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We consider, both analytically and numerically, the evolution of two-dimensional ~2D! nonlinear matter-

wave pulses in a Bose-Einstein condensate with a disk-shaped trap and repulsive atom-atom interactions. Due

to the strong confinement in the axial direction the sound speed of the system is c5(1/21/4)c0, where c0 is the

corresponding value without the trap. From the 3D order-parameter equation of the condensate, we derive a

soliton-bearing Kadomtsev-Petriashvili equation with positive dispersion. When the trapping potential is weak

in two transverse directions, a low-depth plane dark soliton can propagate in the condensate with a changing

profile but preserving its structure down to the boundary of the condensate. We show that high-depth plane

dark solitons are unstable to long-wavelength transverse disturbances. The instability appears as a longitudinal

modulation of the soliton amplitude decaying into vortices. We also show how a dark lumplike 2D nonlinear

excitation can be excited in the system. Furthermore, a dark lump decaying algebraically in two spatial

directions can propagate rather stable in the condensate, but disappears near the boundary of the condensate

where two vortices are nucleated. The vortices move in opposite directions along the boundary and when

meeting merge creating a new lump. Finally, we also provide results for head-on and oblique collisions of two

lumps in the system.

DOI: 10.1103/PhysRevA.67.023604 PACS number~s!: 03.75.Lm, 03.65.Ge, 42.65.Tg

I. INTRODUCTION

The recent experimental evidence of Bose-Einstein con-

densation in weakly interacting atomic gases @1,2# has lead

to great progress in atom optics. In particular, it has enabled

its extension from the linear to the nonlinear regime, very
much like the laser did to nonlinear optics in the 1960s.
Macroscopically excited Bose-Einstein condensed states,
e.g., solitons and vortices, have been observed @3–8# and
four-wave mixing phenomena in a Bose-Einstein condensate
~BEC! has also been realized @9#. These studies have, indeed,
stimulated research activities in nonlinear atom optics @10#.

To our knowledge, most of the works on soliton dynamics
in BECs have been limited to one-dimensional ~1D! solitons
moving in elongated cigar-shaped and quasi-1D periodic-
shaped traps @11–14#, or plane solitons ~decaying only in one
spatial direction and hence essentially 1D! in a 3D trap
@4,6,14,15#. For the case of repulsive atom-atom interaction,
as normally encountered in BEC experiments, the excitations
are dark solitons, that is, ‘‘dips’’ or depression waves in the
density profile of the condensate. Such 1D matter-wave dark
solitons have been investigated both in theory and in experi-
ment. For 1D dark solitons in the BECs, let us mention the
Boussinesq–Korteweg-de Vries description and the study on
dark soliton collisions using the Poincaré-Lighthill-Kuo
method @16–19#.

Although elongated cigar-shaped traps have been widely
used in BEC experiments, a flat disk-shaped trap has also
been employed @20,21#. In fact, the JILA trap, which was
used by Anderson et al. @20# for the first experimental obser-
vation of the Bose-Einstein condensation of weakly interact-
ing Bose gases, is just of this type. Later on a disk-shaped

trap was also used by Jin et al. @21# to investigate the

phononlike linear excitations in the BECs. If the thickness of

the disk is small enough, the condensate becomes quasi-2D.

One expects that at sufficiently low temperature, the motion

of atoms in the direction perpendicular to the disk is frozen

and governed by the ground-state wave function in that di-
rection @22#. Such quasi-2D BEC has recently been realized
experimentally by Görlitz et al. @23#. As indicated in Ref.
@23#, the quasi-low-dimensional condensates can provide
many opportunities to study the low-dimensional nonlinear
excitations in the BECs. Motivated by this important experi-
mental achievement, in the present paper we address the
problem of possible 2D soliton excitations in a quasi-2D
BEC. We show that, with repulsive atom-atom interaction,
weak nonlinear excitations in the condensate evolve accord-
ing to a Kadomtsev-Petriashvili equation with positive dis-
persion, which admits lump solutions, i.e., 2D solitons de-
caying algebraically in all spatial directions. Thus we expect
that dark lumplike 2D nonlinear localized excitations are
possible in the BECs with disk-shaped traps.

The paper is organized as follows. In Sec. II, we carry on
the asymptotic expansion for the Gross-Pitaevskii ~GP! equa-
tion for the order parameter and derive a Kadomtsev-
Petriashvili ~KP! equation for long wavelength, weakly non-
linear excitations. Soliton solutions and the properties of the
corresponding excitations in the condensate are discussed. In
Sec. III, we cross-check the theoretical predictions by nu-
merical experiments. The transverse stability of a plane ~or
line! dark soliton and the evolution of a dark lump are thor-
oughly investigated. Collisions between two lumps are also
considered. Finally, Sec. IV contains a discussion and a sum-
mary of the results obtained.
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II. ASYMPTOTIC EXPANSION AND KP-I EQUATION

A. The model

The dynamic behavior of a weakly interacting Bose gas at
low temperature is described by the time-dependent GP
equation @1#

i\
]C

]t
5F2

\2

2m
¹2

1Vext~r!1guCu2GC , ~1!

where C is the order parameter, *druCu2
5N is the number

of atoms in the condensate, g54p\2as /m is the interaction
constant with as the s-wave scattering length (as.0 for re-
pulsive interactions!. We consider an anisotropic harmonic
trap of the form

Vext~r!5

m

2
@v

'

2 ~x2
1y2!1vz
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where v' and vz are frequencies of the trap in the transverse
(x and y) directions and in the axial ~z! direction, respec-
tively. The choice of an anisotropic trap has been used not
only to provide evidence of Bose-Einstein condensation @1#,
but also for realizing the condensate transition from higher to
lower dimensions @23#.

