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ABSTRACT

The most widely used methods of signal representa

tion are the time function and the frequency function or 

spectrum representations. This work is concerned with 

the development of a representation which is a combina

tion of these two.

Two previous attempts at defining this type of signal 

representation, which is referred to as two dimensional 

representation, have been made and a summary and evalua

tion of these attempts is presented.

The primary objective of the work reported here was 

to develop a practical two dimensional representation 

which has the desired two dimensional conceptual proper

ties as well as mathematical convenience. The represen

tations defined are based on the angular prolate spheroid

al functions. These functions have a number of desirable 

properties among which are the followings they are orth

ogonal over both a finite and the infinite interval, they 

are bandlimited, and they have certain properties con

cerning their maximal proximity to being timelimited.

The procedure used in defining the first two dimen

sional representation is to make an orthogonal expansion,
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using the prolate spheroidal functions, of each timelimited 

portion of each bandlimited portion of the signal to be 

represented. The second two dimensional representation is 

defined from an orthogonal expansion of each bandlimited 

portion of each timelimited portion of the signal to be 

represented. For both of these, the summation over all 

time intervals and all frequency intervals results in the 

complete representation of the signal.

It is seen from this that since it is not possible to 

timelimit and bandlimit simultaneously, these limiting 

processes have been carried out serially. Due to the pe

culiar properties of the prolate spheroidal functions, as 

the number of orthogonal function terms is increased, the 

representation of a timelimited function converges first 

in a certain bandwidth, and the representation of a band- 

limited function converges first in a certain time inter

val ,

It is demonstrated that both series representations 

will converge to either a timelimited or a bandlimited 

portion of the represented signal upon inclusion of the 

proper terms. Following this several applications of the 

representations are presented. First, it is shown that 

the result of the convolution of 2 two dimensionally rep

resented functions may be determined at discrete values of 

time from the expansion coefficients alone. The spectrum 

of the product of two functions may be determined in a
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similar maimer at discrete values of* frequency. As a re

sult it is possible to determine the contribution made to 

the output of a linear system at any time due to the por

tion of the input in any time and frequency interval,

A technique is also developed for the solution of 

this same problem for the more general time variable lin

ear system with the output being determined in continuous 

form rather than only at discrete values. It is somewhat 

more difficult to calculate the coefficients in this case, 

however.

Another application demonstrated is a method by which 

the value of Woodward's ambiguity function may be calculat- 

ed for discrete values of the time and frequency variables 

The two dimensional nature of the representation is 

demonstrated by two numerical examples using very elemen

tary time functions. A further numerical example is pro

vided for the case of the determination of the output of 

a linear system at discrete values of time.

This work is concluded by a brief listing of further 

problems which seem amenable to solution as a result of 

this type of analysis. This list includes such problems 

as biological system signal analysis, signal design, and 

random process representation.



CHAPTER 1 

Introduction

In the first portion of this introductory chapter the 

place of signal theory is established in the larger area 

of system theory. This is followed by a statement of the 

problem investigated and a brief outline of the contents 

of this thesis including the results obtained. The chap

ter is concluded with a statement of some conventions and 

notation adopted for this work.

1.1 Signal Theory and its Relation to System Theory

Signal theory is an area of study which has only re

cently begun to be defined clearly and in a manner dis

tinct from other closely related areas such as informa

tion theory and circuit theory. The name is applied to a 

class of problems which, as the general technology ad

vances, increasingly demand solution.

In the preface to an issue of the IRE Transactions 

on Circuit Theory devoted entirely to signal theory, Ham 

(9) defined signal theory as "being concerned with the de

veloping of useful representations for dynamical observ

ables in physical systems and with characterizing the 

transforming effects of system components on the signif-
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leant attributes of* observables”. Since frequently the 

purpose and significance of a signal is the conveyance of 

information, the term "significant attributes” may refer 

to information and the term "useful representations" may 

refer to representations which cause the information con

veyed to be readily accessible conceptually and/or mathe

matically, Then by the use of the term "signal", it is 

possible, if desired, to make a distinction in the case of 

the oiqtput of a power amplifier* for example, between the 

information the output conveys and the energy or capacity 

of that output to do work. The point is, the terms •’in

formation? as here used and "energy? are not necessarily 

synonymous* They are, however, unquestionably related, 

for in the case of an electrioal signal, for example, the 

manner in which the energy is arranged must conyey the in

formation.

It is, of course, evident that signals are only of 

interest as a result of their relation to an associated 

system and the transformations the system performs. It is, 

therefore, of interest to establish the relationship be

tween signal theory and system theory, Huggins (ll) sug

gested that many of the subjects and techniques presently 

lumped under the heading of circuit theory might better be 

called system theory and that this in turn might further 

be broken down into three parts—that part dealing with 

the representation of physical elements, that part dealing
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with the representation of signals, and that part deal

ing with relations and transformations between the ele

ments and the signals. For the first he suggested the 

name "circuit theory," for the second the name "signal 

theory," and for the third "operator theory." This defi

nition of signal theory and its relation to system theory 

is wholly in accord with the philosophy behind this thesis.

As a result of these definitions, it is apparent that 

signal representations are needed for two purposes, as 

Huggins points out. Gne is for the purpose of studying 

systems and their transmission properties. The other is 

for the purpose of revealing the "information bearing at

tributes" of a signal.

1.2 Discussion of the Thesis

Of all of the various representations of signals a- 

vailable, the time function representation and the Fourier 

representation have found the widest application by far. 

This work is concerned with a representation which is a 

combination of the two. This representation may be thought 

of graphically (or rather, pictorially) as a plot of the 

signal to be represented on a two dimensional plane which 

has been divided into small rectangles. The plane will be 

considered to have time along the abscissa and frequency 

along the ordinate. A certain "amount" of signal will be 

assigned to each rectangle.

From this it follows immediately that the representa
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tion demands thai in some fashion the sp.eetram of the 

function be determined as a function of time. If the 

Fourier Transform is defined to be the spectrum in ques

tion, strictly speaking, the spectrum as a function of 

time is not defined. The Fourier Transform is defined o- 

ver the infinite time interval and is not, and cannot by 

itself, be a function of time. In the words of Gabor (8),

“*if the term frequency is used in the strict mathematical 

sense, . . a "changing frequency" becomes a contradiction

in terms as it is a statement involving both time and fre

quency, " The time structure of the spectrum, however, is 

frequently very important as is evident, for example, in 

the simple situation of listening to a piano selection.

It is the purpose of the proposed representation to give 

to the spectrum its time structure,

Gabor receives the credit for having originated the 

idea of the two dimensional representation in 19^6 and a 

summary of his methods and results are presented in Chap

ter 2. Also in Chapter 2 is contained a brief summary of 

the results of Lerner (19) who was the first to suggest 

that Gabor's two dimensional representation be used for 

signal analysis rather than information theory as was 

Gabor's intention.

Chapter 3 contains a summary of some of the properties 

of the angular prolate spheroidal functions, which have 

been reported in the literature, and which Will form the
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basis of the two dimensional representations to be devel

oped o It will be seen that the properties of these func

tions are such that the resulting representations provide 

both the mathematical aspects and the intuitive type of 

conceptual aspects desired„

The representations, themselves, are developed in 

Chapter k. The development of both two dimensional repre

sentations presented is carried out in a manner so as to 

place in evidence as clearly as possible the two dimension

al nature of each term and what portion of the signal it 

represents, The errors due to truncation are also calcu

lated » Following these developments it is shown that the 

series representations will converge to either a timelim- 

ited or a bandlimited portion of the represented signal 

upon inclusion of the proper terms,,

The application of these representations to the de

termination of the output of a linear system given a two 

dimensionally represented input is also demonstrated by 

two different techniques, In the first it is found that 

the output9 at sampled instants of times which results 

from the portion of the input signal occupying any arbi

trary portion of the time-frequency plane may be calculat

ed easily. This technique is demonstrated only for the

linear, time invariant system.

The seeond technique may be used in the more general 

linear, time variable system, and the outpqt is given in
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continuous rather than sampled form. It is also possible 

with this technique to determine the output due to any two 

dimensional portion of the input, but this technique is 

somewhat more difficult to handle mathematically.

Chapter 5 contains numerical examples of some of the 

representations and operations developed in Chapter 4,

Two time functions were chosen for presentation by the 

same two dimensional representation. The functions were 

chosen for their simple but fundamentally different time- 

frequency structure so that it is possible to compare the 

results with one another and with what intuition predicts, 

numerical results are also given for a time invariant lin

ear system problem.

Chapter 6 contains a summary followed by brief de

scriptions of a number of problems which seem amenable to 

solution as a result of or in terms of the two dimensional

representations

The most significant original contribution of this 

work is the definition of two dimensional signal represen

tations which are more general than those previously de

fined and which are in a form such that they may be imme

diately applied to practical problems. A further contrib

ution is the method of application of these two dimensional 

representations to the general linear system problem and 

to the determination of the ambiguity function of a signal.
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1.3 Notation and Conventions

In order to specify the class of functions or signals 

to be treated herein, the;following convention will be 

adopted: throughout this thesis the term "arbitrary func

tion of time" refers to any time function which is of inte- 

grable-square on the whole line, i„e„,

and whose Fourier Transform exists. This restricts the 

class of functions in a manner similar to Gabor, berner, 

Slepian, and Poliak, and thus makes the class under con

sideration compatible with the primary references of Chap

ters 2 and 3°

In order to avoid some confusion which exists in the 

literature, the definition of the Fourier Transform will 

be taken as

f go

(1-D

As a result the inverse transform is given by

(1-3)



where u = 2%f„ Generally, lower ease letters are used for 

time functions and upper ease letters for frecinehey 

functions*

Further, the terms "Fourier Transform" and "Spectrum" 

are herein considered synonymous as are the terms "mean 

square value" and "energy*"

- 8 -
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CHAPTER 2

Review of Two Dimensional Representations

A brief summary of the history of two dimensional rep 

resentations is presented. The concept of the analytic 

signal is introduced and applied in the summary of the 

methods and principle results obtained in the original 

definition of the two dimensional representation of Gabor. 

This is followed by a summary of the modifications and 

generalizations of this definition given by Lerner» and 

the chapter is concluded by a discussion of these results.

2,1 Introduction

It is readily apparent that one cannot simultane

ously limit the lengths of the non-zero portion of both a 

function and its Fourier Transform, But the fact that 

the "essentially zero" portion of both a function and 

its transform cannot simultaneously be too severely lim

ited is not so apparent and dawned slowly on communication 

engineers during the 1920’s and 30*s. At about this same 

time the formulation of wave mechanics was taking shape. 

One of the results of this formulation, the Heisenberg 

Uncertainty Principle, states that the product of the var

iances, or uncertainties in measurement, of position and
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of momentum is always greater than a eertain positive con

stant . The fact that position and momentum are related 

functionally by Fourier Transformation and, thus, this 

uncertainty relation might have application for signals and 

their spectrums went apparently unnoticed for some time.

It was not until 19^6 that Gabor (8) noticed this 

connection and attempted a mathematical formulation to 

Hartley's (lO) statement of 1928 that the amount of infor

mation which can be transmitted over a communication chan

nel is proportional to the product of the bandwidth avail

able and the time available,* Hartley had not given a 

mathematical formulation to back up his statement,

Gabor was interested in determining the amount of in

formation transmitted by a communication channel. He noted 

that if he would substitute a signal as a function of time 

in place of the position probability amplitude function of 

wave mechanics, then the spectrum of the signal would be 

analogous to the momentum probability amplitude function, 

the uncertainty in the measurement of position would be

come one possible definition for the time duration of the 

signal, and the uncertainty in the measurement of momentum 

would become one possible definition for bandwidth. Con

tinuing, the analogy to the Heisenberg uncertainty rela-

*Landau and Poliak (l8) state that L, A. MacColl obtained 
such a signal uncertainty relation about 19^0, but it 
went unpublished. See the Appendix,
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tion then states that the product of the bandwidth and 

time duration of a signal cannot be less than a certain 

positive constant.

Thinking of this in another manner, if one considers 

a two dimensional representation of the signal—-time along 

one axis and frequency along the other--then one sees that 

there is a certain minimum area that any signal can occupy. 

It was on this minimum area that Gabor chose to base his 

definition of information content of signals.

The study of this uncertainty relation has been the 

subject of considerable work and a brief summary of some of 

the results obtained is given in the appendix. The study 

of the two dimensional representation of a signal has not 

been so extensive,

2.2 Analytic Signals

Before proceeding further it is necessary to intro

duce the concept of what has become known as the analytic 

signal. Gabor was apparently the first to present this 

concept although many have used it since. See, for ex

ample, Dugundji (4), Kay and Silverman (12), Ville (3l), 

(32), (33)9 and Woodward (34). The analytic signal may be

defined as follows: For any signal, s(t), and its spec

ial)

trum, S(go), the analytic signal is given by

00
r

S+(t) = i S(w)e^bJ^ dw

J
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From this it is apparent that the only difference be

tween s+(t) and s(t) is that in s+(t) the negative frequen

cy portion of the spectrum has been suppressed and the pos

itive frequency portion is multiplied by a fixed constant. 

There is, then, somewhat of an analogy between this oper

ation for a nonperiodic function and the expression of a 

periodic function in the complex form of the Fourier Series 

with all terms for which the summation index is negative 

discarded. Xt is important to note that given either the 

real or the analytic signal, the other can be found unique

ly. Of course, if s(t) is a real function of time, s+(t) 

is necessarily complex valued.

The analytic signal, s+(t), can be found from s(t) 

entirely in the time domain using the Hilbert Transform of 

s(t), denoted H ^s(t)J or s(t). This transform is defined 

by

where P denotes a principle value at t = t. A derivation 

of this transform is given by Oswald (24). Some of the 

properties of the transform are given by Titchmarch (30), 

Stewart (28), and Dugundji (4).

