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Two-Dimensional Sine Chaotification System
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Abstract—Chaotic systems are widely employed in many
practical applications for their significant properties. Ex-
isting chaotic systems may suffer from the drawbacks of
discontinuous chaotic ranges and frail chaotic behaviors.
To solve this issue, this paper proposes a two-dimensional
(2D) sine chaotification system (2D-SCS). 2D-SCS can not
only significantly enhance the complexity of 2D chaotic
maps, but also greatly extend their chaotic ranges. As
examples, this paper applies 2D-SCS to two existing 2D
chaotic maps to obtain two enhanced chaotic maps. Perfor-
mance evaluations show that these two enhanced chaotic
maps have robust chaotic behaviors in much larger chaotic
ranges than existing 2D chaotic maps. A microcontroller-
based experiment platform is also designed to implement
these enhanced chaotic maps in hardware devices. Further-
more, to investigate the application of 2D-SCS, these two
enhanced chaotic maps are applied to design a pseudo-
random number generator. Experiment results show that
these enhanced chaotic maps can produce better random
sequences than the existing 2D and several state-of-the-art
one-dimensional (1D) chaotic maps.

Index Terms—Chaotic system, chaotification, hard-
ware implementation, nonlinear system, random number
generator.

I. INTRODUCTION

N
ONLINEAR system attracts increasing attention from var-

ious fields and has a wide body of researches in industrial

applications [1]–[3]. For example, a class of uncertain cascaded
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nonlinear systems was developed for motor-servo systems [4].

Chaos theory is a branch of nonlinear theory and it studies

chaotic behaviors that are sensitive to initial conditions [5]–[7].

According to the definition of R. L. Devaney in [8], a dynamical

system is considered to have chaotic behaviors if it is sensitive to

initial conditions and topological mixing, and has dense periodic

orbits. Thanks to these properties, chaotic systems have been

studied and applied to many industrial applications [9]–[12].

Particularly, they are widely used in pseudorandom number gen-

erators [13], [14], because chaotic systems and pseudorandom

number generators have the same properties of initial condition

sensitivity and unpredictability [15].

A chaotic system is a mathematical model to simulate chaotic

behaviors and many chaotic systems have been designed [16].

However, these chaotic systems may have some drawbacks

in various aspects. First, their chaotic ranges are small or

discontinuous [17]. When chaotic systems are simulated in

finite-precision platforms, their control parameters can only

approximate the real parameters, due to precision truncation.

Thus, if the chaotic ranges are too small or discontinuous, the

approximations of the control parameters may be within the

non-chaotic ranges. This leads the chaotic systems to lose chaos

properties [18]. Second, the trajectories of the existing chaotic

systems may visit only a small region of their phase planes.

This causes negative effects to many chaos-based applications.

For example, the chaos-based pseudorandom number generators

cannot produce uniformly distributed random sequences [13].

Besides, some existing chaotic systems have simple chaotic

behaviors and their chaotic signals can be deduced using some

technologies [19], [20]. Theoretically, the chaotic signals of a

chaotic system are deterministic only when knowing the initial

condition of the chaotic system. However, with simple chaotic

behaviors, the chaotic signals of some chaotic systems can be

directly estimated without knowing the initial conditions [21].

When this happens, the corresponding chaotic systems lose

unpredictability, which leads to failures of some applications

using chaos [22].

Recently, many research works have been devoted to over-

coming the drawbacks of existing chaotic systems [23], [24].

Some research works focus on enhancing the complexity of

chaotic signals. They either contaminate chaotic signals using

some noise [25], [26] or replace fixed control parameters of

chaotic systems using dynamical ones [27]. For example, Lan

et al. introduced a parameter-selection method to remove the

control parameters that result in weak chaotic behaviors [28].

By setting a predefined threshold, the control parameters with
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large Kolmogrov entropy are selected to generate chaotic sig-

nals. This can obviously enhance the complexity of chaotic

signals and have positive effects to some chaos-based appli-

cations [3]. However, it cannot change the complexity and

behaviors of chaotic systems, and thus, may not be suitable

for some applications such as nonlinear control and chaos

synchronization [16], [29].

Another effective strategy of overcoming the drawbacks of

existing chaotic systems is to enhance the dynamic complexity

of chaotic systems [17], [30]. This strategy either enhances the

complexity of existing chaotic systems or designs new chaotic

systems with more complex behaviors [31]. Currently, this

strategy focuses on one-dimensional (1D) chaotic systems. This

is because 1D chaotic systems have simple structures that need

low implementation costs [17]. However, the 1D chaotic systems

may have disadvantages such as easily predicted chaotic signals.

The high-dimensional chaotic systems, on the other hand, have

complicated structures and their chaotic signals are difficult to

predict. However, complicated structures also lead to expensive

implementation costs. Thus, this paper focuses on enhancing

the chaos complexity of two-dimensional (2D) chaotic systems

since the 2D chaotic systems can balance the tradeoff between

the implementation cost and chaotic performance.

To enhance the chaos complexity of 2D chaotic systems,

this paper proposes a 2D sine chaotification system (2D-SCS).