Expressing the order parameter in terms of its modulus

and phase, C5An exp(if), we obtain a set of coupled equa-
tions for n and f . By suitably changing scales and variables,

(x ,y ,z)5az(x8,y8,z8), t5vz
21t8, n5n0n8 with az

5@\/(mvz)#1/2 and n05N/az
3 , we arrive at the following

dimensionless equations of motion:

]n

]t
1“•~n“f !50, ~3!
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2
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1V i~x ,y !1Qn1
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2 F ~“f !2
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An
¹2AnG50,
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with Q54pNas /az ~dimensionless interaction constant! and
*drn51. V i(x ,y)5(v' /vz)

2(x2
1y2)/2 is the dimension-

less trapping potential in the x and y directions. Expecting no
confusion in the reader we have omitted primes. The last

term, i.e., 2(¹2An)/(2An), in Eq. ~4! is the quantum pres-
sure providing the necessary dispersion for forming a soliton
in the system, as will be seen below.

We are interested in the excitation created in the conden-
sate with a thin disk-shaped trap. The thin disk-shaped trap
here implies that the conditions az!l0 and \v'!n0g

!\vz can be fulfilled, where l05(4pn0as)
21/2 is the heal-

ing length. In this situation three consequences follow.

~i! The energy-level spacing in the z direction exceeds
largely the interaction energy between atoms, and hence the
condensate is quasi-2D. Thus at sufficiently low temperature
the motion of atoms in the z direction is essentially frozen
and is governed by the ground-state wave function ~zero-
point oscillation! of the corresponding harmonic oscillator
@22,23#.

~ii! Due to the strong confinement in the z direction, the
excitations can propagate only within the disk plane ~i.e., in
the x and y directions!, similar to a capillary-gravity wave
propagating in the surface of a liquid layer @24,25# or an
electromagnetic wave propagating along a planar waveguide
@26#. Consequently, the superfluid velocity v(5“f) has
only x and y components, and hence f5f(x ,y ,t).

~iii! As the dimensionless ratio of the trapping frequen-
cies, v' /vz , is small, the third term on the left-hand side of
Eq. ~4! is also a small quantity.

Based on the above considerations, we set

An5A~x ,y ,t !G0~z !, f52mt1w~x ,y ,t !, ~5!

or equivalently

C~x ,y ,z ,t !5G0~z !c~x ,y ,t !, ~6!

c~x ,y ,t !5A~x ,y ,t !exp@2imt1iw~x ,y ,t !# , ~7!

where G0(z)5exp(2z2/2) is the ground-state wave function
of the 1D harmonic oscillator with the potential z2/2 in the z

direction, m is the chemical potential of the condensate and
w is a phase function contributed from the excitation, which
is assumed to be a function of x and y because as mentioned
above the excitation can only propagate in the x and y direc-
tions.

Thus, Eqs. ~3! and ~4! can be reduced to
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where Q85I0Q is an effective interaction constant with I0

5*
2`
` dzG0

4(z)/*
2`
` dzG0

2(z)51/A2. To arrive at Eq. ~9! we

have multiplied Eq. ~4! by G0
* and then integrated once with

respect to z to eliminate the dependence on z. A similar ap-
proach has been widely used for quasi-1D ~cigar-shaped!
BEC problems @11,27–32#. In principle, one can take into
account the contribution of the higher-order eigenmodes of
the harmonic oscillator in the z direction, as done in Ref. @19#
for a cigar-shaped trap. However, as here we have assumed
n0g!\vz , the contribution from these higher-order eigen-
modes is small and can be safely neglected. Furthermore, for
the thin disk-shaped trap (v' /vz!1) the trapping potential
in the (x ,y) plane is a slowly varying function of x and y and
hence the size of the condensate in the radial direction is
much larger than the size of the soliton excitations ~with the
order of the healing length! considered below. In the propa-
gation of the soliton at short times, the boundary of the con-
densate does not come into play and we can therefore simu-
late the experimental situation by considering the condensate
being uniform in the (x ,y) plane. On the other hand, in order
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to get insight on the possible 2D soliton excitations as a first
step we disregard the slowly varying radial trapping potential
for the analytical approach given below. However, when do-
ing numerics in Sec. III we shall include this term, thus
cross-checking the validity of the approximation used in the
present section. A treatment equivalent to the local-density
approximation when including the slowly varying trapping
potential in the (x ,y) plane is described in the last part of
Sec. II C.

B. Asymptotic expansion and KP-I equation

We now begin to study the possible weak nonlinear exci-
tations in a disk-shaped condensate. Before doing this it is
useful to discuss linear excitations and, in particular, the lin-
ear dispersion relation ~excitation spectrum! of the system.
Taking A5u01a(x ,y ,t) (u0.0) with (a ,w)
5(a0 ,w0)exp@i(k1x1k2y2vt)#1c.c. ~c.c. denotes complex
conjugate!, assuming that a0 and w0 are small constants, and

linearizing Eqs. ~8! and ~9!, one obtains m51/21Q8u0
2 and

v~k1 ,k2!5

1

2
k~4Q8u0

2
1k2!1/2, ~10!

where k5(k1
2
1k2

2)1/2 is the wave number and v is the fre-

quency of the excitation. Equation ~10! corresponds to a
Bogoliubov-type linear excitation spectrum in two-
dimensions. We see that to obtain the Bogoliubov excitation
spectrum, the atom-atom interaction ~represented by Q8) and
the quantum pressure @reflected by the k2 term in the bracket
of Eq. ~10!# are needed. Another notable feature of the exci-
tation spectrum is that the system allows a long-wavelength
~i.e., sound! excitation. The sound speed of the system is
given by

c5 lim
k→0

F S ]v

]k1
D 2

1S ]v

]k2
D 2G1/2

5AQ8u0 . ~11!

Note that for a homogeneous system @i.e., Vext(r)50] the

corresponding sound speed in our notation is c05AQu0.
Thus we have

c

c0

5AQ8

Q
5

1

21/4
. ~12!

The decrease of the sound speed relative to the homogeneous
system is due to the confinement of the system in the z di-
rection. This value of the sound speed in the disk-shaped
BEC is higher than the corresponding value in a cigar-shaped
trap, where the confinement occurs in two directions @18#.

