cycle and

the Reset signal has not occurred. The clock of the D-flip-flop

in the cell is IC. This flip-flop is reset at the beginning of each

TSC cycle. The signals AVIIR] and AVOIC] represent the

availability of input R and output C, respectively, for granting

a request, i.e., when AVIIR] is asserted, it means that the input

R has not been allocated earlier during the TSC cycle and

‘Ava:=
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G[R,N-2]
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m
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Fig. 15, 2DRR cell design, (a) cell design, (b) AVI design.

is thus available for allocation during the current IC cycle.

Similarly, the assertion of the AVOIC] signal indicates that

output C has not been allocated earlier. Fig. 15(b) shows the

calculation of the AVIIR] signal. AVOIC] is calculated in

a similar way. In the above design we have assumed that a

requesting input will negate its request signal (i.e., set it to

zero) when it is served if no further queued requests exist.

A prototype implementation of a 4 x 4 Basic 2DRR sched-

uler that uses the above design has been built. This prototype

uses two ALTERA [1] cell arrays, one for the PSM-FSM and

one for the 4 x 4 cell matrix. The prototype operates with

an IC clock period of 40 ns and thus demonstrates that the

Basic 2DRR algorithm is suitable for implementation in high-

speed switches. A scaled-up version of this simple prototype

could readily support an ATM switch operating at 155 Mbps

(SONET OC-3 rate) link speeds for switch sizes that are

64 x 64. For a 1 Gb/s link speed, the prototype could directly

be used for switch sizes of up to 8 x 8. Further, through the

use of a custom or semicustom implementation the IC clock

could be significantly sped up and thus the scheduler could

support switches of size 16 x 16 or larger for the 1 Gb/s link

speed since the cell computation time varies with O(lV).

B. Enhanced 2DRR Scheduler

The architecture of the Enhanced 2DRR scheduler follows

a similar approach to that described above, i.e., the grant
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signals are calculated in parallel. The information that is

needed at each cell is the same as was needed for the Basic

~DRR scheduler and the calculation of the C,~f cells is the

same. The fundamental difference in the case of the Enhanced

2DRR scheduler is that the cells belong to different diagonals

in different phases. So. although in the Enhanced 2DRR

scheduler architecture we can use the same cell as was used

in the Basic 2DRR scheduler for the calculation of G[R, C].

there is a difference in the selection process of a cell, i.e., the

calculation of DK. In the Basic 2DRR scheduler, a cell with

coordinates R and C’ is selected by the PSM-FSM when the

diagonal number that is selected for application in an interval

matches the entry Dfif [R. ~] in the diagonal matrix. For the

Basic 2DRR scheduler the diagonal Dill [R. C’] is static (i.e.,

constant over time) and is given by ( I ). This is not the case

for the Enhanced 2DRR scheduler.

To design the cell selection process for the Enhanced 2DRR

scheduler, we need to either move the selection decision to

each cell, or to change P.lf, and consequently the operation of

PSM-FSh4 every N cycles. The second alternative is complex

and costly as the size of the scheduler increases. Since each

diagonal coy ers different cells during each phase, a centralized

scheduler would require .V2 distinct output wires to control

all N2 cells of the cell matrix as well as a memory with N3

entries. For small size switches, this approach can provide a

solution. but when .V becomes large, the approach can be quite

costly. For such large designs we propose a design that uses

the first alternative, ie., to move the selection decision to the

cells. To design this alternative, we need to have every cell

with coordinates R and [“’ test in every interval whether the

following equality holds:

D(I. J) = (C – P.! f[l?. P]) mod ?V. (15)

where D( 1, J) is the diagonal number that is broadcasted to

all of the cells in the cell matrix during the lth interval of

the T’th TSd system cycle, and where J = T mod iV, and

P = 1(1’ m{Ml N2)/N] is the phase number. Equation ( 15) is

derived from ( 14) where the index T indicates that the system

cycle is the 7’-th system cycle since the switch was initialized.

With the approach of ( 15), each cell needs to read matrix

1’:11 every V cycles to obtain the entry P.tf[R. F’]. Since this

information is different for every cell, the memory that stores

PAf will be a hor-spo[ and thus the involved delays will be

high,

To avoid this problem, we distribute the control on a per

row basis. as is shown in Fig. 16. There is a controller in each

row, the ro}{’controller, In each interval, the row controller

broadcasts the index C of the selected cell to all of the cells in

its row. in turn. cells check, in parallel, whether the broadcast

index C matches their own column index. The cell of the row

that has a match is selected to calculate its grant signal. G,

as was done for the Basic 2DRR scheduler (with the same

circuitry as was shown in Fig. 15 where the D~ signal is the

coincidence signal). Each row controller calculates the index

(‘ that it broadcasts using the following equation:

(’ = (PM[l. J] + PM[R. P]) 1110(1lv. (16)

“oainzn

tire--b
l--lc”~:’’erlLE-_..lL-J

Cell

[N-1]

LlaT5”-
Fig. 16. Enhanced 2DRR design

where 1, .1, R, and P are the same as was defined for equation

(15).

The Enhanced 2DRR scheduler architecture is shown in

Figs. 16 and 17 and operates as follows. During initialization,

the initializer calculates the matrix F’.lf and stores it in

the row controllers on a row basis, i.e., rou ro71trollrr[R]

stores row[l?] of Plvf. Since roul cont~~JltTIR] has rfJu[R]

of F’A4 locally stored, it can obtain P,tf[R. P] by directly

accessing its local memory. I’. M[1.J] is the datum needed

by all of the row’ controllers. and is stored in the local store

of row controller-[1]. For this reason, the operation of the

controllers is divided into two phases: broadcast and calcu-

lation. During the broadcast phase, only ro?l colt trollw[l]

operates and broadcasts to all of the remaining controllers

the entry F’Af[l. J] that is stored in its local memory. This

is performed over the broadca.sfing bus (see Fig. 17). During

the calculation phase, each controller accesses its own local

memory to obtain the entry P,ll [R. P], which it then adds

to the latched entry ~lf[l. J] that was broadcasted during the

preceding broadcast phase. In this fashion, each row controller

calculates the index C that is active during this interval, as

shown in Fig. 17, and broadcasts it to all of the cells in its

row. The cell whose column index matches C is activated and

calculates the comesponding grant signal, G, in exactly the

same way as was described for the Basic 2DRR scheduler.

VIII, SUMMARY AND CONCLUSIONS

We have described two new types of computationally ef-

ficient scheduling algorithms for advanced input queueing

switching architectures. These two types of 2DRR schedulers.

the Basic and Enhanced 2DRR algorithms, have the same

saturation throughput (of one) that is achieved with an output

queueing architecture. However, compared with a simple input

queueing architecture, the 2DRR schedulers require only a

small increase in queue complexity (i.e.. advanced input

queueing) and the addition of our simple scheduler hard-
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ware to achieve this efficiency, whereas the output

architecture requires an IV times internal speed-up.

queueing

We analyzed the fairness guarantees that each of the 2DRR

scheduling algorithms provides and demonstrated the fairness

advantages of the Enhanced algorithm for certain traffic pat-

terns. While the Enhanced 2DRR algorithm is fairer than

the Basic 2DRR algorithm, it does require some additional

implementation complexity.

Both of the 2DRR schedulers can be implemented using

simple logic components thereby allowing a very high-speed

switch implementation. We have designed efficient hardware

implementations for both the Basic and Enhanced 2DRR

scheduler and have constructed a prototype of the Basic 2DRR

scheduler.
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