2D-SCS uses the sine transform as a chaotification framework

and applies it to each output of 2D chaotic systems. As the

sine transform is a bounded function for any input, 2D-SCS

can generate chaos in a large parameter range. Examples of

enhanced chaotic maps and application verify the effectiveness

of 2D-SCS. The main novelty and contributions of this paper

are summarized as follows.

1) We propose 2D-SCS as a universal chaotification frame-

work for enhancing chaos performance of 2D chaotic

maps. 2D-SCS is not only able to significantly enhance

the complexity of 2D chaotic maps, but also able to

greatly extend their chaotic ranges.

2) To demonstrate the effectiveness of 2D-SCS, two existing

2D chaotic maps are enhanced by 2D-SCS. Performance

evaluations show that these enhanced maps can achieve

considerably larger chaotic ranges and more complex

chaotic behaviors than the 2D chaotic maps before en-

hanced and some newly generated 1D chaotic maps.

3) A microcontroller-based experiment platform is devel-

oped to implement the enhanced chaotic maps of 2D-

SCS in hardware devices. The results indicate that

these enhanced chaotic maps have simple hardware

implementations.

4) To further investigate the application of 2D-SCS, these

enhanced chaotic maps are applied to the pseudorandom

number generator. Experiment results show that these

enhanced maps can generate more random sequences

than the 2D chaotic maps before enhanced and some

newly generated 1D chaotic maps.

The rest of this paper is organized as follows. Section II

presents two existing 2D chaotic maps and reviews the re-

lated works as background. Section III presents the proposed

2D-SCS and studies two examples of the enhanced chaotic

maps of 2D-SCS. Section IV evaluates the performance of the

two enhanced chaotic maps. Section V implements these two

enhanced chaotic maps in hardware devices and investigates

their application in pseudorandom number generator. Finally,

Section VI concludes this paper.

II. PRELIMINARY KNOWLEDGE

This section presents two 2D chaotic maps, which are used

as examples to demonstrate the effectiveness of 2D-SCS in

Section III. The related works are also reviewed as a background.

A. Existing 2D Chaotic Maps

The Hénon map was developed by Michel Hénon and it is

one of the most studied examples of 2D chaotic systems [16].

The Hénon map is defined as
{

xn+1 = 1 − ax2
n + yn

yn+1 = bxn

(1)

where a and b are two control parameters. The Hénon map can

achieve excellent chaos dynamics when a = 1.4 and b = 0.3.

The 2D sine logistic modulation (2D-SLM) map is a recently

developed 2D chaotic system [32]. It is developed from the

1D sine and logistic maps. The mathematical equation of the

2D-SLM map is written as
{

xn+1 = a(sin(πyn ) + b)xn (1 − xn )

yn+1 = a(sin(πxn+1) + b)yn (1 − yn )
. (2)

The two control parameters a ∈ [0, 1] and b ∈ [0, 3]. The 2D-

SLM map shows classical chaotic behaviors when a = 1 and

b = 3.

The bifurcation diagram of a chaotic system shows the visited

or approached values of one variable with the change of control

parameter(s), while the trajectory of a 2D chaotic system shows

the visited or approached points in the 2D phase plane. Thus,

bifurcation diagram and trajectory of a 2D chaotic system can

visually display the behaviors of the system. Fig. 1 shows the

bifurcation diagrams and trajectories of the Hénon and 2D-SLM

maps. To better show the observation results, their bifurcation

diagrams are plotted with the change of one parameter and

another parameter is set as a fixed value that can make the two

chaotic maps achieve complex chaotic behaviors. As can be

seen, the Hénon and 2D-SLM maps have small chaotic ranges

and their chaotic ranges are discontinuous. Meanwhile, their

trajectories visit only a small region of the phase plane.

The Hénon and 2D-SLM maps have simple structures that

can benefit their implementation costs. However, as shown

in Fig. 1, they also have various disadvantages. First, their

simple structures make their trajectories have some patterns

and they cannot distribute uniformly in the phase plane. Sec-

ond, they have small chaotic ranges, indicating that they have

chaotic behaviors in only few parameter settings. Moreover,

their chaotic ranges are discontinuous and even isolated. This

means that their chaotic behaviors are frail and a small change

to their control parameters may lead their parameters to enter
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Fig. 1. Bifurcation diagrams and trajectories of two 2D chaotic maps.
(a)-(b) Hénon map’s two bifurcation diagrams under b = 0.3 and a ∈
[0.6, 2] and (c) its trajectory under (a, b) = (1.4, 0.3). (d)-(e) 2D-SLM
map’s two bifurcation diagrams under b = 1 and a ∈ [0.6, 1.2] and (f)
its trajectory under (a, b) = (1, 3).

the nonchaotic ranges. This brings negative effects to some

chaos-based applications, because the parameters of chaotic

systems are easily perturbed by different kinds of noise when

chaotic systems are simulated in practical applications [33].

B. Related Works

One effective strategy of overcoming the drawbacks of exist-

ing chaotic maps is to develop new chaotic systems with com-

plex behaviors. At present, some efforts have been devoted to

addressing this and they can be classified into two cate-

gories [17], [34]–[37]. The first category of efforts designs

new chaotic systems with specific mathematical definitions.