Let us now investigate the onset of weakly nonlinear ex-
citations in the system. For a long-wavelength excitation we
set A5u01e2(a (0)

1e2a (1)
1•••) and w5e(w (0)

1e2w (1)

1•••), where a ( j) and w ( j) ( j50,1, . . . ) are functions of
the multiple-scale ~slow! variables j5e(c21x2t), h
5e2y , and t5e3t , with e a smallness and ordering param-
eter characterizing the relative amplitude of the excitation.
Substituting the expansion into Eqs. ~8! and ~9! we obtain

]a ( j)

]j
2

1

2c2
u0

]2w ( j)

]j2
5a ( j), ~13!

2Q8u0
2a ( j)

2u0

]w ( j)

]j
5b ( j), ~14!

for j50,1, . . . . The explicit expressions of a ( j) and b ( j) are
omitted here @33#.

In the leading order ( j50), we obtain

w (0)
5~2c2/u0!E dja (0), ~15!

with a (0) a function yet to be determined. The solvability

condition in this order requires c5AQ8u0, which is just the
sound speed of the system. At the next order ( j51), the
solvability condition results in a closed equation for a (0):

]

]j S ]a (0)

]t
1

3AQ8

c
a (0)

]a (0)

]j
2

1

8c2

]3a (0)

]j3 D 1

c2

2

]2a (0)

]h2
50.

~16!

Equation ~16! is the soliton-bearing KP equation @25#. We
see that the dispersion term ~i.e., the fourth-order derivative
term with respect to j) comes from the quantum pressure of
the system. Note that Eq. ~16! is a positive-dispersion KP
equation ~also called the KP-I equation! since the dispersion
term and the diffractive term ~i.e., the second-order deriva-
tive term with respect to h) have opposite signs @34,35#. The
KP-I equation is a completely integrable system and can be
solved by the inverse scattering transform @35#.

C. 2D soliton solutions

In this section, we give 2D soliton solutions of the KP-I
equation derived above in the form of dark 2D soliton exci-
tations in the disk-shaped BEC. Changing variables once
more, e2a (0)

52(u0/4c2)U , X852X52(x2ct), y8

5(A3/2c)y , and t85(1/8c)t , Eq. ~16! reads

]

]X8 S ]U

]t8
16U

]U

]X8
1

]3U

]X83
D 23

]2U

]y 82

50, ~17!

which is one of the standard forms of the KP-I equation.
The KP-I Eq. ~17! allows different types of soliton solu-

tions. One of them is a plane soliton given by

U52p2sech2$p@X81qy82~4p2
23q2!t82X0#%, ~18!

where p, q, and X0 are arbitrary constants. Note that the
plane-soliton solution ~18! is localized only in its traveling
direction. From Eq. ~15! one obtains

ew (0)
52

p

c
tanh$p@X81qy82~4p2

23q2!t82X0#%.

~19!
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Thus, up to the first-order approximation, the order param-
eter of the condensate corresponding to the plane-soliton so-
lution is

C5u0S 12

p2

2c2
sech2H pF x2

A3q

2c
y

2cS 12

p2

2c2
1

3q2

8c2 D t2x0G J D expS 2z2
2imt2i

p

c

3tanhH pF x2

A3q

2c
y2cS 12

p2

2c2
1

3q2

8c2 D t2x0G J D .

~20!

This is a dark plane soliton traveling in the direction defined

by the vector „i,2A3q/(2c)j) with the velocity

vps5c

12

p2

2c2
1

3q2

8c2

A11

3q2

4c2

, ~21!

which is lower than the sound velocity, c, in the system. The
parameter p reflects the grayness of the soliton (0<p2

<2c2). As we shall see in the following section, highly deep
enough dark plane solitons are unstable to long-wavelength
transverse disturbances.

The KP-I Eq. ~17! also admits 2D lumps decaying alge-
braically in all directions @35#. A single-lump solution of Eq.
~17! is given by

U5

4n@12n~X823nt8!2
1n2~y8!2#

@11n~X823nt8!2
1n2~y8!2#2

, ~22!

where n is an arbitrary positive constant. In the leading-order
approximation, the phase of the order parameter is

ew (0)
52

2n

c

X823nt8

11n~X823nt8!2
1n2~y8!2

. ~23!

Returning to the original variables we obtain the order pa-
rameter of the condensate when the lump is created:

C5u05 12

n

c2

12n~x8!2
1

3n2

4c2
y2

F11n~x8!2
1

3n2

4c2
y2G 26

3expH 2z2
2int1i

2n

c

x8

11n~x8!2
1

3n2

4c2
y2J ,

~24!

where x85x2c@123n/(8c2)#t and hence the velocity of
the lump is given by

v lump5cS 12

3n

8c2D . ~25!

Thus the lump, characterized by the background parameter
u0 and the grayness parameter n , is also a subsonic excita-
tion. Hence all solitons here are subsonic. This originates in
the repulsive character of the atom-atom interaction.

From Eq. ~17! one can also get a 1D ~periodic! lump
solution @36#

U52p2

11A12

p4

ky
2

cosh~pX82vt81d !cos~kyy !

F cosh~pX82vt81d !1A12

p4

ky
2
cos~kyy !G 2

,

~26!

where v5p3
13ky

2/p with p, ky , and d being integration

constants. The order parameter in this case is given by

C5u0F 12

p2

2c2

11A12

p4

ky
2

cosh x8cosS A3ky

2c
y D

F cosh x81A12

p4

ky
2

cosS A3ky

2c
y D G 2G

3expF 2z2
2imt1

ip

c

3

sinh x8

cosh x81A12

p4

ky
2

cosS A3ky

2c
y D G , ~27!

where x85px2c(p2v/8c2)t2d . The 1D dark lump repre-
sented by the solution ~27! has the same subsonic velocity
c(12v/8c2p) along the x direction.

From the results presented above we can say that the BEC
with disk-shaped trap and repulsive atom-atom interaction
may be a realistic physical system for observing high-
dimensional nonlinear localized excitations. The formation
of the 2D solitons is due to the balance between the disper-
sion provided by kinetic energy and the nonlinearity coming
from the atom-atom interaction.