Actually, some intuition may be generated for this 

transform by noting that under a much broader but still 

consistent definition of Fourier Transform, Lighthill (20)
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has shown that the Fourier Transform of f(t) = — is given 

by -% j sgn f„* Then if one views Eq. (2-2) as a convo

lution integral and recalls that the convolution of two 

time functions is equivalent to multiplication of their 

spectrums, it is apparent that the Fourier Transform of 

s(t) is given by

•^{®(t)} = -j sgn f^[s(t)j (2-3)

and the analytic signal may be defined equivalently by

s+(t) = s(t) + j s(t) (2-4)

The advantage in using s (t) rather than s(t) in sig

nal representation and analysis problems will become more 

apparent shortly.,

2,3 Principle Results of Gabor

Gabor chose to base his definitions of time duration

and bandwidth on the first and second normalized moments 

of s+(t) and its transform, S+(f)„ These normalized mo

ments may be defined as follows

tn

zoo

l

s*(t) tn s+(t) dt

oo
oo
*
s+(t) s+(t) dt

— oo

(2-5)

*

Sgn stands for signum and sgn x, a notation commonly used 
in this branch of mathematics, is defined as being +1 for 
x > 0 and -1 for x < 0 *
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fn

oo

S*(f) fn S+(f) df

CD (2-6)

J

S*(f) S + (f) df

-oo

The effective durations At, and the effective band

width, Af, may then be defined using Eqs# (2-5) and (2.-6)

(2-7)

(2-8)

Thus, duration and bandwidth are defined as being 

proportional to the root of the second moment, or rms 

deviation, about the mean epoch with a corresponding defi

nition for bandwidth#

It may how be seen, too, that had s(t) been used in

stead of 's (t), all the odd ordered moments of Eq. (2-6) 

for a real time signal would have been zero#

With the above definitions Gabor shows, using a form 

of the Schwarz inequality, that

At Af > 1 (2-9)
2

Eq# (2-9) is one of the principle results of Gabor's
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presentation. It is his thesis that, due to this result, 

the information content of a signal may be measured in 

terms of its time-bandwidth product.

Specifically, Gabor shows that the signal for which 

the equality in Eq. (2-9) is satisfied is given by

s+(t) = exp £-oc2(t - tQ)2 + j(2nfQt + 0)] (2-10)*

and its spectrum

S+(f) = & exp[-(f) (f - fo) - j[2ut0(f - fc) - 0]j
(2-11)**

where « controls the sharpness of this pulse, tQ is its 

epoch in time, fQ is the epoch in frequency, and 0 is a 

phase constant. For s (t) as given by Eq. (2-10) the 

duration and bandwidth are given by Gabor as

(2-12)

(2-13)

As a result of the preceeding Gabor decided to repre-

*
It should be noted that even though Gabor used the nota
tion for the analytic signal here, the function given 
by Eq. (2-10) is not an analytic signal. That is, the 
spectrum of this function is not zero for negative f as 
may be seen from Eq, (2.-11).

**
J %

Gabor apparently erred here as the —factor did not appear 

in the paper. It has been correctly added to Eq. (2-11),

and

At = £ I
2 a

Af =
a

/2T
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sent any arbitrary signal on a plane which has time along 

one axis and frequency along the other# Since the minimum 

area which any signal could occupy was shown to be one 

half, he proposed to divide up the time-frequency plane in

to rectangles of length At and width Af centered at the 

point (t0,fQ) and to associate with each such rectangle 

one quantum of information#

He further stated that any signal can be expanded into 

a presumably infinite series, each term of which is a time 

and frequency shifted version of the elementary signal giv

en in Eq# (2-10)# The time shifting was to be by a distance

knAt and the frequency shifting by a distance where n 

and k are integers, and in this manner the whole area of 

the time-frequency plane could be represented# That is, 

if it is assumed that the time and frequency shifted ele

mentary signals exist only in their rectangle of area 1/2, 

then such an expansion will cover the whole time-frequency 

plane completely but without overlap#

One possible form put forth for such a representation 

of an arbitrary signal, s(t), was given as

s(t) = cnk expj-it (fr- exp jj2nk (2-l4)

where the -c k are complex constants. Sine-cosine forms were 

also presented, but they are not of additional interest here# 

Note that in Eq# (2=°l4) the terms are centered at a distance 

—■ in the frequency direction so that each term must cover



two elementary areas, However, the e . are complex and 

Gabor’s argument was that the real and the imaginary parts, 

therefore, actually assign two numbers to this double 

sized elementary area.
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2th Extensions of Gabor’s Representation by Lerner

Although there were a number of further investigations 

of some of Gabor’s original ideas, principally those of the 

analytic signal and the uncertainty relation, little addi

tional effort was apparently expended on two dimensional 

representations until 1959 when Lerner (19) proposed some 

generalizations to this representation, Gabor had placed 

the emphasis of his work on the information content of the 

signal? Lerner presented this representation as a signal 

analysis tool. It was still his intention to make an ex

pansion in terms of an elementary function. Each term was 

still to be a time and frequency shifted version of the 

elementary function. But for the purpose of a signal a- 

nalysis tool he suggested that choosing the elementary 

function of the expansion as the one which has minimum 

time-bandwidth product is unnecessarily restrictive. Any 

function might be used as the elementary signal depending 

on the application. It is not even necessary that the 

elementary signal chosen be essentially confined to a giv

en time duration or a given bandwidth.

Lerner further suggested that the shape of the funda

mental areas in the time-frequency plane may be chosen with
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arbitrary length-to-width ratio/ Gabor bad already shown 

this to be possible with his representation by simply vary

ing the constants a, of Eq, (2-10).

A third suggestion was that from the elementary sig

nal chosen, an orthonormal set could be formed. More 

specifically, call the elementary function v(t). From it 

define

v (t) = v(t - n9) ' . (2.1J)
mn' ' ' ' ''

Then a set of functions, u (t), called unit functions,

may be defined as linear combinations of the v (t) such 
J mn

that the u (t) form a complete orthonormal set. A matrix 

method was given by which the coefficients of these linear 

combinations may be obtained,

2,5 Discussion

Gabor put forth a number of new and interesting ideas. 

He was apparently the first to use the Hilbert Transform 

operation for problems of this type. Certainly the concept 

of the two dimensional representation of a signal was in

teresting to say the least. To express a function of time 

in such a manner that its structure is apparent in both 

the time and frequency domain rather than the time or the 

frequency domain was an interesting and useful thought.

It, perhaps, should be mentioned here that, in one 

sense, the term "two dimensional representation" is mis

leading, Notice that what is suggested is to take a func
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tion of time, a one dimensional representation, and express 

it in two dimensions, i.e,, an additional dimension with

out requiring additional information. The point is, the 

two dimensions are not unrelated. In spacial dimensions, 

where the coordinates are unrelated, this is roughly anal

ogous to measuring the width of this page and from this 

alone determining what the length of the page is.

Gabor's whole mathematical analysis is heavily based 

on the mathematics of quantum mechanics, even to the point 

of the notation he used. For example, the familiar oper

ator notation of quantum mechanics was defined, and the 

notation used for the analytic time function was ^(t), 

with its spectrum, 0(f), both symbols commonly used in 

quantum mechanics, Gabor certainly cannot be criticized 

for noting the analogy between the mathematics of these 

two disciplines. Indeed, some of the greatest advances 

have been made by noting such analogies, Bui following 

the analogy too far did cause him to fail in his attempt 

to define information mathematically. For, although he 

was able to define the minimum area occupied by a signal, 

he was not able to use this concept to show how to deter

mine a number which specifies the information content of 

any given message in a unique manner. In general, there

*

In this discussion it was necessary to change the nota
tion from ^(t) to s (t) since the notation, </^(t) , would 
conflict with that to be introduced in the next chapter.
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is some non-zero number associated with every rectangle of 

the diagram for an arbitrary signal. Thus, in general, 

every signal contains infinite information in this sense.

No particular significance was attached to the size of 

these numbers with regard to information content. And 

really none can except that they show in what portion of 

the time-frequency plane the signal is concentrated. This 

demonstrates again the point that while the energy and in

formation of a signal are related, they are not identical. 

In reality the uncertainty relation only reflects in 

two dimensions, for example, what the sampling theorem 

does in time domain analysis, i,e„, that it takes at least 

2 Af numbers per second to represent a time function which 

has a bandwidth, Af, or, as a second example, what the 

Fourier series gives in the frequency domain for periodic 

functions, i„e„, that it takes 2 Af At numbers to repre

sent the periodic function where in this ease At is the 

period (duration) and Af is the bandwidth of the represen

tation (-“ in this case). Even this reflection is not as 

strong as it may seem. For it is seen that in the defi

nition of duration and bandwidth, Eqs. (2-7) and (2-8), it 

was necessary to insert a factor of 2% arbitrarily in order 

to make the time-bandwidth product equal one half. The 

uncertainty relation, therefore, compares with the Fourier 

series and the sampling theorem only to within an order of 

magnitude.
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Perhaps part of the confusion for Gabor arose because 

the energy of his elementary signal depends on the length- 

to-width ratio of the elementary rectangle and not on the 

area of it as might be expected. The attention to energy 

considerations might have caused him to notice his error 

in calculating the Fourier Transform of s+(t) before making 

the erroneous statement that the elementary signal as given 

by Eqs. (2-10) and (2-ll) "passes into a 'delta function'"

8.S (X—^rOO 0

Perhaps the biggest question left unanswered by both

Gabor and Lerner is the question of convergence of their

representations. Gabor does not mention this question at

all, and Lerner merely states without proof or reference

that his functions v (t) "are complete in the sense thatmnv ' .

we may write almost any 'well-behaved' signal, s(t), as 

s(t) = D a v (t)" and that the u (t) are an "exhaustive 

listing" of the functions obtained from.them. Intuition 

may lead one to the same conclusion, but, to say the least, 

it would be reassuring to have a more concise discussion 

of the circumstances and type of convergence. Neither has 

given any reason for a fundamental area of 0.5© rather 

than, for example, 0.^9 so far as series representation 

and convergence are concerned,

Lerner's greatest contributions, then, were the real

ization that this representation was better suited for sig

nal analysis than information theory and the method of
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orthogonalization of the elementary functions. His sug

gestion that the elementary signals need not be largely 

confined to one rectangle of the time-frequency plane, 

while perhaps true, is not nearly so helpful when it is 

realized that the binomial expansion in his matrix orthog 

onalization process will not converge unless the elemen

tary signals are largely confined to their own rectangle 

only. And, from a practical standpoint, the amount of 

work involved in determining the coefficients for either 

Gabor's or Lerner's representation would be considerable. 

This is further evidenced by the fact that neither author 

published any specific numerical examples.
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CHAPTER 3

The Spheroidal Functions and the {jj Functions

The origin of the angular prolate spheroidal func

tions is given and a list of a number of their properties 

is presented* After definition of the notation to be used 

for bandlimitation and timelimitation is given, the ^ func

tions are defined and their pertinent properties are de

veloped.

3.1 Introduction

The angular prolate spheroidal functions arise from 

the separation of the scalar wave equation expressed in 

prolate spheroidal coordinates and have been applied to the 

solution of a number of boundary value problems, princi

pally in the areas of electromagnetic theory, acoustics, 

and quantum mechanics. Books by FI amine r (6) , Stratton, et 

al. (29), Morse and Feshbach (23), and Meixner and Schafke 

(22) contain considerable information concerning the prop

erties of these functions for application to such problems. 

Flammer and Meixner and Schhfke give extensive lists of fur

ther references.

However, recently Slepian, Poliak, and Landau (l8),

(25), and (27) in a series of 3 papers have pointed out a
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number of properties of these functions which make them 

valuable in certain signal representation problems without 

reference to a coordinate system.

It should be noted that the various authors do not 

agree on the notation for the solutions to the separated 

wave equation nor on the method of their normalization.*

For the presentation in section 3»2 the notation of Flammer 

will be used since it seems the most widely accepted and 

the most useful« The numerical data used in the calcula

tions of constants presented was taken from the tables given 

in Stratton, et al4, since it is the most extensive avail

able to date. As a result the numerical values of u given 

in Table 3-1 assume the normalization of Little and Corbato 

in Stratton, et al, The notation used in the definition of 

the ^functions follows that of Slepian and Poliak (27).

3.2 Solutions to the Angle Function Differential Equation 

Upon separation of the scalar wave equation expressed 

in prolate spheroidal coordinates it is found that the angle 

functions must satisfy the differential equation

2]^°'*) = 0

(3-1)

2\dS (c,t) t ) mnv 8 7
dt

■J 2.2 
G t .