In [35], Yu et al. developed a simple fourth-order double-torus

chaotic circuit. Dynamical behavior investigation demonstrates

that the chaotic circuit can generate complex chaotic attractors

by switching and displacing a basic linear circuit. In [34],

Chen et al. constructed a chaotic system by controlling a

nominal system using a feedback controller. Theoretical analysis

demonstrates that the constructed chaotic system has complex

dynamic behaviors and is suitable for secure communication.

The second type of efforts is to design some general chaotic

frameworks. Using these frameworks, one can obtain many new

chaotic maps. In [17], Wu et al. proposed a wheel-switching

chaotic framework. Using a controlling sequence to determine

which chaotic map is selected, the chaotic framework is able

to generate a large number of new chaotic sequences. In [37],

Hua et al. introduced a parameter-control chaotic framework.

This framework can produce a large number of new chaotic maps

using the outputs of a chaotic map to dynamically control the

parameter of another chaotic map. Nine examples of new chaotic

maps are produced and evaluated. The results demonstrate

that these generated chaotic maps have more complex chaotic

behaviors than existing chaotic maps.

Compared with existing chaotic maps, these newly generated

chaotic maps have more control parameters and more com-

plex chaotic behaviors, and thus, can significantly promote the

chaos-based applications. However, these efforts still have some

disadvantages. The chaotic maps generated using these previous

works cannot achieve continuous chaotic ranges [35]–[37].

Besides, the outputs of these generated chaotic maps cannot

uniformly distribute in the entire phase plane [17], [34]–[36].

III. TWO-DIMENSIONAL SINE CHAOTIFICATION SYSTEM

This section introduces a 2D-SCS and studies two examples

of the enhanced chaotic maps of 2D-SCS.

A. Two-Dimensional Sine Chaotification System

To address the drawbacks of existing chaotic maps in discon-

tinuous chaotic ranges, frail chaotic behaviors, and incomplete

output distributions, this study proposes the 2D-SCS to enhance

the chaos complexity of existing 2D chaotic maps. 2D-SCS uses

a sine transform as a chaotification framework and applies it to

each output of existing 2D chaotic maps. The general form of

2D-SCS, denoted as S(x, y), can be represented as

S(x, y) = sin(πF(x, y)) (3)

where x and y are two variables, and F(x, y) is an existing 2D

chaotic map that can be represented as

{

xn+1 = A(xn , yn )

yn+1 = B(xn , yn )
.

Then, the iterative form of 2D-SCS in (3) can be written as
{

xn+1 = sin(πA(xn , yn ))

yn+1 = sin(πB(xn , yn ))
. (4)

For many existing 2D chaotic maps, with the increment of

their control parameters, their phase planes become uncom-

pacted. This makes their output values diverge to infinity. Thus,

they cannot exhibit chaotic behaviors with the increment of

their control parameters and have small chaotic ranges. The sine

transform is a bounded function and its output range is [−1, 1]
for any input. According to [37], the sine map with parameter

equal to one can achieve complex nonlinear dynamics and its

outputs can uniformly distribute in its phase plane. Thus, the

sine transform is a natural candidate to enhance the complexity

of chaotic maps. Then, 2D-SCS has the following properties: 1)

it can significantly enhance the dynamic complexity of existing

2D chaotic maps in their chaotic ranges and 2) it is able to

produce chaos in the parameters where existing chaotic maps do

not have chaotic behaviors. This can greatly extend the chaotic

ranges of existing maps.

As mentioned in Section II-B, chaotic maps generated by

previous works cannot achieve continuous chaotic ranges, or

their outputs cannot uniformly distribute in the entire phase

plane, or neither. However, the enhanced chaotic maps of

2D-SCS can achieve robust chaotic behaviors in continuous

chaotic ranges and their outputs can distribute in the full region

of the phase plane. These properties are verified by performance

evaluation results in Section IV. To show the effectiveness of

2D-SCS, as examples, the two existing chaotic maps presented
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in Section II-A are enhanced by 2D-SCS and the chaotic

behaviors of the enhanced chaotic maps are studied.

B. Enhanced Hénon Map

1) Definition: When the Hénon map in (1) is used as the

existing 2D chaotic map F(x, y) in (3), the enhanced Hénon

map can be obtained and it is defined as
{

xn+1 = sin(π(1 − ãx2
n + yn ))

yn+1 = sin(πb̃xn )
(5)

where the two control parameters ã, b̃ ∈ R.

2) Stability: The stability of a dynamical system can be

deduced using its fixed points. A fixed point of a dynamical

system is an element of its domain that maps to itself. For

example, v is a fixed point of f(·) if f(f(· · · f(v) · · · )) = v.