To justify the approximation ~5! we note that in the z

direction the trapping potential tends to compress the order
parameter competing against the nonlinear force as well as
the linear dispersion effect provided by the kinetic energy.
On the other hand, the trapping force in the x and y directions
is small ~since v' /vz!1), so that along the x and y direc-
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tions effects come only from the nonlinear force and the
dispersion. If the main force in the z direction is caused by
the trapping potential, the approximation given by Eqs. ~5!
follows. Notice that the dimensionless energy functional of
Eq. ~1! is given by

E5E dxdydz~Hkin1Htrap1Hint!, ~28!

with

Hkin5

1

2
u“Anu2, Htrap5F1

2
z2

1V i~x ,y !Gn ,

~29!

Hint5

1

2
Qn2,

where Hkin , Htrap , and Hint denote densities of kinetic en-
ergy, trapping potential energy, and self-interaction energy,
respectively. All energies have been scaled with the unit
N\vz . To check the approximation ~5! let us consider the
ratio between the trapping potential in the z direction ~i.e.,
Hz-trap5z2n/2) and the self-interaction energy, Hint , for the
above given solution. All solutions for A(x ,y ,t) have the
form A5u01e2a (0)

1O(e4). Thus we get

R5

z2 exp~z2!

Qu0
2@11e2a (0)

1•••#2
'

z2 exp~z2!

Qu0
2

. ~30!

As Qu0
2 is a constant we have R@1, except for small values

of z. Thus the parabolic trapping potential in the z direction
dominates over the self-interaction energy and then the only
effect of the nonlinearity on the shape of the order parameter
in the z direction is to provide a small correction near the
center of the trap, which is the place where the parabolic
potential is the lowest and the nonlinear effect is more rel-
evant. Consequently, when the condition n0g!\vz is satis-
fied, the approximation ~5! is justified.

If the effect of the slowly varying trapping potential in the
(x ,y) plane is taken into account, Eq. ~16! should be re-
placed by a modified Kadomtsev-Petriashvili ~MKP! equa-
tion

]

]j S ]a (0)

]t
1

3AQ8

c
a (0)

]a (0)

]j
2

1

8c2

]3a (0)
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2

]2a (0)

]h2

52d i3

]

]j
S 3

2

]c

]x i

a (0)
1c

]a (0)

]x i
D , ~31!

where

c5AQ8u0~x i ,y i! ~32!

is local sound speed, and

u05$@m21/22V i~x i ,y i!#/Q8%1/2 ~33!

is the ground-state configuration of the condensate in the x

and y directions, with x i5e ix and y i5e iy (i>3). Here
V i(x ,y) is basically an arbitrary ~slowly varying! function.

For a harmonic potential one has V i5(v' /vz)
2(x2

1y2)/2

5V0
2(x i

2
1y i

2)/2 under the assumption v' /vz5e iV0, with

V0 a constant of order unity. A detailed derivation of Eq.
~31! is given in the Appendix.

If the trapping potential in the (x ,y) plane varies very
slowly, i.e., if V i(x ,y)5V i(x i ,y i) with i>4, the terms on
the right-hand side of Eq. ~31! disappear and hence Eq. ~31!
takes the same form of the KP Eq. ~16!, but the quantity c is
now a local sound speed ~32!. In this case the soliton solu-
tions ~20!, ~24!, and ~27! are still valid, but c should be
replaced by the local sound speed. Such an approach is
equivalent to the local-density approximation. Even in the
case of i53 the MKP Eq. ~31! can be approximated as a KP
equation in the region far from the boundary of the conden-
sate. Indeed, far from the boundary the effect of the trapping
potential on the evolution of the soliton is negligible.

Because of the variable coefficients and the additional
terms, an analytical approach of the MKP Eq. ~31! is not an
easy task. One expects that the 2D solitons ~20!, ~24!, and
~27! will deform and even be unstable, and hence we turn to
a numerical simulation in the following section.

III. NUMERICAL SIMULATIONS

In this section, we give numerical evidence for the exis-
tence of the various solutions presented in the preceding sec-
tion and cross-check their stability according to Eqs. ~8! and
~9!. As earlier stated, in the computer experiments we shall
take into account the trapping potential in both x and y di-
rections. We assume that in Eq. ~9!,

V uu~x ,y !5

1

2
S v'

vz
D 2

~x2
1y2!A .

For convenience we again change variables,

A5221/4A v'

vzQ
r , t5

2vz

v'

t ,

~34!

x5Avz

v'

s1 , y5Avz

v'

s2 ,

where s1 and s2 denote new Cartesian coordinates, t is the
new time, and r is a new quantity proportional to the ampli-
tude of the order parameter. Then Eqs. ~8! and ~9! become

]r

]t
522~“r !~“w !2r¹2w , ~35!

r
]w

]t
5¹2r2@s1

2
1s2

2
2l2

1r2
1~“w !2#r , ~36!

where the spatial derivatives are taken with respect to
(s1 ,s2); l2

5vz(2m21)/v' . The constant l in Eqs. ~35!
and ~36! defines the length scale in the problem ~i.e., the
dimensionless radius of the condensate!. We assume that the
particle number in the condensate is large enough and hence
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on the boundary, where s1
2
1s2

2
5l2, the order parameter ap-

proximately vanishes. Accordingly, at the boundary we have
r5w850.

Here, since v' /vz!1, the chemical potential m of the
system can be estimated using the Thomas-Fermi approxi-
mation for the ground-state wave function in the x and y

directions. We get

m5

1

2
1

v'

vz
S I0Q

p3/2D 1/2

, ~37!

measured in \vz units. The relationship ~37! supports the
quasi-2D criterion that the additional energy due to the atom-
atom interaction is much less than the characteristic energy
scale in the z direction, i.e., m2\vz/2!\vz/2 ~with physi-
cal units! and hence justifies again the assumption underly-
ing Eqs. ~5!.

Now let us find the shape of the stationary background
state, which has been taken to be approximately flat for the
analytical study in the preceding section. Since in the ground
state, the phase w05constant, we get from Eqs. ~35! and
~36! the time-independent, nonlinear equation for r0,

d2r0

dr2
5~r2

2l2
1r0

2!r0 , ~38!

where r5As1
2
1s2

2 denotes the radius in polar coordinates.