HI

The problem is so acute that in Stratton, et al, both the 
notation and normalization of Stratton and Chu in the theo
retical portion of this volume differ from that used in the 
numerical tables prepared by Little and Corabato, the theo
retical portion having been written a number of years prior 
to the preparation of the tables.
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where c is a real, positive parameter or zero. It is found 

that continuous solutions in the closed t interval (-1,1) 

exist only for certain discrete, real, positive values of 

Since this equation reduces to the associated Legendre 

equation when c - the solutions to this equation, known 

as prolate spheroidal angle functions of the first kind, of 

order m and degree n, are frequently represented in terms 

of an infinite sum of associated Legendre functions as

oo

S (c,t) = / d (c) P (t)
ran' ' ' £—zr r v ' m+rv ’ r=0,1

(3-2)

where the prime over the summation sign indicates that the 

sum is taken over only even values of r when n - m is even 

and over only odd values of r when n - m is odd. By sub

stitution of Eq. (3-2) into Eq, (3-l), after some manipu

lation, it is possible to generate a recursion formula for

the coefficients dmn(c). The numerical values of these
r

coefficients are available in Stratton, et al. for m:

0(l)8, n? m(l)8 and es 0(0.l)l.0(0.2)8,0. Only the zero

th order angle functions are of interest here and therefore 

henceforth m = 0o

The solution of the second portion of the separated 

scalar wave equation results in the radial functions, the 

first kind of which is designated ^ (c,t). Here, too, 

only the zeroth order function is of interest, so m = 0,

Listed below are the pertinent properties given in the 

literature* most of which were given by Meixner and Sch'dfke



and were quoted by Slepian and Pollako 

The! angle functions, SQn(c,t)s

'■ul»■;■ Are continuous in the t interval (-1,1) and real for

ti"':,v-^;o;‘^r^al^;t:».;:'»^'-s-o ■ ■: >± . co i = ^ ■ /, r* V.: ,j\"

v 2» May be extended to be entire functions of the complex 

variable t. i:-

..-'.-Are continuous functions of c for c^ 0.

4» Reduce uniformly to the Legendre Polynomials, Pn(t), 

in ( -1, l) as c-»>0 «

5 o Are orthogonal in the t interval (-1,1).

6. Are complete in (-1,1) over the class of functions 

integrable in absolute square in that interval.

7. Are orthogonal in (-qo, oo) .

8. Are complete in (-00,00) over the class of band- 

limited functions.

9. Have exactly n zeroes in (-1,1).

10. Are even for n even or odd for n odd. 

ll(a) Are normalized by FI amine r, and Stratton and Chu 

such that SQn(c,0) = Pn(o) n even

and S^e,0) = P^(0) n odd

ll(b) Are normalized by Little and Corbato, and Morse 

and Feshbach such that SQn(c,l) = Pn(l) = 1.

ll(c) Are normalized by Meixnerand Schafke such that

p0n(c,t)]2dt = 2-4-t

J

- 26 -
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12. Are related to the radial functions by the equation

R0n^(c,t) “ Kn(°) s0n(c*where Kn(c) is real.

1.3• Satisfy the following relation for all t, real or 

complex,

2c
%■ [ROn)(c -1 >] •S0n(o,t) .

sin c(t-s) „ / _ \.
* (t-s) SOn(o’s)ds

il (3-3)

~lk. Satisfy the following relation for all t, real or 

complex,

2jn -

f

s0n(c*s)ds (3-^)

y-

Xt was the orthogonality over two different points

sets, properties 5 and 7> together with the integral rela

tion, Eq. (3-3)» that interested Slepian, Landau and Poliak, 

In addition to these, the Eq. (3-*0 will be of particular 

interest here.

3.3 Bandlimiting and Timelimiting Notation

Before proceeding, the following notation will be de

fined. Let be an operator which timelimits an arbitrary 

time function, f(t), to an interval of length T seconds cen

tered at t = J?T.
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(f(t) (1 -;:|)T<t< (/ .+ |)T

D. f(t) =

0 < ( / 1
2

t> (/ + |)T

(3-5)

D without subscript is taken to mean j( = 0o

Similarly, define B to be an operator which band-
P

limits an arbitrary function, f(t), whose spectrum is F(w), 

to a band of length 2a radians per second centered at 2^,

|c*}) (2p - l)a<fe<(2p + l)a

BpF(u))

u> < (2p - 1) a, i>(2p + i)a

(3-6)

Here, too, B without subscript is taken to mean p = 0.

It may easily be shown that the bandlimiting opera

tion of Eq„ (3-6) may be carried out on an arbitrary func

tion of time9 f(t)s entirely in the time domain by the re

lation

/©o

f./„\.dPh(t - ^) sin a(t - t)
f(,)E *(t - dl (3-7)B f(t) 

P ' '
/

•oo

In an analogous manner, the timelimiting operation 

may be carried out entirely in the frequency domain by

/bo

B*F(®)

/

F.(.)*-J T(" - s) (3-8)
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3.4 The ^ Functions

As defined and normalized in the manner for which

numerical data is available, the angle functions have vary

ing amounts of energy in (-00, oo). It is convenient for the 

present purposes to scale and renormalize these functions 

in the manner used by Slepian and Poliak. To this end de—

n = 0,1,2,... (3-9)

[un(c)] - J [SQnU.-Oj dt (3-10)

fine

and also

Finally, define

2 An(°)

T un<°)
S0n(c-

2t (3-11)*

It is seen that the constants un(c) are the rms values 

of the prolate spheroidal functions in the t interval

(-1,1). The numerical values for some of these constants

are given in Table 3-1. The significance of the constant

A (c) will become evident presently, 
n' '

*
It is necessary here to digress slightly from the nota
tion of Slepian and Poliak to correct an error* Their 
definition of the tf'functions did not contain the \J2/T 
factor. If it were included, the remainder of their 
results would be correct. Without it, they are not.
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e. - 0.5 0 . « 1.0 ■ C : = 2.0

n

0

•:■■■■ U •.n

1.45422

n

0

u■' - n

1.58317

, n

' 0 ’

u ■ 'n

2.24546

1 0,824757 1 0.850710 1. 0.974434

2 0.632890 2 ; 0.635089 2 0.655957

3 0.53^594 3 0.534890 3 0.537622

4 0.471426 4 0.471509 4 0.472134

5 0,426411 5 0,426443 ■ 5 0.426670

6 0.392240 6 0.392254 6 0.392356

7 0.365161 7 0.365168 7 0,365219

8 0.343022

c

8

= 3.0

0.343026

c

8

= 4.0

0.343054

n mn n un

0 3*97191 0 8.15470

1 1.27105 1 1.95566

2 0.725044 2 0.885229

3 0.550082 3 0.589321

4 0.474531 4 0.482425

5 0.427433 5 0.429512

6 0,392687 6 0.393516

7 0.365386 7 0.365794

8 0.343145 8 0.343367

Table 3-1».

Table of u Normalization Coefficients, n



Henceforth, when no confusion will result from so do

ing, the parameter c will be omitted from the notation for 

these constants and functions, i.e. un(c) will be designated 

simply un«

It is easy to show from property l4, Eq. (3-4), of 

section 3.2 that the functions are bandlimited.

e jC1’SsQ|1(G*s)ds (3-12)

-1 ■

K0n ''C* 1)

Make the substitutions t = -r, s = and, here and in the 

sequel, c = Eq. (3-12) then becomes

/n

2 J R0n^(c 91^ S0n^c* T ) “ n (3-13).

J-§

2 \n
Multiplying both sides by ~J and substituting Eq

(3-ll), the definition of ^(t), this becomes

n
% &<*}

ra

1
2tc

M)e
2n'e

*0

(3-14)

an expression given 

definition of X '? Eq.

Slepian and Poliak. Applying the 

(3-9)9 it follows that
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which shows not only that the functions are bandlimited 

but that the functional form of the time functions in the 

t interval (~2*2^ an<^ that of their spectrums in the to in

terval (-n,n) are the same apart from a constant*

Further, rewrite Eq, (3-3)* property 13 of section 

3«2, as

r 2 f1
¥[& )< .;l)] SOn(°'°)d»

/-I (3-16)

21 2C
Now make the substitutions t * — and s = and multiply

both sides by /---5— , If the proper identifications us
T un

ing Eqs. (3-9) and (3-H) are made, Eq, (3-16) becomes

T
(2

Xn'Kx(t) * sin n(t - C) U/(C) dC (3-17)
n Tn n(t - C) T

J-T 
2

Slepian and Poliak, as had others before, recognized 

that the ^ functions satisfied this eigenvalue problem, and 

they proved that the eigenvalues are real, positive and or

dered as Aq >«..* As a result of this they showed 

that the bandlimited function which loses the least portion 

of its energy upon being timelimited is l^(t), and the time- 

limited function which loses the least portion of its energy 

upon being bandlimited is D^( t), Franz (7) had attacked
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this problem earlier. His conclusion was that one cannot 

concentrate the energy of a timelimited signal into a given 

bandwidth "essentially more” than in the ease of the rec

tangular signal. This conclusion seems to be confirmed 

since the spectrum of a rectangular signal, which is of the 

form , and the spectrum of DU'' (t) , which is of the form

V'(-) , are quite similar in appearance# The portion of the 

energy of ^(t) in the t interval may be found by

It is obvious from Eq. (3-19) and properties five and

six of section 3*2 that

(t) (t) d b

-T
Z-ii

(3-20)

where £ is the Kroneeker delta, and that the set is com- ■■ umn .

plete over this interval. Further, Slepian and Poliak have
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shown that

W (t) *4^ (t)dt = C
<m' ' / nv ' mn (3-21)

by using Eqs. (3-1?) and (3-20) and the identity

roo
sin n(t - u) sin n(u - a) „ sin n(t - s)*(t - u) r.(u - s) dU • ---^^(t - s) (3-22)

Thus the functions are orthogonal over the t interval 

( -tj1,-jj) and orthonormal over the t interval (-oo,oo).

In addition to the above, Eq. (3-1?) may be rewritten

KW *>  C)?> °%(C) dC

By comparing this with Eq. (3-7)> it is seen that

BD %(t) = Xn ^n(t) (3-24)

The role of the eigenvalues, Xn» is now more apparent, 

Eq. (3-2l) shows that each ^ function does have unit total 

energy and Eq. (3-20) shows that the portion of this total 

energy which is in the interval (-g*^) is given by An«

Or, from another viewpoint, when ty^(t) is timelimited,
I

the amount of energy remaining is By Eq. (3-24) if,

after being timelimited, the function is subsequently band- 

limited , the amount of energy remaining is A^» and so on 

through subsequent timelimitations and fcandlimitations.

There are other properties of these eigenvalues which
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are not so apparent. Shown in Table 3•2 are some numerical

values for the X . Slepian and Poliak pointed out that \' n n

remains relatively constant for increasing n until n becomes

2 ogreater than and then it decreases very rapidly,, TheTv

ramifications of this property aid in determining some re

lationships between the error in a series representation of 

a signal and the number of terms included in this repre

sentation, and the discussion of this will be postponed un

til after the series representations of Chapter 4 have been

introduced.

It was shown in Eq. (3^15) that the Fourier Transform 

of ^n(t) is given by

3

(3-25)
C

|W > n

The Fourier Transform of D^( t) will now be derived. Be

gin again with Eq. (3-4)

2jnR0n)(e,l) S0n(G>'t) * I ^jCJSSn„(c,s)ds
On'

(3-26)

Let s = and t = With e = Eq, (3-26) becomes
n

OT
2

s0n(c,-|) = f I (3-27)
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e = 0.5 e = 1. C) e = 2.0

n L hn n Ln b n L hn

0 3.09690 -01 0 5.72582 -01 0 8.80560 -01

1 8.58107 -03 1 6.27913 -02 1 3.55641 -01

2 3.91745 ”05 2 1.23748 -03 2 3.58676 -02

3 7.21139 =08 3 9.20098 -06 3 1.15223 -03

4 7.27142 =11 4 3.71793 -08 4 1.88816 -05

5 4.63777 “14 5 9.49144 -11 5 1.93585 ~07

6 2.04135 ”17 6 1.67157 -13 6 1.36606 -09

7 6.57662 =21 7 2.15445 -16 7 7.04888 -12

8 1.61828 -24 8 2.12072 -19 8 2.77679 -14

c = 3.01 e — 4.0

n Ln h n L hn

0 9.75829 =01 0 9.95886 -01

1 7.09963 =01 1 9.12107 ”01

2 2.05139 -01 2 5.19055 ”01

3 1.82038 =02 3 1.10211 -01

4 7.08147 =04 4 8.82788 =03

5 1.65512 =05 5 3.81292 -04

6 2.64101 =07 6 1.09509 -05

7 3.07374 =09 7 2.27864 -07

8 2.72813 -11 8 3.60655 -09

Table 3=2.

In
Table of Eigenvalues x 10 .
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Multiply both, sides by
'2 \n

T un

and multiply the left side by

Bq. (3-27) then becomes

T

2

l^(t)e“Jh,tdt

J-T
2

(3-28)

The right hand side of this expression is seen to be the 

Fourier Transform of Dl^(t). Since the \f/ functions are 

even or odd depending on whether n is even or odd and, 

identifying Gn the left, this expression may be written, 

finally, as

(3-29)

Comparing Eqs. (3-29) and (3-25) it is interesting to 

note that

n (t)

ft / id/ < n

(3-30)

feu) > 0

There remains now to be demonstrated the orthonormal

ity of the frequency shifted If/ functions. That is, it will 

be shown that

■f*

. s„,nspq (3-31)

s-ao
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where p and q are any positive or negative integers or 

zero. This may be shown very simply by defining r = p -

and rewriting Eq, (3-31) as

(3-32)

Applying Parseval's theorem, this becomes

0m(<»)0n(-» + 2rn)d» = ^mn f
pq

(3-33)

where the Fourier Transform of is denoted by 0^(u>). 

But 0^(w) has been shown to be bandlimited to the region 

for which the magnitude of the argument is less than n

and, thus, the two terms of the integrand are concurrent

ly non-zero only if r = 0 or p = q. But if r =0 Eq® 

(3-32) reduces to the infinite orthogonality relation,

Eq. (3-21), and, therefore, Eq. (3~3l) is established.