The fixed points of the enhanced Hénon map, denoted as (x̂, ŷ),
are the solutions of the following 2D equation:

{

x̂ = sin(π(1 − ãx̂2 + ŷ))

ŷ = sin(πb̃x̂)
. (6)

The fixed points of a dynamical system may be stable or un-

stable. A stable fixed point indicates that the states approaching

the fixed point will be attracted and the system will become

stationary in the long-term evolution. An unstable fixed point

indicates that the close states will be rejected by the fixed point

and the system will oscillate. The gradient of a system can

indicate the stability of the fixed points. A 2D dynamical system

with two gradients can be reflected by the eigenvalues of its

Jacobian matrix. For a 2D dynamical system, suppose λ1 and λ2

are the two eigenvalues of the Jacobian matrix of the system, the

fixed point is stable if |λ1| < 1 and |λ2| < 1, and it is unstable

if |λj | > 1 for j = 1 or 2 [38]. The Jacobian matrix J of the

enhanced Hénon map can be calculated as

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos(π(1 − ãx2
n + yn )) cos(π(1 − ãx2

n + yn ))π

π(−2ãxn )

cos(πb̃xn )πb̃ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (7)

Table I shows all the fixed points and related absolute eigen-

values of the Jacobian matrix of the enhanced Hénon map under

several parameter settings. One can observe that the enhanced

Hénon map has different numbers of fixed points under different

parameter settings. For all the fixed points, at least one absolute

eigenvalue is larger than one. This means that all these fixed

points are unstable.

Fig. 2(a) and (b) demonstrates the bifurcation diagrams of the

enhanced Hénon map with parameters ã, b̃ ∈ [0, 1000] and its

trajectory under the fixed parameter setting (ã, b̃) = (500, 500).
As can be observed, the outputs of the enhanced Hénon map

distribute in the whole phase plane.

C. Enhanced 2D-SLM Map

1) Definition: When applying 2D-SCS to the 2D-SLM map,

i.e., the existing 2D chaotic map, F(x, y) in (3) is set as the

TABLE I
FIXED POINTS AND THEIR ABSOLUTE EIGENVALUES OF THE JACOBIAN

MATRIX OF THE ENHANCED HÉNON MAP

Fig. 2. Bifurcation diagrams and trajectories of the (a)-(b) enhanced
Hénon, and (c)-(d) enhanced 2D-SLM maps, respectively.

2D-SLM map in (2), the enhanced 2D-SLM map is obtained

and it is defined as
{

xn+1 = sin(πã(sin(πyn ) + b̃)xn (1 − xn ))

yn+1 = sin(πã(sin(πxn+1) + b̃)yn (1 − yn ))
(8)

where the two control parameters of the enhanced 2D-SLM map

ã, b̃ ∈ R.

2) Stability: To obtain all the fixed points of the enhanced

2D-SLM map, let (xn+1, yn+1) = (xn , yn ), and the fixed points

of the enhanced 2D-SLM map are the solutions of the following
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TABLE II
FIXED POINTS AND THEIR ABSOLUTE EIGENVALUES OF THE JACOBIAN

MATRIX OF THE ENHANCED 2D-SLM MAP

2D equation:
{

x̂ = sin(πã(sin(πŷ) + b̃)x̂(1 − x̂))

ŷ = sin(πã(sin(πx̂) + b̃)ŷ(1 − ŷ))
. (9)

The Jacobian matrix of the enhanced 2D-SLM map is

J =

∣

∣

∣

∣

J1 J2

J3 J4

∣

∣

∣

∣

(10)

where

J1 = cos(M)πã(sin(πyn ) + b̃)(1 − 2xn )

J2 = cos(M)πã cos(πyn )πxn (1 − xn )

J3 = cos(N)πãyn (1 − yn ) cos(π sin(M))πJ1

J4 = cos(N)πã((sin(π sin(M)) + b̃)(1 − 2yn )

+ yn (1 − yn ) cos(π sin(M))πJ2)

M = πã(sin(πyn ) + b̃)xn (1 − xn )

N = πã(sin(πxn+1) + b̃)yn (1 − yn ).

For the enhanced 2D-SLM map under several parameter set-

tings, Table II shows its fixed points and the absolute eigenvalues

of its Jacobian matrix at these fixed points. One can observe

that the enhanced 2D-SLM map has different numbers of fixed

points for different parameters. For each fixed point, at least one

absolute eigenvalue is larger than one. This implies that all these

fixed points of the enhanced 2D-SLM map are unstable.

Fig. 2(c) and (d) shows the bifurcation diagrams of the

enhanced 2D-SLM map with parameters ã, b̃ ∈ [0, 1000], and its

trajectory under the fixed parameter setting (ã, b̃) = (500, 500).
One can observe that the two variables xn and yn distribute

uniformly within the range [−1, 1], indicating that these outputs

can visit all the regions of the phase plane. Thus, the en-

hanced 2D-SLM map has complex chaotic behaviors from this

viewpoint.

The control parameters of the chaotic maps enhanced by

2D-SCS are from existing chaotic maps. Because the employed

sine transform in 2D-SCS is a bounded operation for any input,

the control parameters of the enhanced Hénon and enhanced

2D-SLM maps can be any large values. When setting their two

control parameters ã and b̃ as different values, the two enhanced

chaotic maps can always achieve complex chaotic behaviors.

This is verified by their bifurcation diagrams in Fig. 2 and

performance evaluations in Section IV.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the two enhanced

chaotic maps of 2D-SCS using the Lyapunov exponent (LE),

Kolmogorov entropy (KE), and joint entropy.