Figure 1 shows the background pedestal profile, i.e., solution
of Eq. ~38! with l58 used in all subsequent computer cal-
culations.

A. Propagation of dark plane solitons

Let us now search for the dark plane-soliton solution
when including the slowly varying trapping potential in the
(x ,y) plane. We use the soliton solution obtained in the pre-
ceding section as an initial condition. From Eq. ~20! by put-
ting t50 we get the initial condition that will be used to
integrate Eqs. ~35! and ~36!:

r5r0~12«1sech2u !, w52A2«1tanh u ,

~39!
u5A«1r0

*~s12s1
0
2«2s2!.

Here r0(s1 ,s2) is the stationary pedestal ~i.e., the condensate
density in the ground state of the system!. However, to sat-
isfy the boundary conditions, we now use its real profile
obtained above ~Fig. 1!. Hence, we have a dark planelike
soliton whose depth changes along the longitudinal direction.
Besides, to have a plane phase far away from the soliton

location we use r0
*5r0(s1

0 ,s2). The constant «15p2/2c2

defines the grayness or soliton depth («151 corresponds to
the black soliton!. «2 corresponds to the slope in the longi-
tudinal direction of the soliton in the coordinates (s1 ,s2).
Due to symmetry we can set «250 ~it corresponds to a ver-
tically oriented soliton!. To check the stability to transverse
perturbations of the dark plane soliton instead of the ‘‘per-
fect’’ phase we use

u5A«1r0
*@s12s1

0
1«3cos~k2s2!# , ~40!

where «3 is a smallness parameter accounting for the
strength of the perturbation. Experiments @6,14,15# have
shown that dark plane solitons in 3D BECs are unstable to
long-wave transverse perturbations. Accordingly, k2 was
chosen small. In our numerical experiment we used the
length, l, as a scale factor for k2.

Figure 2 shows the results of the numerical integration of
Eqs. ~35! and ~36! with a dark plane soliton of low enough
initial depth ~around 20%!. Equations ~39! and ~40! have
been used as initial conditions for the integration. In the first
five snapshots we show the amplitude r(s1 ,s2) which is pro-
portional to the density of the condensate, a quantity that can
be directly observed in the experiment. The last snapshot
shows the phase distribution at t50.8. Soon after start, a

FIG. 1. Stationary background profile of the condensate (l

58). Note that all quantities appearing in this and the following

figures are dimensionless.

FIG. 2. Sequential snapshots of condensate with low-depth dark

plane soliton „brightness corresponds to the amplitude value

r(s1 ,s2); the last snapshot shows the phase w(s1 ,s2) where the

interval @2p ,p# corresponds to brightness going from black to

black via white…. The soliton propagates from the left to the right

and finally is destroyed due to interaction with the boundary («1

50.2, «350.05, and k252p/l). Note that the relation between the

dimensionless time, t , and the dimensional time, t, is t5v't/2

~which is the same for subsequent figures!. Thus for v' /(2p)

510 Hz the time sequence shown in the figure for the amplitude

evolution is 0.0 ms, 12.8 ms, 25.6 ms, 38.4 ms, and 64 ms, respec-

tively.
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very low ~almost negligible! amplitude radiation wave
propagating to the left is emitted. The dark plane soliton
propagates in the opposite direction with velocity vps

'8.95 ~measured when it passes over the center of the con-
densate!. The theoretical estimate from Eq. ~21! gives

v th5A2r0~12«1!'9.05, ~41!

which is significantly lower than the sound speed (c

'11.3) and close to the value obtained in the numerical test.
By definition ~34!, in physical units velocity of the plane

soliton is vps5(az/2)Avzv'v th . Using data from Ref. @23#,
i.e., vz /(2p)5790 Hz and v' /(2p)510 Hz „thus az

5@\/(mvz)#1/2
50.74 mm…, one obtains that vps

51.87 mm s21 when passing over the center of the conden-
sate, which is less than the sound speed c52.33 mm s21.
The soliton profile changes during propagation. The curva-
ture of the front can be explained by the dependence of the
velocity @Eq. ~41!# on the condensate density. The velocity is
maximum at the center and decreases down to zero at the
boundary, hence central soliton parts move faster and, con-
sequently, a curved front is formed. No transverse instability,
at least during the propagation time, occurs here ~first four
snapshots in Fig. 2!. Small perturbations do not grow in time.
However, the interaction with the boundary is destructive
leading to the appearance of complex wavy excitations (t
52.0 in Fig. 2!.

The first stage of the soliton propagation ~until interacting
with the boundary! is similar to that observed experimentally
@4# in the BEC with a 3D trap by imprinting a phase step
~around 1.5p) at the center of the condensate. A dark plane
soliton moving from the center to the boundary with a sub-
sonic velocity has been observed in the experiment. The
shape of the front changes as illustrated in Fig. 2.

Figure 3 shows the evolution of an initially excited high-
depth dark plane-soliton. Except the soliton depth @e150.8
in Eq. ~39!#, all parameter values are identical to those used
in the calculations leading to Fig. 2. However, the evolution
of the soliton is clearly different from that shown in Fig. 2. In
this case, we observed a snake instability leading to the
nucleation of several vortices, while in the previous case the
plane dark soliton has been shown to be stable to transverse
perturbations at least for the time up to the contact with the
boundary. The nucleation of vortices due to instability of a
narrow density defect in a two-component BEC has been
reported in an experiment with a 3D trap @6#.