CHAPTER 4

Two Dimensional Representations 

Using Prolate Spheroidal Functions

In this chapter the properties of the if/ functions 

developed previously will be applied to obtain two new two 

dimensional representations in which the time-frequency 

structure and the convergence properties are clearly evi

dent. It will be seen that the fundamental area in the 

time-frequency plane to be represented, in addition to hav

ing arbitrary width-to-heighthrati©, is not of fixed but 

largely arbitrary size. Attention is given to errors 

arising from truncation of the series. Several useful 

properties and applications of these representations a,re

4.1 Introduction

The decomposition of a function of time (or a func

tion of frequency) into a form in which both the time and 

frequency structure are apparent can be extremely confusing 

In order to reduce the complexity to at least some extent, 

the two representations to be presented will be formed in 

two steps. In section 4.2 an intermediate representation 

is generated by approximation in the time domain. In sec



tion 4,3 this representation is further broken down, the 

result being one of the desired two dimensional represen

tations, The second two dimensional 'representation is gen

erated in a similar manner in sections 4.4 and 4,5* This 

approach has been purposely chosen to place in evidence 

the time-frequency structure and to make apparent the er

ror which arises due to truncation and the location of 

this error in the time-frequency plane.

In order to prevent the notation from becoming more 

cumbersome than necessary, the following convention is 

adopted! Wnless specifically stated otherwise, a fumma- 

tion sign, £, with a summation index p,q,k, or $ associated 

with it will signify a summation over terms for which the 

summation index takes on all integer values, both positive 

and negative, and zero; a summation sign with a summation 

index, m or n associated with it will signify a summation 

over terms for which the index takes on only positive inte

ger values and zero. The two dimensional plane is defined 

to have time as the abscissa and frequency as the ordinate, 

and p and q will always be used as indices in the vertical 

or frequency direction. The indexes k or J{ will be used as 

indices in the horizontal or time direction, while n or m 

will refer to indexing over the set of orthogonal functions.

4,2 A Representation by Approximation in the Time Domain

Assume that an arbitrary function of time, f(t), or
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its spectrum, F(w), has been given* Certainly f(t) may be 

written as

-0

r
f(t) = i

* * 2 s

a

F(w)e^<Btd« + ^ F.(«)eJwtd».v. +

J
-£1

1_
2n

(2p+l)n
/

F(w)ejwtdw. . 

(2p-i)n

(Vl)

f(t) = 2 1 f(t)
p

(4-2)

Now consider only the p term of Fq, (4-2) , ® f(t)*
F

This single term, being a bandlimited function, may cer

tainly be represented in terms of the ^functions as

B f(t)p v
la W (t - jfT)c^2pat

npjp In' *
(4-3)*

#
As pointed out by Courant and Hilbert (2) even though the 
set of orthogonal functions on the right is a complete set, 
this equation may not be a true equality in the strict 
sense of the word. However, the convergence on the right 
is in the mean square sens©

2 a ^ (t - JT)ej2p0t) 2dt = 0 
n=0 np^ Jn 1

(cont, on following page)

N

1±m I I B f(t) - 
—■no I * P '
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Clearly the set of orthogonal functions on the right 

of Eq, (4-3) is complete since by multiplying both sides by 

e-j2pnt ancj translating a distance JP T, this expression be

come s

£-j2pn(t + pT) Bpf(t + |T) = ! anpjf (4-4)

The function on the left of Eq» (4-4) is now bandlimited to 

-n< b)<n and certainly of finite energy , and j^pn( t are 

known to be complete over this class of functions*

The coefficients a may be determined by multiplyingnp^

(4-3) by ^(t - integrating and applying

the orthonormality relation, Eq* (3-21), as follows

” fT)e“J2?Qtdt =

2 a \ V (t - jp T)e 
npji JnN '

t T)£”J2p!itdt

(^-5)

*

(cost, from previous page)
and it is within this broader definition Of equality, where 
only the mean square difference between the two sides is 
zero, that Eq„ (4-3) and a number of similar equations 
throughout this chapter is written as an equality.



Therefore

oo

|rf(t)} lpn(t - JT)e_j2p0tdt (4-6)

-oo

The ease of evaluation of'Eq* (4-6) may be increased 

by applying Parseval's Theorem and writipg it as

a „ = npjp

■jU + 2pn)/TdW (4.7)

where 0n( to) is the Fourier Transform of (j^( t) . How both of 

the first two terms of the integrand are non-zero only for 

-(2p + 1)q < « < - (2p - l)n, and, thus, the equation is un

changed by replacing B f(a) by simply F(w). Therefore Eq*
P

(4-6) may be written as

a
ppf

oo7

f(t) *Pn(t - iT)s"^2patdt

)
-GO

CM)':

Alternately, the dual orthogonality property of the IjJ

functions allows the a . coefficients to be calculated by
nP/P

an integration over a finite range, for, because
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jBpf(t is bandlimited to the finite ortho-’

gonaiity relation, Eq, (3-20) may be applied# In this case 

Eq, (4-5) would have been

(i+?)T

U-i)T

U +r.)T

n
2 a Lf^(t - ^ T)e j2pnty^(t - J T)e”^2l>ntdt

(f-r)T (4-9)

and therefore

,+f)T

npj?

= j|Bpf(t)j l/^(t - ^T)e_j2pntdt

(4-10)

(?-i)T

The fact that the coefficients can be calculated by inte

gration over a finite range is of considerable importaiice 

in the numerical evaluation of these coefficients.

This orthogonal series, Eq, (4-3), may be substituted 

into Eq. (4-2) to obtain a representation of the arbitrary 

function, f(t) , as follows



f(t) = I ! a

v 7 npjj lns 7

where the ^anp^ J are calculated by Eqs. (4-6), or (4-10).

The structure of* this representation in both the time 

and the frequency domain may be readily seen. In the fre

quency domain every term is restricted to a band of width, 

2ny centered at 2po, and for a given p the inclusion of each 

additional term in n decreases, in an optimum least square 

sense, the mean square difference between the spectrum of 

f(t) in this band and the spectrum of the series represen

tation of f(t).

Concerning the time domain structure, it is known from 

the:finite orthogonality relation, Eq. (3-20), and the pre

viously mentioned properties of the eigenvalues, Xn> that, 

at least for the first few terms in the summation over n,
m

the functions exist largely in the t interval (•'Trlf) *

Thus, this kind of representation lends itself to the de

composition of a signal which exists largely only in a 

time interval T seconds, centered at t * j?T. Since both T 

and n may be picked arbitrarily, the representation is 

quite flexible. However, c » -|j-, and the magnitude of the 

An, for a given n, depends on c? therefore, the number of 

terms necessary in the summation over n surely depends on 

c as might be expected.

The mean square error due to truncation of the series 

representation of B^f(t) is easily obtainable. Assume that



for a given p the summation over n is truncated after Tf. 

terms* The mean square error is given by

Mpoo
IV(*>

J
-oo

N

I

n=0

anp-ST)*J2patI*at

J? T)s
j2pnt/2dt

oo

n«N +1 
P

(4-11)

Further, it may easily be shown, by carrying out the opera

tion on the left above that the size of this error may be 

calculated by

oo
f

N

Mpoo
lv(t)

“dt -

y

a (4-12)

n=0
• oo

In a similar manner it may be shown that the mean 

square error in the time interval |);T<t<( I + |)T in

the representation of B f(.t) by the truncated series is



M

(i+i) t

f
lBpf(t)(2dt

J
(J? -d)T

n=sO

(4-13)

Since, after the first few terms in n, X becomes. , ' n v

small very fast, it may be expected that in the frequency 

interval (2p - l)h<w<(2p + l)n the fit in the time interval 

(/• - ^)T<t<(J + '^)T- will be good after only a few terms. 

Since ^ depends on c» the number of terms necessary also

The mean square error of the representation of f(t),

Eq> (4—12 ^ may be obtained in a manner similar to the

above. If only the terms -P4Tp$P and ©<rh$Jf are included,
P

the error would be

/

j f(t)

/

JT)e j2pnt| 2dt _

£J0
r
jf(t)j2dt

J
-oo

P
00
r

»P/
p ss-P n=0

e-j2pntdt

P
oo
r

a
nPf

p =-P n=0

f(t)^n(t

J
QT)£^2pntdt
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« " J 2pnt% (t-|T) e " J2qntdt

(4-l4)

Now from Eq. (4-8) the integral in the second term on the
*

right is a and the integral in the third term is a •

Due to Eq. (3-3l) the integral in the last term is equal to 

the product of the Kronecker deltas, £mT1 ♦ Therefore,

■®q» (4-l4) reduces to

[ P ■*

I'O'i'" -1 S-»,r

pss-p n=0

(4—15)

That is, the error is simply the difference between the 

mean square value of f(t) and that of its representation,

and this is true even though may be different for each 

value of p. Of course, completeness insures that this 

error may be made as small as desired by including enough 

termso It is of considerable interest to note here, too,

that the two dimensional structure of the error is also

4,3 A Further Decomposition to Two dimensions

The representation of a signal developed in section 

4.2, while quite satisfactory for a certain class of signal



representation problems, does not have the general two di

mensional structure desired# It cannot deal satisfactorily 

with a signal if it is desired to break up the time duration 

of the signal into more than one interval of length T sec

onds#

It is possible to obtain the desired two dimensional 

structure by carrying out a further decomposition of the 

representation of section 4#2# Begin once more with a 

representation of the arbitrary function, f(t), as in Eq# 

(4.2).

f(t) » B f(t)P V / t-16)

thAgain consider only the p term of this series, B f(t). 

The term may be represented as

! n
B f (t) ■ 12 bp- - - - - ~np/1 l »<* - * T)£J2Pfit (4-17)

In this case, for each jl, each term is zero outside of the 

time interval (i - ^)T < t < ( / + |>)T* and, although all terms 

are not confined entirely to the frequency interval 

(2p - l)fi<iu<(2p + 1 )n, they are to as great an extent as is 

possible in view of the appropriate properties of the ^func

tions pointed out in section 3»4„ Once again the orthogon

al set on the right side of Eq# (4-17) is complete since 

fyn(t$ complete in the time interval (",,^»^)»

The coefficients b may be calculated by multiplyingnpf
(4-17) hy Dk^(t - kT)e”^2p*rt and integrating.



00

r
{Bpf(t)]Dk^jn(t

j
-GO
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j2p0tdt

i n
= 2 l b

00
f

np/
Dk^m(t - kT)e“j2pnt^( t - j?T)e j2p£5tdt

y
•oo (4-18)

and therefore

1
An

U+Z)T
f
fBpf(t?4n(t ” ^T)e"J2Pfitdt (4*

J

An expression for bnp^ may be obtained for which f (t) , 

and not Bpf(t), is required. To obtain this expression 

substitute Iq. (3-7) into Bq. (4-19)•

(l+i)T
f

npj?
1
An

/oo 

f (x) e

J

.12pq( t-T ) sin n( t-T ) dt

(4-20)

Reversing the order of integration, this becomes
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1> . * t—
n

OD (1 + j ) T

f  (
t ?) U>(t

it (t - t | 7n 

00 .;:(f-i).T

ZT)dtdt

(4-21)

If now the substitution s = (t - JT) Is made and then Eq, 

(3-1?) is applied, this reduces to

f
bnp; = f(*)%(T -J^e-^P^dT (4-22)

J
-oo

A representation of the complete arbitrary function, 

f(t) may be obtained by substituting Eq® (4-17) into Eq, 

(4-16),

f(t) = I if bnpj^(t -/T)£J2pot (4-23)

3
The mean square error due to truncation of the series 

representation of the bandlimited function as in Eq. (4-17) 

may be calculated as before® For this purpose assume that 

only terms for L and 0^ n have been included®

Then the mean square difference between B^f(t) and the 

series representation of it is given by

are given by Eqs. (4-19) or (4-22)*where the |b
np/
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L N*

J_ 'Vr D^(t ' •

^=-L n=0

(4-24)

It may be mentioned in passing that the mean square 

error involved in truncating the complete series represen

tation of f(t), Eq„ (4-23), is not simply the sum of the 

mean square errors of the representations of each B^f(t) 

terms. However, such a sum would give a good estimate of

the total error, particularly in the case of large values 

of c. Basically this results from the fact that the time 

and frequency shifted lj/ functions are not orthogonal oyer 

a finite time interval, That is, if the limits of Integra- 

tion of Eq, (3-31) fare changed to -57 andfj, the value of 

the integral would not be zero for in ** n and p ji q, This 

value would be expected to be small compared to the result 

for p = q, however, since in the frequency domain most of 

the energy of the first term of the integrand would be near

pn and most of that of the second would be near qfl.

It is of interest here again to examine the two dimen

sional structure of this representation as given in Eq, 

(4-23)» First, recall that for a given j and p, the sum
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of the terms over n represents a finite piece in the time 

domain of a hand limited function or D^B^f(t). Certainly, 

every term in Eq. (4-23) is absolutely time limited and (the 

extent depending on c) nearly bandlimited when n is small. 

However, for a given p and J, each term contains informa

tion only from an absolutely bandlimited portion of f(t) 

and largely from a timelimited portion. This can be seen 

most clearly by applying Parseval’s Theorem to Eq, (4-22) 

and from Eq, (4-22) itself, respectively.

4,4 A Representation by Approximation in the Frequency

Domain

A representation analogous to that presented in sec

tion 4.2 may be constructed by the same process used there, 

but beginning in the frequency domain rather than the time 

domain. The strength of this analogy would be more evident 

if-, the development was carried out in the frequency domain. 

However, since the analogy is not as important as the prop

erties of the representations, themselves, and since calcu

lation would usually be carried out in the time domain, the 

development will be done in the time domain.