A. Lyapunov Exponent

The LE describes the average separation rate of two tra-

jectories of a dynamical system beginning from close initial

points [39]. It is a widely accepted indicator for the existence of

chaos. For the n-D discrete-time differentiable chaotic map

C(x) :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x
(1)
n+1 = C1(x

(1)
n , . . . , x

(N )
n )

...

x
(N )
n+1 = CN (x

(1)
n , . . . , x

(N )
n )

.

Its LEs can be calculated as [40]

LEj = lim
t→∞

1

t
ln |λj | (11)

where j = 1, 2, . . . , N , and λ1, λ2, . . . ,λN are the N eigenval-

ues of the matrix J = J(x1)J(x2) . . .J(xt), where J(xn ) is the

Jacobian matrix of C(x) at observation time n. A dynamical

system with a positive LE is considered to be chaotic if its

phase plane is compacted. A larger positive LE indicates that

the close trajectories diverge faster. If a dynamical system has

more than one positive LE, its trajectories will separate in

several directions. This makes the system achieve hyperchaotic

behaviors. The hyperchaotic behavior is more complicated than

chaotic behavior.

Our experiments use the toolbox LET1 to calculate the LEs

of different 2D chaotic maps. A 2D chaotic map has two LEs

and Fig. 3 plots the two LEs of the Hénon, 2D-SLM, enhanced

Hénon, and enhanced 2D-SLM maps. One can see that the

Hénon and 2D-SLM maps have positive LEs in only small

parameter ranges. This means that their chaotic ranges are very

small. Besides, their chaotic ranges are discontinuous because

there exist many periodic windows where the two chaotic maps

exhibit regular behaviors. On the other hand, the two enhanced

chaotic maps of 2D-SCS have positive LEs in all the parameter

ranges and their LEs become larger with the increment of their

1[Online]. Available: https://ww2.mathworks.cn/matlabcentral/fileexchange/
233-let?requestedDomain=zh

https://ww2.mathworks.cn/matlabcentral/fileexchange/233-let?requestedDomain=zh
https://ww2.mathworks.cn/matlabcentral/fileexchange/233-let?requestedDomain=zh


892 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 2, FEBRUARY 2020

Fig. 3. Two LEs of different 2D chaotic maps with the change of their control parameters: (a) Hénon map; (b) 2D-SLM map; (c) enhanced Hénon
map; and (d) enhanced 2D-SLM map.

TABLE III
AVERAGE LES AND KES OF SEVERAL 2D AND LATEST 1D CHAOTIC MAPS

WITHIN THEIR RESPECTIVE CHAOTIC RANGES

control parameters. They also have two positive LEs in most

parameter ranges. This indicates that they have hyperchaotic

behaviors in these parameter settings. Notice that the LEs of the

two enhanced chaotic maps are plotted only within parameter

range [0,1000]. They can obtain positive LEs for any large

parameter values.

Table III compares the average LEs of these 2D and several

latest 1D chaotic maps within their respective chaotic ranges.

These 1D chaotic maps include the sine–sine map in [30]

(SS-SECS), logistic-sine map in [31] (LS-STBCS), logistic-sine

system in [41] (LS-NCS), and the generated chaotic map in [17]

(DWSCS). A 2D chaotic map has two LEs while a 1D chaotic

map has only one LE, and the largest LE (LLE) of a chaotic map

determines the chaotic behaviors of this chaotic map. One can

observe that the two enhanced chaotic maps of 2D-SCS have

considerably larger LLEs than these existing 2D and 1D chaotic

maps.

B. Kolmogorov Entropy

The KE is a type of entropy that can measure the long-term

unpredictability of a motion by testing the degree of information

loss in the motion [42]. Mathematically, KE is defined as

KE = lim
τ→0

τ−1 lim
ε→0

lim
m→∞

Km,τ (ε) (12)

where m is the embedding dimension, and Km,τ (ε) is defined

by

Km,τ (ε) = −
∑

i1,...,im �n(ε)

P (i1, . . . , im ) log P (i1, . . . , im )

(13)

where P (i1, . . . , im ) is the joint probability of successfully

predicting the orbit in the partition φi1
at unit time τ , . . ., in

the partition φim
at unit time mτ , and φi1

, . . . , φim
represent m

nonoverlapping partitions of a dynamic system’s phase plane.

A KE value of zero means that a dynamical system has regular

behavior and its long-term motion can be estimated. A KE

value approaching ∞ means that the long-term motion of a

dynamical system is random. A positive KE indicates that a

dynamical system has chaotic behavior and its long-term motion

has information loss. Thus, the long-term motion of a dynamical

system is unpredictable if it has a positive KE and a larger KE

indicates faster information loss [42].

Our experiments use the method in [42] to calculate the KEs of

different chaotic maps and each calculation uses 12 000 adjacent

states truncated from a chaotic signal. Fig. 4 plots the KEs of

the Hénon, 2D-SLM, enhanced Hénon, and enhanced 2D-SLM

maps. As can be observed, the enhanced Hénon and enhanced
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Fig. 4. KEs of the time series generated by different 2D chaotic maps:
(a) Hénon map; (b) 2D-SLM map; (c) enhanced Hénon map; and
(d) enhanced 2D-SLM map.