Vortices, as they appear in many physical systems, are
characterized by phase singularities @37–39#, which in our
case can be clearly seen in Fig. 3 ~phase snapshot!. Gener-
ally, a vortex is a more stable evolving structure than a plane
soliton. The latter tends to collapse like we have observed in
the second computer experiment. The instability can be ex-
plained as follows. Initial transverse disturbances lead to
modulation of the soliton amplitude along the longitudinal
direction. Then due to the amplitude dependence of the
propagation velocity, those parts of the soliton with relatively
lower depth overcome the ‘‘normal’’ propagation process
while parts with higher depth slow down ~see Fig. 3, t
50.8), hence amplifying the transverse perturbations and

increasing the local curvature. In turn this leads to a higher
amplitude modulation and finally the plane soliton tears into
pieces. At the initial stage of the instability we have observed
the formation of nine pieces, hence a wavelength around l
58/9. However, in the first run ~Fig. 2! the plane dark soli-
ton ~it becomes curved due to the inhomogeneity of the sys-
tem and strictly speaking it is not exactly a plane soliton!
propagates up to the boundary keeping its shape. Such dif-
ference in the behavior of low-depth solitons may be ex-
plained by their relatively higher velocity and limited propa-
gation length ~due to boundaries of the condensate!, and
hence, by insufficient observation time.

B. Propagation and collision of lumps

Let us now consider the propagation of dark lumps in the
system when including the inhomogeneity in x and y direc-
tions. From Eq. ~24! we get the initial condition for a lump
solution,

r5r0H 12«

11

«

2
r0

2F3

4
«s2

2
2~s12s1

0!2G
H 11

«

2
r0

2F3

4
«s2

2
1~s12s1

0!2G J 2J , ~42!

w5

A2«r0~s12s1
0!

11

«

2
r0

2S 3

4
«s2

2
1~s12s1

0!2D .

FIG. 3. Sequential snapshots of the condensate with a high-

depth dark plane soliton initially excited ~initial conditions are simi-

lar to those used for Fig. 2!. The brightness in the first five snap-

shots corresponds to the amplitude value r(s1 ,s2). The soliton

propagates from the left to the right with a developing snake insta-

bility ~snapshot at t50.4) eventually decaying into vortices ~snap-

shots at t50.8, 1.2, and 1.6!. The last snapshot shows the phase

w(s1 ,s2) in the square region marked on the corresponding ampli-

tude snapshot for t51.6 ~the interval @2p ,p# corresponds to

brightness going from black to black via white!. It includes six

vortices with phase singularities. The phase changes by 2p along a

closed path around each vortex («150.8, «350.05, and k2

52p/l).
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Figure 4 shows the time evolution of an initially excited
high-depth lump. It represents a localized ~in both directions!
excitation elongated in s2. The initial depth of the lump @«
50.8 in Eqs. ~42!# is the same as the depth of the soliton
shown in Fig. 3. However, during the first propagation stage
(0,t<0.15), the lump emits sound waves and reduces its
depth to «effec'0.45 thus becoming brighter and wider ~see
the snapshots for t50.0 and 0.5 in Fig. 4!. When the lump
passes through the center of the condensate, its velocity is

v lump'9.44, which is very close to the theoretical value Eq.
~25!:

v th5A2r0S 12

3

8
« D'9.4, ~43!

calculated for the real lump depth («5«effec). Note that due
to the factor 3/8 the lump moves faster than the plane soliton
with the same depth. Besides, our calculations show that
lumps are overall more stable structures than plane solitons
and do not collapse during propagation even if depths are
high.

Except for the background parameter, r0, the dark lump is
also characterized by another parameter «5n/c2, which is
actually its grayness. The bigger the « , the darker the lump
is. The propagating velocity of the lump is described by both
r0 and « @Eq. ~43!#. Using the parameter values given by
Görlitz et al. @23# @i.e., vz /(2p)5790 Hz, v' /(2p)
510 Hz], the velocity of the lump when passing over the
center of the condensate is v lump51.94 mm s21, larger than
the velocity of the plane soliton (vps51.87 mm s21) but still
lower than the sound speed of the system (c

52.33 mm s21) for the same trap parameters and grayness
~depth!.

Near the boundary where the depth approaches its maxi-
mum value and the lump becomes black, its velocity de-
creases down to zero. Such configuration is unstable and we
have observed nucleation of two vortices that move along the
border, clockwise and counterclockwise, respectively ~snap-
shots at t51.1 and 1.9 in Fig. 4!. For the lump we have a
local decrease of condensate density and a phase offset be-
low p @Fig. 4~b!#, while for a vortex the depth is almost
100% and the phase jump is equal to p . Then we observed a
slow rotation ~with angular velocity about 0.8 rad equivalent
to v lump'6.4) of the vortices along the border of the conden-
sate. Approaching each other at the opposite side of the con-
densate the vortices merge and then form a new lump soliton
~Fig. 5!. Accordingly, the dynamical merging of two vortices

yields a lump. This follows from the stability of the dark
lump in the BECs and its interaction with the boundary of
the condensate.

Let us now consider collisions between dark lumps. In a
previous work @18#, we have shown that dark solitons in 1D
BECs exhibit positive phase ~or position! shifts along their
paths during a head-on collision. The collisions of two dark
lumps is a 2D problem but it can be approximated by a 1D
case for the head-on collisions. Thus we may compare the
results of two-lump collision with those obtained for two-
soliton collisions in one dimension.

We initially excite two lumps @Fig. 4~a!#, but moving in
opposite directions along the s1 axis ~horizontal!. Figure 6
shows the paths of two head-on colliding lumps @~a! and ~b!#
and, for reference, the pathway of the single lump ~a! from a
parallel experiment without the lump ~b! being excited. In
numerical experiments we cannot find a reliable phase shift.
However, a slight mismatch between the paths of lump ~a!,
with and without collision, can be seen. It corresponds to
negative phase shift, opposite to what we have seen for 1D
dark solitons, where as earlier mentioned the phase shift of a
head-on collision was found to be positive @18#. The absence
of phase shift for colliding lumps has been pointed out for a
homogeneous system @40#; further details about collisions

FIG. 4. Propagation of a lump solution and the nucleation near

the edge of two moving, clockwise and counterclockwise, vortices

@«50.8 in Eq. ~42!#. ~a! Sequential snapshots of the condensate

with a high-depth lump initially excited „in the first row brightness

corresponds to amplitude value r(s1 ,s2), in the second row bright-

ness going from black to black via white reflects the phase w(s1 ,s2)

in the interval @2p ,p# ~enlarged square regions are shown!…. The

lump propagates from the left to the right. Then, near the boundary,

its depth approaches 100%, the lump becomes practically black and

it breaks into two vortices. ~b! The vortices move along the bound-

ary of the condensate in opposite directions ~arrows show motion

directions!. ~c! Section of the condensate along the ‘‘horizontal’’

axis s1 crossing the lump for t50.5 and the vortex for t51.9.