To carry out this development begin with the arbitrary 

function, f(t), or its spectrum, F(w) , expressed as
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T T
2
r

+ jf(t')s“'4“*dt +
f(t)e“Jwtd1

fe + .. .+ ^f(t)e“Jwtdt+

) )
(;-i)T

(4-25)

-21
2 '

T
2

Jt
f(t) =: Z %f(t) (4-26)

The X" ' term, D^f(t), of Eq, (4-26) may be represented in 

terms of an orthogonal expansion of the ^functions as

%f(t) « I (4-27)

Once again, the set of functions on the right is a complete

set since the IjJ functions are complete over the time inter-

- / T T\
val

If Eq# (4-27) is substituted into Eq, (4-26) a repre

sentation valid for f(t) is obtained.

f(t) = l ! c_D^n(t
T)e' (4-28)

The coefficients, cnp^ » may be calculated by multiply

ing Eq, (4-28) by Djc^,(t - kT)®-^^^45- and integrating as 

follows

-j2p£itdt =
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ft n
II e

m

kT)e”j2pntdt

(4-29)

Therefore

°nPi

U+i) t

(/-i)T

iT)e“^2pfttdt (4-30)

In order to examine the time-frequency structure of* 

this representation, take the Fourier Transform of tooth 

sides of Eq® (4-28 )« The result is

FM - i ! OnpJn(„ - 2p0)£-J(“ - 2pa)/T (4.31)

where Pn(u) is the Fourier Transform of D^(t)» Since 

0 (w) differs from ^(w) (or rather (|^(^)) by only a con

stant, the above representation provides, for each Jt a 

least squares fit to the entire spectrum of a iimelimited 

function tout in such a way that, as the number of n terms 

is increased from zero, the fit will toe best first near

The time domain approximation is apparent from Eq» 

(4-28) itself® The sum of the terms over n for each $ sim

ply gives a least squares fit to a timelimited portion of



The mean square error in any time interval due to 

truncation of the summation over n is available from Eq» 

(4-27) as follows?

where it was assumed that the series was terminated after 

Ity + 1 terms.

The mean square error due to truncation of Eq. (4-27) 

in the interval (2p - 1 )ftid<C(2p + l) may also be obtained 

To do so form the mean square value of the Fourier Trans

form of the difference between Dp f(t) and the truncated 

series representation of it in that region.

(4-32)

(i+i)T

(2p+i)n
f

n=0
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1
2%

c B 0 (c»j— 
mt p

E-j(M-2pn)J>T j2 dx

(4-33)-oo

where again 0a(«.) is the Fourier Transform of 2)^('k)<> Re- 

turning to the time domain, this is

M B af(t) -

-00 (4-3't)

Multiplying this.out and carrying out the indicated opera

tions recalling that t ) = An^( * ) from Eq. (3-24) this

becomes

(4-35)

To calculate the total error due to truncation of the 

complete representation of f(t), Eq. (4-28), it is immedi

ately apparent from Eq. (4-32) that it is only necessary to 

sum Eq. (4-32) over all Jo here, too, a different number 

of n terms ""may be used for each 1 so as to adjust the good

ness of fit in any time interval as desired.
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4,5 A Further Decomposition to Two Dimensions

As with the representation of section 4,2, the repre

sentation of section 4,4 does not have a general two dimen

sional structure. It could deal adequately with a signal 

which exists largely in the frequency interval (2p - l)fi<^(«<£ 

(2p + l)n, but it would not be very satisfactory for more 

general signals. Also as before, this representation may 

be further decomposed so as to obtain the desired two dimen

sional structure.

To carry out the decomposition, begin with the arbi

trary function, f(t), again represented as in Eq, (4-26)

f(t) = 2 fyf(t) (4-36)

"fell
The jf ten of this series may he represented as

D; f(t) = I 2 dnp/ [BDflfcCt -/T)Jfcj2p0t (4-37)

Taking the Fourier Transform of this expression, noting 

again from Eq, (3-21) that BD^(t) = An^1(t), yields

%F(w) =11 <JnpiAn0n(««> - 2pn)e-J^ - (4-38)

where again 0 (ta) is the Fourier Transform of (t), Since n . <n- -

0n( w) is zero when the magnitude of its argument is greater 

than n, the orthogonal series here approximates a bandlimit- 

ed section of the spectrum of a timelimited function or 

BpD^ f (t), Here, too, the t/' functions are complete over 

this finite interval and so the mean square error of this



representation may be reduced to any arbitrarily small 

amount«

The coefficients, d^ * may fee obtained from Eq, (4-37) 

in the usual manner® Multiply both sides by l|A>(t-jjT}e 

and integrate over the appropriate limits.

CD

(
Df f (t) fm( t - i T)e^ j2qfltdt = 

~00

fa
d. *J2peitym(-t '-/T}.rJ2^

(4-39)

After a change of variables in the integral on the right it

becomes ISq* (3-31) whioh has been shown to be equal to the

product of the Kroneeker deltas, $ Therefore
- mn upq

d.

(t+i)T

f
f(t)^(t - ^T)e-J2p0tdt (4-4©)

/

(W)T

©f course, by substituting Eq, (4-37) into Eq. (4-36) 

which uses these coefficients, a representation for f(t) is 

obtained as follows

f(t) = 1 I 1 dnp^ [bD, i^(t - iT)Jej2p0t (4-4.1).
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If the expansion, Eq, (4-37)» of a timelimited portion 

of f(t) is truncated such that only terms for -P^p^P and 

O^n^N^ are included, it can be shown in a manner similar 

to previous such calculations that the mean square error

|2>v <*-**>

a-i) t

It may be noted that, as with the representation of 

section 4,3* the mean square error involved in truncating 

the complete series representation of f(t), Eq. (4-4l), is 

not simply the sum over all j? of the errors in represent

ing the Djj f(t) terms as given by Eq, (4-39)* For as 

pointed out before, the mean square value of the sum of two 

time functions is not equal to the sum of their mean square 

values o

The two dimensional structure of this representation 

is very analogous to that of section 4„3» It can be seen 

from Eq, (4-4l) that every term is bandlimited to (2p - 1)n 

<'^<(2p + l)n and, due to the properties of the ^ functions, 

largely time limited to (/ - ^■)T<'t<( f + ^)T. But it can 

be seen from Eq, (4-4o) that each term contains no informa

tion at all about f(t) from outside (^- ^).T t <" ( / + ^)T 

and relatively little (for the n terms of primary interest)

involved is given by

N

if(t)i2dt - y
n Pi



from outside of (2p - l)fl<; m <_(2p + l)n<

4,6 The Bandlimited or Timelimited Representation of a

Function

So that the four representations presented may be com

pared , they are repeated here in order of their original

presentation

f(t) = I 1 a 4^ (t ~ j?T)ej2pnt 
V 7 npjj * nv '

/-oo

£ n
f(t) = 2 2 2 - /t);.*2*^

^00

■J0D-

f(t) >z ?>»PiW»^ - j2pflt

(i+i)T

■ T” /f(t)</^(t - ^T)e“J2pntdt 

An

(jp-i)T

f(t)
4>
2 * dnP/ fa :K <? - fTl

j2pfit

(/ +£)T
■ t /“’v*

(i-i)T

(4-43)

(4-44)

(4-45)

(4-46)

(4-47)

(4-49)

$ T)£"^2l>0^dt (4-



(4-4l) and (4-43) that for a given f(t), the a^ and b^

are identical. The same is true of c and d -, Also,
npj np/

it was apparent from the derivation of the second repre

sentation, Eq„ (4-45), that for this representation, for
n

fixed p and j| , the % yields the function D, B f(t) and for 
, „ , * P 1
P U

fixed p, the 2 2 yields the function B f(t), It is also
P n . P ■

true that for fixed /, the 2 2 yields the function Dpf(t), 

This may be seen by comparing the first and second repre

First of all, it is immediately apparent from Eqs,

sentations, Eqs, (4-43) and (4-45), and noting that if 

only one value of jl in the second is used, the two repre

sentations are identical except that every term in the sec

ond is the timelimited version of the corresponding term of 

the first. Therefore, since the first representation

yields the function f(t), the second yields 1^ f(t).

A corresponding result may be obtained for the third 

and fourth representations. It is apparent from the deri

vation of the fourth representation, Eq, (4-49), that for
n

fixed J? and p the 2 results in B D. f(t) and for fixed i
_ „ Jr !lp 13,

the 2. 2 results in D^f(t), It is also true that for fixed 
k n

p the 2 2 results in B f(t).» This may be seen again by

noting that if only one value of p is chosen in the fourth

representation, the only difference between the two is that

every term in the fourth is the bandlimited version of the
P n '

corresponding one in the third, and, therefore, since 2 2
' l n .

yields f(t) in the third, the 2 2 yields B f(t) in the four



Thus, if one has the expansion coefficients of a func

tion for either the representation of Eq. (4-45) or that of 

Eq. (4-49)* not only is the portion of f(t) which occupies, 

in the sense of the ^ functions, any finite area of the 

time-frequency plane available, but also that portion which 

is in any vertical or horizontal strip of infinite length 

or any set of such strips.

4.7 Multiplication of Two Dimensional Representations or

of Their Spectrums

A further group of properties of these representations 

may be demonstrated. If it is desired to combine two func

tions expressed in two dimensional form either by forming 

their product or by forming the product of their spectrums, 

it is possible to obtain a sampled form of the result from 

the appropriate expansion coefficients alone.

For example, suppose it is desired to determine the 

output, f(t), which results from applying an input, e(t), 

to a linear system whose impulse response is g(t), Then 

certainly

F(w) » E(to)G(w) (4-51)

where E(to) ,F(ta) , and G(w) are the Fourier Tranforms of 

e(t),f(t), and g(t), respectively. An alternate method of 

calculation is the use of convolution in the time domain

- 63 -

and so
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f(t) = le(x)g(t ~ T.)dT (4-52)

If, then, e(t) and g(t) are expressed in terms of Eq. (4-47), 

f(t) may he written as

f(t) =

go

r

k St m n
2 2 2 2cnp^ mpk

J
Dt J
^f-k

t-T.) dt

»oo

k J i n
2 p V* Sp A

b lit b ■ © C , €npp mpk
j2pfit

oo

%(t-T-kT)dT 
T-k

00 (4-53)

where e are the coefficients for e(t), and e , are the nPi \ / s mpk

coefficients for g(t)« Then for t = rT where r is an inte

ger, due to the finite orthogonality property, Eq„ (3-20), 

and property ten of section 3«2, this reduces to

f (rT)
n
2 A

O G /
npjf np(r- ■J)

(-DnV
(4-54)

Thus the output at sampled instants can be obtained from 

only the products of the coefficients, a very simple oper

ation to carry out«



A similar result may be demonstrated for the first of 

the two dimensional representations, Eq. (4-45)• First, 

notice that if the transforms of the representations are 

substituted into Eq. (4-51) the result is

F(“) ■ J 2 I b *„(, .-j.(» - 2pn)/T
X

fit J (. - 2qQ)c-J(“ - 2«°)kT
mqlc mv '

(4-55)

where b^ are the coefficients for E((o) , b are the co

efficients for G(to) and 0i(to) is the transform of Dl/^(t)>

Recall, however, from the derivation of this representa-
Jt n

tion in section 4.3 that for a given p and $ the 1,1 and 
.km

the 2 2, respectively, are bandlimited functions, and thus
St n q k m

the product of 2 2 2 and 222 would be zero unless p » q. 

Then expressing Eq, (4-55) in the time domain by convolu

tion, this would be

p 1 k m n .
f(t) = 2 2 2 2 2 b l . xv ' np/ mpk

oo

W(t-T

T ■

»oo

j2pn(t-T) dt

(4-56)

But the integral in Eq. (4-56) is identical to that in Eq. 

(4-53) and so, by following the same steps as before, it 

can be shown that



f(rT) a II Zb b / #V(-l)'nA e^2pfirT (4-57)
npj np (r-i ) ' ’ /Nn v ^' '

and one may see, for example, bow the output time function

is affected by varying the bandwidth of the input.

The other two representations yield a similar type of

result in the frequency domain for the multiplication of

the representations of two signals in the time domain.

Assume that the time functions, e(t) and f(t), are given

and the product g(t) = e(t)f(t) is to be formed. This may

be computed in the frequency domain as

oo
r

) = 1
2 %

J

E(A )f(w - A )dA (4-58)

• oo

Then if both E(t*») and F(w) are expressed in terms of the 

transform of the representation of Eq, (4-43) and these 

substituted into Eq, (4-58) the result would be

G(w) 58 h i 2 1
m n
Z Z a & Xnp; mqjp

co
f

J

0n(A- 2ph) e " ^ ^ “ 2p0^T0m (to-A“2qq )|e-j(««J-X--2qQ)fTd^

»00 (4-59)

where a are the coefficients for E(w), a . are the eo- 
npj ’ mq,(

efficients for F(u>) and 0^(m) is the transform of l^(t) #
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If C « ( A - 2pn) this becomes

G(uj) = hr 2 1 2 2 a a . X 2 it np/ mq^

oo
/■

^(O0m(»-C-=(ptq)«)E-df“-2(p+q)n^TdC (4-6o)

7

- oo

In this case at ca == 2rh where r is an integer, due to the 

fact that 0n(cu) is bandlimited to |fiaj < Q, the integrand is 

zero unless q = r - p and Eq, (4-60) becomes

oo
r

hr 2 2 2 a a / 0 (C)0 (-C)dC (4-6l)
2% nvjf m(r-p)/ *n>/7m' ' .' . .