2D-SLM maps have positive KEs in the entire parameter range,

and they have almost the same KEs under different parameter

settings. Their KEs are much larger than the KEs of the Hénon

and 2D-SLM maps. Besides, Table III presents the average KEs

of these 2D chaotic maps and several latest 1D chaotic maps

within their respective chaotic ranges. One can observe that the

two enhanced chaotic maps of 2D-SCS can achieve considerably

larger KEs than other maps. This indicates that the trajectories

of these enhanced chaotic maps have better unpredictability.

C. Joint Entropy

The joint entropy is to test the uncertainty of several

signals. Here, it is employed to test the two signals X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} generated by a 2D

chaotic system. Divide the values in X and Y into N states over

their discrete probability density function, then the joint entropy

of X and Y is calculated as

H(XY ) = −

N
∑

iX =1

N
∑

iY =1

P (biX
biY

) log2 P (biX
biY

) (14)

where biX
and biY

are the iX th and iY th states of X and Y , and

P (biX
biY

) is the joint probability.

The joint entropy H(XY ) is a positive value and its the-

oretical maximum value can be achieved when X and Y are

absolutely random and independent from each other, namely

P (bi) = 1/N and P (bi1
bi2

) = P (bi1
)P (bi2

). Thus, the theoret-

ical H(XY )max can be obtained as

H(XY )max

= −

N
∑

iX =1

N
∑

iY =1

P (biX
)P (biY

) log2 (P (biX
)P (biY

))

= −

N
∑

iX =1

N
∑

iY =1

(1/N)2 log2(1/N)2

= 2 log2 N. (15)

TABLE IV
AVERAGE JOINT ENTROPIES OF THE TWO CHAOTIC SIGNALS X AND Y
GENERATED BY 2D CHAOTIC MAPS UNDER VARIOUS SIGNAL STATES N

Fig. 5. Hardware prototype for the microcontroller-based experiment.

Then, the experimental joint entropy of X and Y satisfies

that 0 < H(XY ) ≤ 2 log2 N and a larger value indicates more

uncertainty of the two signals.

The experiment is set as follows for each 2D chaotic

map.

1) Randomly select the control parameters from the chaotic

ranges.

2) Iterate the 2D chaotic map 23×(n+1) times for each signal

state N ∈ {21, . . . , 2n , . . . , 27} to generate the chaotic signals

X and Y .

3) Calculate the joint entropies of X and Y for each signal

state.

4) Repeat steps 1)-3) 20 times to obtain the average joint

entropies.

Table IV lists the average joint entropies of the Hénon, 2D-

SLM, enhanced Hénon, and enhanced 2D-SLM maps under

various signal states N . It shows that the enhanced Hénon and

enhanced 2D-SLM maps always have larger joint entropies than

the Hénon and 2D-SLM maps under different signal states. This

indicates that the two chaotic signals X and Y generated by

these enhanced chaotic maps have better uncertainty.

V. HARDWARE IMPLEMENTATION AND APPLICATION

This section investigates the hardware implementation and

application of the enhanced Hénon and enhanced 2D-SLM maps

of 2D-SCS.
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Fig. 6. Output time sequences captured from the microcontroller-based experimental platform for the (a) enhanced Hénon and (b) enhanced
2D-SLM maps. The top time sequences are the outputs of xn while the bottom time sequences are the outputs of yn . The control parameters

(ã, b̃) = (500, 500) and initial values (x0, y0) = (0.1, 0.1).

A. Hardware Implementation

When chaotic systems are used in practical applications, they

must first be implemented in hardware devices. To show the

implementation of 2D-SCS in hardware devices, this section

develops a hardware platform to implement the enhanced Hénon

and enhanced 2D-SLM maps of 2D-SCS.

1) Experiment Settings: As the microcontroller has many

advantages, such as small size, simple structure, low cost,

and strong controllability, it is widely employed in industrial

products. Here, a microcontroller-based platform is developed

to implement the enhanced Hénon and enhanced 2D-SLM

maps. The hardware devices in this experiment include the

ultra-low power microcontroller MSP430F249, 16-bit D/A con-

verter LTC1668, oscilloscope DSO7054B, and other peripheral

circuits. The microcontroller is to implement the two enhanced

chaotic maps, the D/A converter outputs analog voltage sig-

nals, and the oscilloscope displays the analog voltage signals

to directly show the implementation results. The experiment

is set as follows. First, code the program using C language

according to the mathematical models of the enhanced Hénon

and enhanced 2D-SLM maps in (5) and (8). Second, download

the program to the microcontroller. Finally, run the program

in the microcontroller, output the generated analog voltage

signals using the D/A converter, and display the signals in the

oscilloscope.

2) Implementation Results: Fig. 5 shows the hardware pro-

totype for the microcontroller-based platform. In this imple-

mentation, the control parameters for the enhanced Hénon and

enhanced 2D-SLM maps are set as (ã, b̃) = (500, 500) and the

initial values for the two enhanced chaotic maps are set as

(x0, y0) = (0.1, 0.1). After setting the control parameters and

initial values, the experiment platform can generate iterative

outputs xn and yn for the enhanced Hénon and enhanced

2D-SLM maps continuously. To directly show the implementa-

tion results, the generated output signals are captured from the

oscilloscope and Fig. 6 demonstrates the captured results. One

can observe that the two outputs xn and yn randomly oscillate

in a fixed range, indicating the correctness and feasibility of the

implementation of the two enhanced chaotic maps.