Solid and dashed lines correspond to the phase and the amplitude,

respectively.
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between algebraic and other solitons are given in, e.g., Ref.
@41#.

Figure 7 shows the snapshots illustrating an oblique col-
lision of two lumps. We start with two spatially separated
lumps moving from the periphery to the center of the con-
densate at an angle of 30°. At t'0.2 the lumps collide, get
together, and then reappear as post-collision lumps. As in
head-on collisions we do not observe a significant phase shift
and hence there is no deviation of trajectories after collision.

Matsuno @41# has reported positive and negative phase shifts
depending on amplitude ratios.

When both lumps ~simultaneously! reach the boundary,
each of them breaks down into two vortices moving clock-
wise and counterclockwise as in the case depicted in Fig. 4.
Hence, we can say that vortices have opposite ‘‘angular mo-
menta,’’ while their other characteristics are identical. Then a
pair of vortices moving ‘‘up’’ originated from different lumps
collide and form a new lump that propagates to the center of
the condensate. This is again similar to the process shown in
Fig. 5. After some time the other pair of vortices moving
‘‘down’’ collide and again we get a lump. The time differ-
ence between the collisions of vortex pairs is due to the
initially unequal distances between vortices ~the angular dif-
ference is 2330°). Thus we get a complex sequence of
events, lumps-vortices-lumps, where energy is exchanged
between different lumps via vortices.

We have also tested the stability of the 1D dark lump
solution corresponding to Eq. ~27! when the weak trapping
potential in the transverse directions is taken into account.
We found that, like a dark plane soliton, a high-depth 1D
dark lump is also unstable to long-wavelength transverse per-
turbation and decays into vortices.

IV. DISCUSSION AND SUMMARY

We have investigated the evolution of 2D weakly nonlin-
ear matter-wave pulses excited in a BEC with a disk-shaped
trap. With repulsive atomic interaction and strong confine-
ment in the axial direction, a Kadomtsev-Petriashvili equa-
tion with positive dispersion ~KP-I! has been derived from
the order-parameter equation, i.e., from the Gross-Pitaevskii
equation, using a suitable asymptotic. Our results show that
it is possible to excite nonlinear 2D localized excitations, i.e.,
dark lumps, in the system. The dynamics of dark plane soli-
tons and 2D lumps have been thoroughly studied when in-
cluding weak trapping potential in two transverse directions.

In order to explore the effect of the slowly varying trap-
ping potential V uu(x ,y) in the radial direction, we have made
a series of numerical simulations. Numerical experiments
provide evidence that a low-depth dark plane soliton can
propagate in the condensate with a changing profile albeit
preserving its structure until it reaches the boundary of the
condensate.The interaction with the boundary is destructive
and the dark plane soliton decays into a complex spatiotem-
poral structure including emission of sound waves and cre-
ation of vortices. Hence there is no true reflection from the

FIG. 5. Formation of a new lump by the merging of two vortices

~continuation of Fig. 4!. ~a! Sequential snapshots of the condensate

before, during, and after the merging of the vortices. The lump

formed in the process propagates from the left to the right very

much like the initial one ~Fig. 4!. ~b! Section of the condensate

along the horizontal axis s1 crossing the lump for t59.5. ~solid and

dashed lines correspond to the phase and the amplitude, respec-

tively!.

FIG. 6. Lump pathways for a head-on collision. The positions of

minima of the amplitude r(s1 ,s2) on the s1 axis for s250 are

displayed.

FIG. 7. Oblique collision of two lumps. Arrows show the propa-

gation directions. Snapshots showing the amplitude, r , correspond

to initial position, collision event and post-collision trajectories of

the lumps.
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boundary, at variance with the 1D case where oscillation of a
dark soliton between the boundaries has been observed @18#.
We have also shown that dark plane solitons of high depth
are unstable to long-wavelength transverse perturbations, a
result similar to that reported in Refs. @14,15# for a 3D trap.
The instability appears as a longitudinal modulation of the
soliton amplitude that rapidly develops into vortices. The
deeper initial soliton, the slower it moves and the faster it
tears into pieces, finally decays into several vortices. An es-
timate of the instability wavelength gives l'1 for l58.

We have shown that dark lump excitations are relatively
more stable than dark plane solitons and even quite deep
lumps are able to run through the condensate without decay-
ing into vortices. When a lump approaches the boundary, it
splits into two vortices that slowly move in opposite direc-
tions along the boundary at a constant distance from it. Then
the vortices meet together after making a circle ~or a part of
a circle in the multiple lumps’ case!, merge and then form a
new dark lump, which starts propagating through the con-
densate towards the center. Such process of vortices nucle-
ation from lumps and in turn their merging into new lumps
seems to be rather robust, although in computer experiments
we observed non-negligible radiation of sound waves and
energy losses. The geometry of the problem and properties of
lumps and vortices allow vortices to form new lumps. Hence
in a sense we can speak about lump-vortex similarities. We
have also shown that during head-on and oblique collisions
between two dark lumps, no ~reliably measured! phase shift
appears, at variance with the case for 1D dark solitons in the
BECs where a positive phase shift was observed @18#.

Recently, quasi-2D BECs have been obtained @23#, con-
sidering that the energy-level spacing in the axial direction is
larger than the atom-atom interaction energy and hence the
projection approximation used in Eqs. ~8! and ~9! can be
easily satisfied. To experimentally observe the 2D solitons
and their properties here predicted, one needs a disk-shaped
condensate with a large enough disk radius. The quasi-2D
BEC realized by Görlitz et al. @23# can satisfy this require-
ment. Indeed, according to Eq. ~37!, the expression of the
dimensionless length l introduced in Eq. ~36! is

l5S 4I0Q

p3/2 D 1/4

. ~44!