J
-oo

Applying Parseval’s Theorem and the orthonormality condition 

this reduces to

G(2rn) =

G(2ra) » 2 2 a a / \» (4-62)' / np^ n(r-p)/ ' 7

To derive the similar result for the second two dimen

sional representation, Eq„ (4-49), begin first in the time 

domain with

g(t) » e(t)f(t) =

i P n , ^. k q m
U!d \ V (t-iT)eJ2pnt 2 2 2

npj/ An >nx '
d . X ^ (t-kT)ej2qnt 
mqk7'm'mv ' -

(4-63)



Recall here from the derivation of this representation in
p n

section 4»5 that for a given J! and k the summation 2* 2 and
fm ^ ■

2, respectively, are timelimited functions 
■ Jl p n k q m

and thus the product of 2 22 and 22 2 is zero except when 

$ ss k» If now Eq, (4-63) is written in terms of the fre

quency domain using Eq, (4-58) the result is

®(w.) 1
2'1t

q m n 
2 2 2 d . dnp/ mq; X

f
0JA-2pa)e-j<A-2^T0J^^

-oo (4-64)

But the integral on the right side is the same as that of 

Eq, (4-59) and since the value of this integral was shown 

there to be 2it for m = n and p = q and zero otherwise, 

assuming as = 2rn, Eq0 (4-64) reduces to

e(2rn) = f I l dnp(an(r_p)^ (4-65)

Thus by very simple calculations, one can, for example, see 

how the various parts of the energy spectrum of a signal 

change with time.

4,8 A Technique for Time Variable Systems

By a slightly different technique it is possible to 

obtain the output in continuous form for the more general 

time-variable system in terms of the two representations.
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Assume once again that the input to a system is given by 

e(t) and the resulting output is f ( t ) , Time variable sys

tems are also frequently specified in terms of their im

pulse response, which in this case is a\ function of two 

variables, g(t,t ) , This function is interpreted as the 

output at time t due to an impulse occurring at the input 

at time t « Then it is known (see, for example, Ref, T, 

page 9^) that the output of the system is given by

f(t)

t

f

e(x)g( t,t)dx

)
-oo

(4-66)

Since for a physically realizable system g(t,t) * 0 for 

T>t, the upper limit could have just as well been infinite 

Assume first that the input, e(t), is represented in 

terms of Eq, (4-47)

e (t) = Z 1 S 1D,lf (t 
v ' npf % 'nv iT)e (k-67)

where

U + e)T

'up/
j- jf(t)^(t - /T)e-j2pntdt (4-68)

(l-s)T

The impulse response, g(t,1), may be represented as
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/ n
g(t,T) = 2 2 cnpi(t)D^n(, -|T)e

42 pm (4-

where

Cnpj? ^^
1
An

(r+i)T

-/T)e-J2pflTdT

/

(jP-£)t

(4-70)

The system output results from the substitution of Eqs,

(4-69) and (4-67) into Eq. (4-66) 

f(t) = .

j k m n
2 2 2 2 £ , c . (t)

npj{ mplc' 7

7

(^ + X)T

(^( t;_/T) e J2pntDkl^m( t-kT) e J2PnTdT

(4-71)

U~i) T

Upon a change of variable 

f(t) =

T
2

i m n
222c c ,(t)npi mp7v '

ip(^)e j2pfi(A+n) t^(^)e J2pn(^+^ T-) dA

(4-72)
- T 
2

Factoring out the constant portion of the exponent and 

applying Parseval's Theorem to the integral that remains,
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f(t) =

oo

A hi n

v v v *
L> Li u G C

nPi
(t)

j4p£ifT

2 %

$n(w-2pn) 0m(-(*)+2po)du)

(4-73)
-oo

Upon a change of variable and substitution for 0n(C) from 

Eq. (3-29)

f(t) =

i m n 
2 2 £

xipjt mp](

(t) f/rrn

00

r

nv2n/rmv 2nt~m *  c.

;
-00 (4-74)

It is seen that this reduces to

f(t) . i n„p,(*-75)

A similar result may be obtained for the two dimension

al representation of Eq, (4-45)» In this case the represen

tation of g(t,x) would be

.*(;* t T)

where

i n
2 2 bnp/t>D/^n('t ->T>£ (4-76)

U +£)T
r

b. ^(t) 
nPiv '

1
An

jBpe( * . t| (t - /Tje^^dT (4-77)

J
U-i) T



- 72 -

The representation for e(t) would be similar except 

that the coefficients would be constants rather than func

tions of t, Then to find the system output, f(t), both of

these representations may be substituted into Eq, (4-66).

Upon so doing it may be recalled again that for this type
i n

of representation for each p the £ £ is a bandlimited func

tion, and, therefore, as before, the integral of the pro

duct of all terras of unlike p will be zero. The output may

then be written as 

f(t) -

U+i) T
\

I f
£

k m n 
£ £ £ (t) J l£(T-^T)ej2pnTDk^m(T-kT)ej2pnTdT

Q i (4-78)

However, this integral is seen to be identical with that in 

Eq, ' (4-71) and, therefore, the output becomes

f(t)
pi n
£ £ £

A

b , bnpi
(t

£j4pa?T
‘n (4-79)

With these results it is seen to be possible to deter

mine, as before, the effect of any portion of the input sig

nal or of the mathematical description of the system on the 

output signal. The output is given as a continuous time 

function rather than as values at discrete times as with the 

approach of section 4,7, The disadvantage here is that the 

coefficients for the representation of g(i»'t) are more diffi 

cult to calculate.
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4,9 Ambiguity Functions

Frequently in the study of radar signals and similar 

problems, application is made of a concept introduced by 

Woodward (34) which is known as the ambiguity function* 

Klauder et,alt (l6) and Klauder (15) made use of this con

cept in the design of chirp radar* The ambiguity function 

is defined (using Woodward’s notation) by

a(T,0)

00
f

u(t)u (t + t)e~^7t^tdt (4-80)

J
-oo

This function is seen to be a correlation function for 

a combined time and frequency shift* The variable, T, is 

the time shift and in the radar problem is associated with 

the range of the target. The variable, 0, is considered 

as the Doppler shift associated with the velocity of the 

radar target. The details of the application of this func

tion will not be discussed here, but it will be shown that 

the ambiguity function of a given signal may be evaluated 

at discrete values of T and 0 by a technique very similar 

to that employed in section 4,7 for the linear system prob

lem,

Assume that the signal, u(t), is represented in terms 

of the two dimensional representation of Eq, (4-45)• Then 

substituting into Eq, (4-80), this gives
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r _
*(*.«> = P i 1 bnp/D^n(t - ,T)EJ2«>0t X

-00

I II 2 b*kmDk_i^ l^m( t + T~kT)e""^2<inte'’^2lC^t dt (k-8l)

Assume also that the values of 7(( T *0) ar© desired for 

t = rT and 2%0 = 2sn,r and s both being integers either 

positive, negative or zero.

Recall, as before, for the first portion of the inte

grand of Eq, (4-8l), the portion representing u(t), that
i n

for a given p the 2 2 is bandlimited to (2p - l)n<« <

(2p + l)n. Similarly, for the second portion of the inte-

grand, the portion representing u (t + t), for a given q
■■■ ’ ■ k m
the 2 2 is the conjugate of a function bandlimited to

(2q - l)Q<w<(2q + l)n. If the exponential involving 0

is included as part of the second portion of the integrand
km’’

and if 2tc0 = 2sn, then for a given q the 2 2 is the conju

gate of a function bandlimited to (2q + 2s - 1)q <[ io <C 

(2q + 2s + 1)£1, Therefore, due to Parseval's Theorem, the 

integral of the product of these two portions will be zero 

unless p =q+sorq=p-s, Eq. (4-8l), assuming also 

x = rT, then reduces to

00
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X(rT,2£) »

U+i)?
{

p / k m n '
i tin b b , . u/ (t-^T)D. ^ (t+rT-kT)dt

npjf m(p-s|k'nv * ' k-r/ m'

/

(i+i)T
r ;mn
] 12 s t (r+y>y4(

(f-i)T

p ^ n #
_ £ ^ t ^np^^nXp-s)(r+J)\i (4-82)

Again, this is a very simple operation to perform.
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CHAPTER 5

Examples of Two Dimensional Representations

In this chapter numerical examples of one of the two 

dimensional representations are presented for two differ

ent time functions. The expansion coefficients for the

larger terms are given together with the representation of 

the function in both tabular and graphical form. Following 

this the result of the convolution of the representations 

of the two functions is given.

5.1 The Representation of f(t) = u( t)e~

As a first example the function f(t) = u(t)e -t

where u(t) is the unit step function, will be presented in 

terms of the representation of section 4.3* This represen

tation was given by Eqs. (4-23) and (4-19) which are re

peated here for convenience,

f(t) = i 2 S - n)sj2pGt (5-i)

where

(JP+')T
' r-

{Bpf(t?^(t ■ ^T)e~j2patdt (5-2)

(j?-£)t

For this representation, the following values were arbi-

nP*
1
Xn
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trarily chosen; c = 0.5» T =0.2, and therefore n =5*0.

The coefficients, b . , were calculated for 0<n<^l,np^p ^ ■

0<£ p^T 1, and O^JP’^,8. The results of these calculations

are presented in Table 5-1 as a magnitude and an angle in 

radians in a format such that each rectangle of the table 

may be thought of as an area in the time-frequency plane.

It is seen that terms for indexing in the J? or time direc

tion proceed to the right while terms for p =1 lie above 

those for p = 0 as they would in the time-frequency plane. 

Of course, so long as f(t) is a real function of time, 

bn(_p)j) is the complex conjugate of b^i thus the values 

of the coefficients for p = -1 are also available and could 

have been placed in a row of rectangles below the row con

taining the terms for p = 0. No additional information is 

conveyed by so doing, however.

The number in parentheses in each rectangle of Table

5-1 is iLlb .I2\ for the coefficients of that rectangle. 
n=01 npx I ' n n

Recall that for a given p and i the 2 of the terms in Eq.

(5-l) results in D.B f(t) and 2 ib ! A is the mean 
v ' * P ' npjp I /'n

square value of D.B f(t). Hence the parenthesized number
* P

indicates the degree of approximation of D^B f(t) and
P

indicates the portion of f(t) assigned to each rectangular

area by this representation.

By considering the trends of these parenthesized num

bers from rectangle to rectangle it is seen that the repre

sentation illustrates many of the trends which intuition
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p vn\ 0 1 2

0 0.13724/4.833 0.11871/4.646 0.06954/4.352
1

1 0.04237/3.378

(0.005849)

0.07963/2.092

(0.004420)

0.10979/1.717

(0.001601)

0 0.34978/ 0.0 0.50223/ 0.0 0.56130/ 0.0
0

1 0.31841/ 0.0 0.19587/ 0.0 0.00617/ 0.0

(0.03876) (0.07844) (0.09757)

P
n\

3 -------5-- ----- 5

0 0.02577/3.366 0.03235/1.953 0.03118/1.442
1

1 0.09079/1.424 0.04298/0.822 0.03475/5.468

(0.0002764) (0.0003425) (0.0003116)

0 0.51523/ 0.0 0.40215/ 0.0 0.28293/ 0.0
0

1 0.15622/ n 0.22073/ n 0.18126/ w

(0.08242) (0.05426) (0.02507)

P
\l ^
n\

7 8

0 0.01502/0.601 0.01685/5.295 0.02011/4.708
X

1 0.04683/4.805 0.03096/4.264 0,01882/2.729

(O.OOOO887) (0.0000983) (0.000128)

0 0.20387/ 0.0 0.17367/ 0.0 0.16883/ 0.0
0

1 0.09117/ n 0.01980/ n 0.00500/ n

(0.01295) (0.00935) (0.00883)

Table 5“1. Coefficients, for f(t) u(t)e
t



might prediet0 Considering the horizontal strip in which 

p = 0 it is seen that the general time domain structure is 

presents and, as Jt increases, after reaching a maximum, the 

representation tends toward zero. In the horizontal strip 

for p s 1 it is seen that the representation is largest at 

the origin and decreases quickly with increasing In

addition to the gross time domain structure, this may be 

attributed to the jump discontinuity of f(t) at the origin.

It may be shown easily that the total energy of 

f(t) = u(t)e is 00500. The total energy of this function 

in the time interval of representation, -0,10 <t<1.7© sec, 

is 0.483. Further, it is shown easily that for f(t) » 

u( t )e””^

F(m) = -h r (5-3)
1 + m

From this the energy of Bf(t), i.e. the energy of F(a) in

-5<m<3» is found to be 0,4372S the energy in 5 •< w < 15 is

0.0208, From Table 5~1 it maY he shown that 
8 3. 2

jlo ni©lbnOjp/ ^n is and therefore from Eq. (4-24)

the mean square error in representing Bf(t) is 0.0333. The 

ji?© I bnl^ I ^n ds 0*°i31 and, therefore, the mean square 

error in representing B^f(t) is 0.0077*

The results of the substitution of the values of Table 

5-1 into Eq, (5-l) at 19 values of t are shown in Table 

5-2 and plotted in Figs. 5~1 and 5-2* The tabular results 

are given both for fQ(t), the summation using only terms
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t f (t) 
ov '

^(t) f(t) =

p = 0 only p = -1, 0 and 1 u(t)e”