B. Application in Pseudorandom Number Generator

Random numbers play an important role in industrial applica-

tions such as the industrial simulations, industrial control, and

Internet of things [43]–[45]. For example, in the application

of Internet of things, random numbers are widely used to

develop security schemes for protecting data [44], [45]. Chaotic

systems provide a useful tool for designing pseudorandom

number generators (PRNGs) because of their properties of

initial state sensitivity and unpredictability [46]. This subsection

investigates the application of the enhanced chaotic maps of

2D-SCS in PRNG.

1) Design of Pseudorandom Number Generator: There are

two commonly used strategies when chaotic systems are used to

generate pseudorandom numbers. One strategy uses a threshold

to determine the random numbers. A random bit 1 is obtained

if an output of a chaotic system is larger than the threshold.

Otherwise, a random bit 0 is obtained. The other strategy is

to directly use a chaotic sequence as random numbers. Our

experiment uses the latter strategy to design PRNG, because

this strategy can directly reflect the distribution of the chaotic

sequences. For a chaotic sequence X = {x1, x2, . . .} generated

by a chaotic map, transform each value in the sequence into a

bit stream according to the IEEE 754 standard, and then directly

truncate the 25th–32th bits from the bit stream as pseudorandom

numbers. The designed PRNG can be presented as

Q8(i−1)+1:8i = N(xi)25:32 (16)

where the function N(·) is to transform a value into bit stream

following the IEEE 754 standard and Q is the obtained random

number sequence.

2) Randomness Test: The TestU01 is a software library to

measure the randomness of pseudorandom numbers [47]. It

contains a set of predefined test suites. Each test suit is a collec-

tion of statistical tests that aim to find out the nonrandomness
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TABLE V
USED PARAMETERS FOR ALL THE CHAOTIC MAPS IN THE TESTU01 TEST

TABLE VI
TESTU01 TEST RESULTS OF VARIOUS LENGTHS OF BINARY SEQUENCES

GENERATED BY DIFFERENT CHAOTIC MAPS

p /q indicates passing p out of q statistical tests.

areas from different aspects. Among all the predefined test

suits in TestU01, the Rabbit, Alphabit, and BlockAlphabit test

suits were developed for binary sequences and are used in our

experiments. The test binary sequences are of lengths 218, 224,

and 230 bits. For different lengths of binary sequences, the

Alphabit and BlockAlphabit test suits apply 17 and 102 statistical

tests, respectively. For binary sequences with lengths 218, 224,

and 230 bits, the Rabbit test suit applies 33, 39, and 40 statistical

tests, respectively.

To obtain more neutral test results, an open-source software

version2 is used to test the randomness of the pseudorandom

numbers generated by different chaotic maps. The initial values

for all the 2D chaotic maps are set as (x0, y0) = (0.1, 0.1) and

that for all the 1D chaotic maps are set as x0 = 0.1. The control

parameters are randomly selected from their respective chaotic

ranges and Table V lists these selected control parameters for

all the chaotic maps. Table VI shows the TestU01 test results for

these chaotic maps with different lengths of binary sequences.

One can observe that when the length of the binary sequence is

218 bits, almost all the chaotic maps can pass all the statistical

tests in the three test suits. When the length of the binary

sequence increases to 230 bits, only the two enhanced chaotic

maps of 2D-SCS can pass all the statistical tests in the three test

suits. Although the binary sequences generated by the Hénon

and 2D-SLM maps fail only a few statistical tests, this means

that there exist nonrandomness areas in some aspects. Thus, only

the two enhanced chaotic maps of 2D-SCS can pass the TestU01

test. The existing 2D and several latest 1D chaotic maps cannot

pass the test. This verifies the effectiveness of the proposed

2D-SCS in generating pseudorandom numbers. Because many

authentication schemes require random numbers [48], [49], the

enhanced chaotic maps of 2D-SCS can be integrated into these

authentication schemes.

VI. CONCLUSION

This paper first studied the drawbacks of existing 2D chaotic

maps. To address these drawbacks, this paper proposed a

2D-SCS to enhance the chaos complexity of 2D chaotic map.

2D-SCS uses a sine transform as a chaotification framework

and applies it to each output of existing chaotic maps. Two

cases of enhanced chaotic maps were studied to demonstrate

the effectiveness of 2D-SCS. Performance analysis showed that

the chaotic maps enhanced by 2D-SCS have more complex

chaotic behaviors and considerably larger chaotic ranges than

existing 2D chaotic maps. A microcontroller-based hardware

platform was developed to show the hardware implementation

of the enhanced chaotic maps of 2D-SCS. To demonstrate

the application of 2D-SCS, the two enhanced chaotic maps

of 2D-SCS are investigated in designing PRNG. Performance

analysis showed that these enhanced chaotic maps can generate

better random numbers than two existing 2D and several latest

1D chaotic maps.
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[10] C. Li, D. Lin, B. Feng, J. Lü, and F. Hao, “Cryptanalysis of a chaotic

image encryption algorithm based on information entropy,” IEEE Access,
vol. 6, pp. 75834–75842, 2018.