For the 2D disk-shaped BEC of 23Na realized in Ref. @23#,
one has as52.75 nm, vz /(2p)5790 Hz, v' /(2p)
510 Hz, N52.93105. Thus we have az50.74 mm and l

59.1, which corresponds to the radial size of the condensate
L'52(vz /v')1/2azl'120 mm. In the numerical simula-
tions for plane solitons and lumps we have required the
length of the condensate to be l58, which is about the same
as the length of the condensate obtained in Ref. @23#. Thus
the quasi-2D BEC realized in Ref. @23# can be used to test
check our theoretical predictions. To excite a dark lump one
may use two appropriately formed vortices that move along
the boundary of the condensate and merge into a lump as
shown in Fig. 5. Using the data of Ref. @23#, we obtain that
the period of a lump decaying into two vortices and then
merging into a new lump is about 0.12 s. The higher-order

eigenmodes in the transverse directions will contribute to the
soliton dynamics if the quasi-2D approximation cannot be
fulfilled and the existence of thermal clouds at finite tem-
perature will dissipate the solitons. Furthermore, an analyti-
cal approach for the soliton dynamics based on the MKP Eq.
~31! remains to be formulated. These are interesting prob-
lems to be investigated in future works.
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APPENDIX A: DERIVATION OF THE MKP EQUATION

If a slowly varying trapping potential V i(x ,y) in x and y

directions is taken into account, the asymptotic expansion
presented in Sec. II B must be modified. For simplicity, we
first assume V i(x ,y)5V i(x3 ,y3) with x35e3x and y3

5e3y . In the case of a harmonic potential, i.e., V i

5(v' /vz)
2(x2

1y2)/2, one has V i5V0
2(x3

2
1y3

2)/2 under

the assumption v' /vz5e3V0 with V0 a dimensionless con-
stant of order unity. Accordingly, we make the asymptotic
expansion

A5u01e2~a (0)
1e2a (1)

1e4a (2)
1••• !, ~A1!

w5e~w (0)
1e2w (1)

1e4w (2)
1••• !, ~A2!

where u05u0(x3 ,y3) and a ( j) and w ( j) are the functions of
the slow variables j5e@*xc21(e3x8,y3)dx82t# , h5e2y ,
t5e3t , x3, and y3. Hence, one has the following derivative
expansion:

]

]x
5ec21~x3 ,y3!

]

]j
1e3

]

]x3

, ~A3!

]

]y
5e2

]

]h
1e4G~x3 ,y3!

]

]j
, ~A4!

]

]t
52e

]

]j
1e3

]

]t
, ~A5!

where G(x3 ,y3)5(]/]y3)*xc21(e3x8,y3)dx8. Using Eqs.
~A1!–~A5!, Eqs. ~8! and ~9! with V i(x ,y)5V i(x3 ,y3) are
transferred into

]a ( j)

]j
2

1

2
u0c22

]2w ( j)

]j2
5a ( j), ~A6!
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Q8u0
2
5m2

1

2
2V i~x3 ,y3!, ~A7!

2Q8u0
2a ( j)

2u0

]w ( j)

]j
5b ( j), ~A8!

with

a (0)
50, ~A9!

a (1)
5

]a (0)

]t
1S c21

]a (0)

]j
1

]u0

]x3
D c21

]w (0)

]j

1

1

2
u0S c21

]2

]j]x3

1

]

]x3

c21
]

]j
Dw (0)

1

1

2
a (0)c22

]2w (0)

]j2
1

1

2
u0

]2w (0)

]h2
, ~A10!

b (0)
50, ~A11!

b (1)
5

1

2
c22

]2a (0)

]j2
2u0

]w (0)

]t
2

1

2
u0c22S ]w (0)

]j
D 2

1a (0)
]w (0)

]j
23Q8u0~a (0)!2. ~A12!

The explicit expressions of a ( j) and b ( j) with j>2 are not
needed and hence are omitted here.

From Eq. ~A7! one obtains u05„@m21/2
2V i(x3 ,y3)#/Q8…1/2. It is the ground configuration of the
condensate in the x and y directions. We see that for a slowly
varying trapping potential the ground state has a Thomas-
Fermi wave-function shape. Equations ~A6! and ~A8! with
j50 have the solution

w (0)
5

2c2

u0
E j

a (0)~j8,h ,x3 ,y3 ,t !dj8, ~A13!

where a (0) is a function yet to be determined. The solvability
condition requires that

c5AQ8u05$@m21/22V i~x3 ,y3!#/Q8%1/2, ~A14!

i.e., the system has a local sound speed, varying slowly with
x and y. The expression of the chemical potential (m) of the
system has been given in Eq. ~37!.

In the next order ( j51), Eqs. ~A6! and ~A8! result in the
equation for a (0):

]

]j S ]a (0)

]t
1

3AQ8

c
a (0)

]a (0)

]j
2

1

8c2

]3a (0)

]j3 D 1

c2

2

]2a (0)

]h2

52

]

]j
S 3

2

]c

]x3

a (0)
1c

]a (0)

]x3
D . ~A15!

It is a variable-coefficient KP equation with additional terms
coming from the slowly varying trapping potential in the
(x ,y) plane. A similar KP equation ~we have called it the
modified KP equation! has been obtained in weakly nonlin-
ear water wave theory when considering a solitary wave
propagating in a water channel with varying depth and width
@42#.

When V i(x ,y)5V i(x i ,y i) with i>4, a similar approach

yields the local sound speed c5AQ8u05„@m21/2
2V i(x i ,y i)#/Q8…1/2. In this case the controlling equation for
a (0) is the same as Eq. ~A15! but the terms on the right-hand
side disappear. Thus when V i(x ,y)5V i(x i ,y i) (i>3) we
have the general equation controlling a (0) in the form

]

]j S ]a (0)

]t
1

3AQ8

c
a (0)

]a (0)

]j
2

1

8c2

]3a (0)

]j3 D 1

c2

2

]2a (0)

]h2

52d i3

]

]j
S 3

2

]c

]x i

a (0)
1c

]a (0)

]x i
D , ~A16!

where d i j is Kronecker delta.
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