-0.1 0.3102 0.0759 0.0

0.0 0.4412 0.4827 1.0

0.1 0.5373 0.8256 0.9048

0.2 0.6335 0.9136 O.8I87

0.3 0.6772 0.7576 0.7408

0.4 0.7081 0,6242 0.6703

0.5 0.6802 0.5844 0.6065

0.6 0.6499 0.5850 0.5488

0.7 0.5665 0.4953 0.4966

0.8 0.5073 0.4368 0.4493

0.9 0.4075 0.3758
/

0.4066

1.0 0.3569 0.3909 0.3679

1.1 O.2785 0.3336 0.3329

1,2 0,2572 0.2950 0.3012

1.3 0.2158 0.2511 0.2725

1.4 0.2191 0.2579 0.2466

1.5 0.2046 0.2303 0.2231

1.6 0.2130 0.1986 0.2019

1» 7 0.2025 0.1643 0,1827

Table 5 = 2,, Values of fQ(t) and f^(t) for

f(t) = u(t)e”t.
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for which p = 0, and f-^t), the summation using terms for 

p = -1, 0, and +1, in Table 5-2. The function, fQ(t), is 

shown in Fig, 5-lj fx(t) is shown in Fig. 5-2. In each 

case, f(t) is also given for comparison. It is even more 

apparent here that the inclusion of B^f(t) and B^^f(t) has 

the greatest effect near the time origin. It is seen, how

ever, that the greatest error also still occurs near the 

time origin. Hence, if it were desired to reduce the over

all error still further, more terms for which J = 0 or 1 

should be included. This might have also been suspected 

from Table 5-1 even if the exact functional form were not 

known. That is, in Table 5-1 when comparing coefficients 

in vertical strips, it is seen that, as p is increased, 

the coefficients decrease the slowest when j( is small; 

therefore, additional terms in this region are likely to 

make the greatest contribution. For example, the coeffi

cient bQ20 is 0.06432/4.765, which is still almost half as 

large in magnitude as

OB
5.2 The Representation of f(t) = u(t)e sin 3t

The example given in section 5*1 was relatively severe 

in that it contained a jump discontinuity, thus causing the 

spectrum of f(t) to decrease only as ~ as ^ becomes large« 

For a second example the function f(t) = u(t)e sin 3t 

is chosen. It is seen that this function has a jump dis

continuity in its first derivative, and, therefore, its 

spectrum falls off as ”2 large w* Is shown easily
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that for this function

F(w) = (5-4)
(1 + jWr + 9

Once again the representation is given in terms of

Eqs. (5-1) and (5-2). The appropriate coefficients are

given in Table 5=3 in the same format as before. Again the

general time structure is apparent from the parenthesized 
1 ,2

numbers, n?o/bnpjp| V' lookin£ at those in the hori

zontal strip for which p = 0, it is seen that in the 

time interval represented, 1,8 sec., the sinusoidal func

tion nearly completes one oscillation. It might further 

be expected that most of the oscillatory information would 

be contained in this horizontal strip since for this strip, 

-5 ^ w <f 5» and the sinusoidal variation has frequency tu = 3® 

This, too, is seen to be the case since the strip for which 

p s* 1 shows little tendency to oscillate. Again this 

strip Iseems more influenced by the discontinuity in the 

derivative as would be expected.

It may be shown in this case that the total energy of 

the function f(t) = u(t)e *sin 3t is 0,225. The total 

energy of f(t) in -0.10<t<1,?0 is 0.212?. From F(w), 

the energy in -5<to<;5 may be evaluated as 0.2135® The

energy in 5 ^ w <15 may be evaluated as 0.0056. From Table
8 1 \ 2

5-3 it is seen that ^2q lbnOP | An ;®'s ®#2030, and, there

fore, the mean square error in representing Bf(t) is 0.0105< 
8 1 I ,2

The 2rt 2. b X is 0.00339 and, therefore, the error in
j-0 n=0 I nl// 'n ^* ’ 9
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p

O

1 2

1
0

1

0.05860/3.^81

0. ©40.64/2'. 068

0.05439/3,077

0.04645/1.062

0.03896/2,540

0.05512/0.392

(0.001077) (0.000935) (0.000496)

0
G

1

0.16494/0.0 0.32277/ 0.0 0.42384/ 0.0

0.27974/ 0.0 0.24878/ 0.0 0.08715/ 0.0

(o.009096) (0.03279) (0.05569)

P \l 3' 4 5

1
0

1

0.02561/1,652 0.02324/0.640 0.02084/4.761

0.04968/6,103

(0.000225)

0.03554/5.330

(0.000178)

0.02998/4.271

(0.000142)

0
0

1

0.41002/ 0.0 0.27714/0.0 0.07975/ 0.0

0.13614/ B 0.31120/ B 0.35272/ it

(0.05223) (0.02462) (0.00304)

\

P \n\ 6 7 8

0 0.01556/5.217 0.01417/4.126 0.01391/3.254
1

1 0,03023/3.401 0.02479/2,589 0.02018/1.525

(0.000083) (0.000067) (0.000064)

0 0.09882/ B 0.19217/ B 0.18338/ *
0

1 0,25020/ B 0,06963/ B, 0.09152/ 0.0

(0,00356) (0.01148) (0,01049)

Table 5-3* Coefficients b , nPjrs
for f(t) s u(t)e"*sin
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representing B^f(t) is 0.0023.

The results of the substitution of the values of Table 

5-3 into Eq. (5-l) at 19 different values of t are given in 

Table 5-4 and plotted in Figs. 5-3 and 5-4* Again these 

results are presented for both fQ(t), the summation using 

only terms for which p = 0, and f^(t), the summation us

ing terms for which p = -1,0, and +1, The function

f(t) = u(t)c ^sin 3t is also presented for comparison.

5°3 A Linear System Example

In order to illustrate one of the properties of sec

tion 4.6, assume a signal e(t) = u(t)e-t is applied to

the input of a linear system whose impulse response is 

g(t) m u(t)e-*sin 3t. It is evident that the resulting 

output, f(t), is

f(t)

t
g-(t-T) e~Ts^n

/
0

(l - cos 3t) (5-5)

If both e(t) and f(t) are represented as in Eq. (5-l),

using the same values of e and T for both, then from Eq. 

(4-56) it is evident that f(t) is given by

p/kmn . . _
f(t) = nnu ,b ,ej2pnt

v ' np^ mpk

U+i) t
r

l^n(T-;T)Dt Mi(t-T.kT)dT
t"k

J
0-i) T

(5-6)

where b . are the coefficients of e(t) and b , are the npf v ' mpk



- 8? -

t f (t)

p = 0 only p =

V*)

-1, 0 and 1

f(t) =

u(t)e'^sin

-0.1 0.1002 -0.0256 0.0

0.0 0.2081 0.0687 0,0

0.1 0.3005 0.2386 0.2674

0.2 0.4072 0.4561 0.4623

0.3 0.4804 0.5885 0.5803

0.4 0.5346 0.6297 0.6248

0.5 0.5442 0.5981 0.6050

0,6 0,5172 0.5302 0.5345

0.7 0.4468 0,4335 0.4287

0.8 0.3496 0.3081 0.3035

0.9 0.2232 0.1642 0.1738

1.0 0.1006 0.0527 0.0519

i,i -0.0298 -0.0568 -0.0525

1.2 -0.1247 -O.1271 -0.1333

1.3 -0.2082 -0.1951 -0.1874

1.4 -0.2424 -0.2156 -0.2149

1.5 -0,2558 -O.2178 -0.2181

1.6 -O.2313 -0.1990 -0.2011

1.7 -0,1894 -0.1702 -0.1691

Table 5-4. Values of f (t) and ov ’
f ^ (t) for

f(t) = u(t)e-tsin 3t.
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coefficients of g(t). As stated in Eq. (^-57), f(t) evalu

ated at values of t which are integer multiples of T is 

given by

P jf H
f(rT) = 2 2 2 b b 7 <%EJ2pnrT(-l)mX (5-7)

' npj np(r-j?) ' ' ^n \j / /

where r is any integer, positive, negative, or zero. If 

the coefficients of Tables 5-1 and 5—3 are substituted 

into Eq. (5-7) the values given in Table 5-5 and plotted 

in Fig. 5-5 are obtained. Again the results are presented 

for fQ(t), using only the terms for which p = 0, and for

f^(t), using terms for which p = -1, 0, and +1. The

function, f(t), is again shown for comparison.

The triple summation of Eq. (5—7) is further broken 

down in Table 5-6 so that the contribution of each term is 

evident. Here it can be seen that the terms for which 

n * 1 are about two orders of magnitude smaller than the

corresponding ones for which n = 0. This is due at least

in part to the fact that is almost two orders of magni

tude smaller than Aq. Due to the rapid decrease in size 

of An as n increases through values greater than , the 

contribution of terms involving these values of n is ex

pected to be small
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r t f (rT) o' '
f^rT) t(t) =

p = 0 only p = -1, 0 and
-t

1 ^y (l - cos

0 0.0 0.01710 0.01487 0.0

1 0.2 0.05946 0.05200 0.04767

2 0.4 0.1241 0.1298 0.1425

3 0,6 0.1933 0.2005 0.2245

4 0.8 0.2414 0.2419 0.2602

5 1.0 0.2478 0.2419 0.2440

6 1.2 0.2087 0.2038 0.1904

7 1.4 0.1397 0,1406 0.1225

8 1.6 0.06771 0.07251 0.06l4l

Table 5-5. Representation of Linear

System Output.

3t)
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P = o p = l

n = 0 n = 1 n = 0 n = 1

r 9 M h M h M h M h

0 0 1.,787 -02 -7.643 -04 -2,,209 -03 -1.,978 -05

1 0 3.,496 -02 -6.797 -04 -4,,092 -03 -3.,336 -05

1 1 2,,565 -02 -4.702 -04 -3.,289 -03 -5.,510 -05

2 0 4,,591 -02 -2.381 -04 1.,219 -03 -3.,379 -06

2 1 5-,020 -02 -4.182 -o4 2,, 66l -03 -4,, 088 -05

2 2 2,,867 -02 -1.477 -05 1.,875 -03 -5,. 237 -06

3 0 4,,441 -02 3.720 -04 2,,171 -03 3-,519 -05

3 1 6,,592 -02 -1.465 -04 2..332 -03 4,,434 -05

3 2 5.,610 -02 -1.313 -05 1,,524 -03 6.,993 -05

3 3 2,,632 -02 3.750 -q4 8,,986 -04 6,.317 -05

4 0 3.,002 -02 8.503 -04 1,,217 -03 1,,396 -05

4 1 6,,377 -02 2.288 -04 -3,,021 -04 6,,002 -05

4 2 7..367 -02 -4.601 -06 -1,,150 -03 8,,047 -05

4 3 5.,150 -02 3.335 -04 -2,, 6l4 -04 3,,526 -05

4 4 2,.054 -02 5.298 -o4 7,.591 -04 3,.161 -06

5 0 8,.637 -03 9.638 -04 -9,.150 -04 -7..889 -06

5 l 4,.311 -02 5.231 -04 -1,.560 -03 -6,.943 -06

5 2 7..127 -02 7.187 -06 -1,. 056 -03 -4,.820 -05

5 3 6,.763 -02 1.168 -04 -6,.096 -04 -6,.281 -05

5 4 4,,020 -02 4.712 -04 -8,,498 -04 -2,.658 -05

5 5 1,.445 -02 4.352 -04 -8,.003 -04 -6,.186 -06

Table 5-6, Table of Terms for Eq, (5-7)

"h
Given as M x 10 ,
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P ■ 0 P = 1

n = 0 n = 1 n = 0 n = 1

r M h M h M h M h

6 0 -1*070 -02 6.836 -04 -1.320 -03 -2.193 -05
6 1 1.240 -02 5.929 -04 -1.082 -03 -3.622 -05

6 2 4*817 -02 1.643 -05 -2.822 -04 -6.566 -05

6 3 6.543 -02 -1.825 -04 -1.055 -04 -6.033 -05
6 4 5*278 -02 I.651 -04 -5.521 -04 -3.243 -05
6 5 2.828 -02 3.870 -04 -7.241 -04 -2.632 -05

6 6 1.04l -02 2.189 -04 -5.075 -04
i

-3.265 -05

7 0 -2.082 -02 1.903 -04 -6,835 -o4 -7.893 -06

7 1 -1.537 -02 4.206 -04 3.395 -04 -3.307 -05

7 2 1.386 -02 1.862 -05 7.144 -04 -2.366 -05

7 3 4.422 -02 -4.172 -04 2.468 -04 1.817 -05

7 4 5.106 -02 -2.579 -04 1.649 -04 1,768 -05

7 5 3.714 -02 1.356 -04 4.863 -04 -1.747 -05

7 6 2.038 -02 1.946 -04 1.967 -64 -1.962 -05

7 7 8.871 -03 4.749 -05 -4.377 -04 -1.904 -06

8 0 -1.986 -02 -2.501 -04 5.925 -04 6.809 -06

8 1 -2.989 -02 1.171 -04 9.754 -o4 8.731 -06

8 2 -1.718 -02 1.321 -05 6.073 -04 3.660 -05

8 3 1.272 -02 -4.729 -04 3.106 -04 4.470 -05

8 4 3.451 -02 -5.894 -04 4.507 -04 2.587 -05

8 5 3.593 -02 -2.118 -04 4.803 -04 2.261 -05

8 6 2.676 -02 6.818 -05 3.472 -04 3.102 -05

8 7 1.736 -02 4,223 -05 4.164 -04 1.9*3 -05

8 8 8.623 -03 1,202 -05 4.284 -04 4.829 -06

Table 5-6 (continued)* Table of Terms for Eq. (5-7)

llGiven as M x 10 .
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CHAPTER 6

Summary of Results,

Conclusions and Extensions

In this final chapter summaries of the evolution of 

two dimensional representations and of the work reported in 

the previous chapters are presented including a few remarks 

concerning the choice of the prolate spheroidal functions. 

The chapter is concluded by brief descriptions of some of 

the problems which seem amenable to solution as a result 

of this type of analysis.

6.1 The Evolution of the Two Dimensional Representations

and Summary

When Gabor first proposed the concept of a two dimen

sional description of a signal he was attempting to learn 

about information and how it is conveyed by a signal. Al

though he failed in his attempt to define information 

mathematically, he did suggest so many new ideas that his 

paper is still referenced in new studies fifteen years 

after it appeared. Because of his desire to define infor

mation, he chose to fix both the size and the shape of the 

smallest area of interest in the time-frequency plane. If 

the two dimensional representation is to be applied to sig
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nal analysis problems rather than information theory, the 

reasons for those restrictions are foreign to the appli

cation and undesirable.