[11] D. Chen, “Research on traffic flow prediction in the big data environment
based on the improved RBF neural network,” IEEE Trans. Ind. Inform.,
vol. 13, no. 4, pp. 2000–2008, 2017.

[12] P. Chittora, A. Singh, and M. Singh, “Chebyshev functional expansion
based artificial neural network controller for shunt compensation,” IEEE

Trans. Ind. Inform., vol. 14, no. 9, pp. 3792–3800, Sep. 2018.
[13] S.-L. Chen et al.,, “Randomness enhancement using digitalized modified

logistic map,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 12,
pp. 996–1000, Dec. 2010.

[14] Z. Hua, B. Zhou, and Y. Zhou, “Sine chaotification model for enhancing
chaos and its hardware implementation,” IEEE Trans. Ind. Electron.,
vol. 66, no. 2, pp. 1273–1284, Feb. 2019.

[15] M. Bakiri, C. Guyeux, J.-F. Couchot, L. Marangio, and
S. Galatolo, “A hardware and secure pseudorandom generator for con-
strained devices,” IEEE Trans. Ind. Inform., vol. 14, no. 8, pp. 3754–3765,
2018.

[16] S. Vaidyanathan and C. Volos, Advances and Applications in Chaotic

Systems. Berlin, Germany: Springer, 2016.
[17] Y. Wu, Y. Zhou, and L. Bao, “Discrete wheel-switching chaotic system and

applications,” IEEE Trans. Circuits Syst. I, vol. 61, no. 12, pp. 3469–3477,
Dec. 2014.

[18] E. Zeraoulia, Robust Chaos and Its Applications, vol. 79. Singapore: World
Scientific, 2012.

[19] M. Liu, S. Zhang, Z. Fan, and M. Qiu, “H∞ state estimation for discrete-
time chaotic systems based on a unified model,” IEEE Trans. Syst., Man,

Cybern. B, vol. 42, no. 4, pp. 1053–1063, Aug. 2012.
[20] S. Sivakumar and S. Sivakumar, “Marginally stable triangular recurrent

neural network architecture for time series prediction,” IEEE Trans.

Cybern., vol. 48, no. 10, pp. 2836–2850, Oct. 2018.
[21] A. Miranian and M. Abdollahzade, “Developing a local least-squares

support vector machines-based neuro-fuzzy model for nonlinear and
chaotic time series prediction,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 24, no. 2, pp. 207–218, Feb. 2013.

[22] S. Ergün, “On the security of chaos based true random number generators,”
IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. 99, no. 1,
pp. 363–369, 2016.

[23] Y. Deng, H. Hu, N. N. Xiong, W. Xiong, and L. Liu, “A general hybrid
model for chaos robust synchronization and degradation reduction,” Inf.

Sci., vol. 305, pp. 146–164, 2015.
[24] Z. Hua, Y. Zhou, and H. Huang, “Cosine-transform-based chaotic system

for image encryption,” Inf. Sci., vol. 480, pp. 403–419, 2019.
[25] C.-Y. Li, Y.-H. Chen, T.-Y. Chang, L.-Y. Deng, and K. To, “Period

extension and randomness enhancement using high-throughput reseeding-
mixing PRNG,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20,
no. 2, pp. 385–389, Feb. 2012.

[26] H. Hu, Y. Xu, and Z. Zhu, “A method of improving the properties
of digital chaotic system,” Chaos, Solitons Fractals, vol. 38, no. 2,
pp. 439–446, 2008.

[27] L. Liu, J. Lin, S. Miao, and B. Liu, “A double perturbation method
for reducing dynamical degradation of the digital baker map,” Int. J.

Bifurcation Chaos, vol. 27, no. 7, 2017, Art. no. 1750103.
[28] R. Lan, J. He, S. Wang, Y. Liu, and X. Luo, “A parameter-selection-based

chaotic system,” IEEE Trans. Circuits Syst. II, vol. 66, no. 3, pp. 492–496,
Mar. 2019.

[29] Y.-W. Wang and Z.-H. Guan, “Generalized synchronization of continuous
chaotic system,” Chaos, Solitons Fractals, vol. 27, no. 1, pp. 97–101,
2006.

[30] C. Pak and L. Huang, “A new color image encryption using combina-
tion of the 1D chaotic map,” Signal Process., vol. 138, pp. 129–137,
2017.

[31] Z. Hua, B. Zhou, and Y. Zhou, “Sine-transform-based chaotic system
with FPGA implementation,” IEEE Trans. Ind. Electron., vol. 65, no. 3,
pp. 2557–2566, Mar. 2018.

[32] Z. Hua, Y. Zhou, C.-M. Pun, and C. L. P. Chen, “2D sine logistic
modulation map for image encryption,” Inf. Sci., vol. 297, pp. 80–94,
2015.

[33] R. Zhang and S. Yang, “Robust chaos synchronization of fractional-order
chaotic systems with unknown parameters and uncertain perturbations,”
Nonlinear Dyn., vol. 69, no. 3, pp. 983–992, 2012.
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