Lender's contributions were to suggest the use of the 

two dimensional representation for signal analysis, to 

discard the restriction on the shape of the fundamental 

area of the time-frequency plane, i,e., the length—to— 

width ratio, and to point out a method of orthogonal ex

pansion in terms of a somewhat arbitrary function called 

a basis function. He chose to retain the restriction on 

the size of this fundamental area. And while he gave some 

hints as to the reasons for choosing any given function as 

the basis function, he gave no hint as to how the choice 

is made. Also the reason for choosing a fundamental area 

of one half was not specifically stated, Gabor's reason 

for this choice was that both the sampling theorem for 

bandlimited functions and the Fourier series for timelim- 

ited functions dictate this value. In addition, if these 

definitions of bandwidth and time duration are used, the 

"uncertainty relation" also suggests the value of one half.

For the two dimensional representations defined in 

Chapter 4 it is seen that this restriction on fundamental 

area size has also been discarded, and, indeed, this re

sults in one of the fundamental differences.

It was pointed out in Chapter 3 that, roughly speak

ing, the number of the eigenvalues, Ans> and thus the num-



bey of If* functions .which are significant in the fundamep- 

tal interval is about —■ + 1. Then it might be supposed 

that the number of terms necessary here to achieve about 

the same accuracy as the sampling theorem would yield is 

the same as the sampling theorem suggests. This is con

firmed mathematically by Poliak (23) in an as yet unpub

lished manuscripto As a result of this, the concept of 

the dimensionality or degrees of freedom of a signal is 

confirmed by these two dimensional representations of a 

signal, and it is possible to vary the accuracy with which 

the signal is representated in any given area of the time^ 

frequency plane by varying the number of terms used. Thus 

the accuracy of this representation is not a matter of 

whether a certain region is represented or not, but to 

what extent is it represented, and, hence, a two dimension 

al representation of the type suggested by Lerner is, to 

this extent, simply a special case of this.

In the final analysis any two dimensional representa

tion of a signal in which time is one dimension and fre

quency is the other must, in one sense, be arbitrary.

That is, any such two dimensional representation depends 

on the functions on which it is based. To infer otherwise 

is to infer that a function can be simultaneously time- 

and bandlimited. It is, therefore, important to choose 

the functions to be used as wisely as possible. In this 

case the term "wise11 must refer to at least two groups of
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propertiess those of intuition and conceptual aid and 

those of mathematical convenience.

In particulars the bandlimited property is convenient 

both conceptually and mathematically. And, given the re

quirement of bandlimitat ion, the prolate spheroidal func^ 

tions are particularly well-suited for this purpose. Their 

properties concerning the maximally close approximation to 

a function which is simultaneously time- and bandlimited 

appeal to the intuition by affording maintenance of the two 

dimensional structure as strictly as possible. Their or

thogonality properties, among others, are convenient mathe

matically. And certainly properties such as symmetry and 

the number of zeroes in the fundamental interval are useful 

as aids to visualization.

In summary, then, it is seen that two very similar 

two dimensional representations have been defined which 

have the property of finality of coefficients and which 

have no theoretical limitation on either the size or shape 

of the fundamental area to be represented. It is also 

possible to adjust the accuracy with which various parts of 

the signal are represented.

Very important among the properties of these repre

sentations is the fact that the integrations necessary to 

calculate the coefficients are not difficult to carry out 

numerically. All of the calculations reported here were 

carried out on a Royal McBee RPC-4000 digital computer
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which is a very small, relatively slow digital computer.

It is not necessary at any point to calculate a Hilbert 

Transform or any other improper integral.

Another point to be noted is that, aside from the 

choice of c and T, very little preliminary work is nec

essary when applying the representations to a particular 

problem. While Lerner's work is certainly significant, it 

did have the rather severe limitation, so far as appli

cation is concerned, that it required a considerable 

amount of preliminary work before useful results could be 

obtained.

It was pointed out in section 1.1 that signal rep

resentations are needed for two purposes. These purposes 

were given as the revelation of the information-bearing 

attributes of a signal and the study of systems and their 

transmission properties. The results for a numerical ex

ample of the application of a two dimensional representa

tion to a problem in each of these categories have been 

presented. In the first it was demonstrated that the rep

resentation has the two dimensional properties expected 

for the examples chosen. In the second one method proposed 

for the solution of the linear system problem was demon

strated. Further, a method for solving a more general 

linear system problem was presented as well as a method for 

signal analysis in terms of the ambiguity function. Other 

possible applications are indicated in section 6.2.
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6,2 Extensions and Further Applications

Perhaps one of the ultimate objectives of signal 

theory, so far as can be foreseen at this time, is in the 

area of signal design. Frequently problems arise in which 

the general characteristics of a system are largely known 

and some specific information about the system is desired 

from the output. The question then arises as to what input 

signal should be used in order to best obtain this informa

tion from the output, The radar system is an example of 

such a problems another is the system identification 

problem.

The question raised, then, is one of how to design a 

signal with certain properties, perhaps subject to con

straints in the time and/or frequency domain, much in the 

manner by which modern techniques allow the design of 

systems. It seems reasonable to assume that practical two 

dimensional signal representations are a fairly long first 

step toward the solution of the problem and that further 

research in this direction would be profitable,

A second problem arises upon solution of this first 

one. For the system problem mentioned, once the optimum 

signal has been designed and applied, how is the result

ing output signal best analyzed to obtain the desired 

information about the system. This, then, is the iden

tification problem and it seems that the results of Chap

ter 4 may be able to shed new light upon existing solu-
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tions to this problem.

In the area of signal analysis there are a number of 

problems which could yield very valuable results if the 

available methods could be extended and improved. Exam

ples of such problems are especially numerous in the area 

of biological systems. The analysis of such signals as 

electrocardiograms and electroencephalograms is apparently 

s still in its infancy. Lowenberg (19) states in the case of 

the study of electroencephalograms by frequency domain 

techniques!, that in many cases it appears that eleetroen- 

eephalographic signals may be abnormal only for brief in

tervals of time, and, therefore, it seems desirable to use 

a unique method for representing short intervals which are 

known to be abnormal. Thus the two dimensional representa

tion seems particularly well-suited for this purpose,

From the study of the two dimensional representations 

presented it would seem that a logical extension would be 

to a continuous spectrum-time function. It is certainly 

possible to force a continuous function from the integral 

expressions for any of the four coefficients defined in 

Chapter 4 by simply allowing ph and JlT to become con

tinuous variables in a manner similar to that employed by 

Lerner for his two dimensional representations. The prob

lem is a bit more complex than this, however. Most of the 

previous attempts to define a spectrum-time function (see 

for example Kharkevieh (l4), Fano (5), or Rothschild (24) )
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have either purposely or inadvertently assumed that the 

unknown or irrelevant parts of the time function to be so 

represented are zero., This introduces a fictitious dis

continuity in the function, and, thus, grossly affects the 

frequency function. Although quite natural, for the above 

purpose, this assumption is not necessarily the most logi

cal nor the most desirable. It seems possible that fur

ther study of the spectrum-time functions in light of the 

prolate spheroidal two dimensional representations may al

so yield useful results in this direction.

It would be desirable, for this application, to be 

aware of any further properties of the prolate spheroidal 

functions which are readily available, in particular, prop

erties of the spheroidal functions as a function of c.

One further possible application of the two dimension

al representations will be mentioned here. There exists 

a method of orthogonal series representation of random 

processes, known as the Karhunen-Lo^ve representation, in 

which the expansion coefficients become the random varia

bles. It may be shown (see, for example, Davenport and 

Root (3) ) that in order for the expansion coefficients to 

be uncorrelated, the orthogonal functions must .satisfy the 

following integral relation

c°

®(*».»') 0a(») ■<*» = ^ 0^*) (6-1)

/ a
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where 0 (s) is the orthogonal function, R(t,s) is the 

correlation function of the random process, and (a,b) is 

the region of orthogonality, Slepian and Poliak pointed 

out that in the case of stationary, bandlimited, white 

noise, Eq. (6-l) and Eq, (3-17) are identical, and, thus, 

the functions are the required orthogonal set. In this 

case the generalization to two dimensions does not im

mediately follow. The similarities are strong enough, 

however, to make a further investigation seem justifiable.
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APPENDIX

Some Results Concerning 

the Time-Bandwidth Uncertainty Principle

Over the years a considerable amount of work has 

been expended in determining how severely the time dura

tion and the bandwidth of a function can be simultaneous

ly restrictedo This problem has become known as the un^ 

certainty relation problem^ by analogy to the Heisenberg 

uncertainty principle of quantum mechanics« The results 

obtained vary over a considerable range and depend heavily 

on the definition of bandwidth and time duration used0

Listed below are some of the results which have appear 

ed in the literature together with the associated defini

tions of bandwidth and time duration,, They are listed in 

the order in which the work was completed*

lo MacColl, Lo A., 19^0 as reported by Landau and Poliak

(18)

+To
If(t))2dt

/t
If

r oo (A-l)

I r(-t)j 'dt

/1- oo
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'to +n 
o

|f(io)/ dm

and
GO

= ct, (A-2)

| F( 10)/ dto

-CD

then nT> 2%a^a2 (A-3)

2. Gabor (8), 19^6

These results were presented in Chapter 2 and are re

peated here for comparison. See Eqs. (2-7)» (2-8) 

and (2-9)

If At =
ja«(t - t)^2

• [2*(f-f)2]2
and Af 

then

3. Lampard (l?)* 195<S

(A-4)

(A-5)

AtAf^ j

' oo

i / ^ (T

if At =
— GO
WT

(A-7)

where ^(t) is the autocorrelation function of f(t)

and if Af = (A-8)

where io(f) is the power spectrum of f(t), then

At Af = 1 (A-9)
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h, Kay and Silverman (12 ) , 1957 

Befine the first moment

<t> = if t|f (t)|2dt 

■ <x>

and the time duration, At,

foo

( A t ) ‘
L

oo

Define the transform

Coo

oo

and the moment

/bo

<“>> + = 0) /*(«.)/ dw

also the bandwidth, A to, by

oo

(4u,+ )2 = 2| (» - <„>^)2|f(c.)| 2d»

(a-io)

(t -<t> )2jf(t)j2dt (A-!!)

(A-12)

(A-13.)

(a-14)

Then AtAw ^ a

Xwhere a is ^ if F(o) = 0. But a may be smaller than 

for other signals and examples are given for which 

a^0«3» The problem of finding the greatest lower 

bound for a was left unsolved. In a post script add-

(A-15)
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ed to this paper in 1959 (.13) they stated that a

Russian author solved this problem in 193^ and found 
1__

that a

5, Zakai, (35) 1960

Define the bandwidth as

Af

1E_
P-2

(a-16)

where F(w) is defined as in Eq. (A-12).

Define the time duration At in a manner similar to 

this substituting f(t) for F(w) and q for p.

Then the uncertainty relation is

At Af >1
q V

for

For the case

p^ 0

q ^0

(A-17)

(A-18)

i i P >0
~ + ~<1 (A-19)
p q q > 0

the greatest lower bound, g.l.b., for the uncertainty 

product is

g.l.g.[Atq Af J = 0 (A-20)

6. Landau and Poliak (l8), 1961

Landau and Poliak chose to state their results in a
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different form. For an arbitrary function, f(t), with 

spectrum, F(&>), define the following

and

( A-21)

r
| f( co) |

'z£L.—---— # = p2 (A-22)

l \ o
(F(-«)| d«

J ”00

Their statement was that there is a function satis

fying Eqs» (A-21) and (A-22) under the following

conditions and only under the following conditionss 

1, If a = 0 when 0 ^ (3 <" 1

2,

3«

4,

If 0

TfJXQS«<l 

If#' ■ 1

when 0 ^ p 1

when cos-^a + cos~^~$'^cos~^XQ'

when 0<p^ J~}^

One may conclude from these six results and others 

which have appeared in the literature that this is a well 

studied problem and the time-bandwidth product is of the 

order of one, and that a clear definition of bandwidth or
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duration which is sufficiently general for most problems 

and yet simple to use has not yet been given.



ERRATA

TECHNICAL REPORT EE62-2

Page Line Should read Instead of

12 Eq o (2-2) S ( t ) = 0 O '0 s(t) — ...

16 last line
The phrase "At 
and a distance" 
preceeding the

in the time direction 
was omitted immediately 
last line.

28 Eq. (3-7) j2pn(t-T)
o a o 0. do

jpa(t-T)
0 0 O O O 0 0

28 Eq. (3-8) e-jj?T(w-s)
0 0 0 C# 0 0

-j T(co-s)
0 0 0 0 o 0 0

37 Eq. (3-30) = 900 ^(t) *

42 footnote, 
last line

.o, are written 
as equalities.

... is written as 
an equality.

4?
Eq o (4-l4) 
third term 
on right

* / \o . o f \ t ) o d o 0 , o f ( t ) 0 , o

48 Eq o (4-l4) 
last term

j2pnt
o o o ^ o o o

-j2pnt
o o o ©00

54 Eq. (4-25)

-T

r20 0 0 + I O 0 o

T

r0 o o 4“ I o 0 o

^-3T

2
1
2

64 Eq. (4-53) _ _ej2pn(t-T)dT 9ee£j2p0(t-T)dt

68

74

Eq. (4-64)

Eq. (4-81)

The right side 
multiplicative
*
h - mqk

should contain the
factor9 X A oV m n

* 
b , qkm

74 Eq. (4-81) ... ... dt

75 Eq, (4-82) Both integral signs should occur 
immediately preceeding ^(t-^T).

99 21 In the second, 
one method..„

In the second 
one method,..

104 Ref. 7
Franz, K, ,
"Uber Signals,.

Franz, K.,
, "Uber Signale.,.
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