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Two-Dimensional Spatial Structure of 
the Dissipative Trapped-Electron Mode 

G. Rewoldt, W. M. Tang and E. A. Frieman 
Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08540 

.------NOTICE - - -- I 
This report was prepared as an account or work 

sponsored by the United States Government. Neither 

ABSTRACT 

the United States nor lhe United States Energy 
Research and Oc:vc:lopmc:nl AdmJnistntion, nor any of 
their e.t,vluycc:s, nor any of their contractors, 
tubOOntradon, or th~lr employees, makes any 
warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness 
or usefUlness of any information, apparatw, product or 
process disclosed, or represents that its use would not 

infringe privately owned rights. 

This paper deals with the complete two-dimensional 

structure of the dissipative trapped-electron mode over its 

full width, which may extend over several mode-rational 

surfaces. The complete integra-differential equation is studied 

in the limit k p . < 1 , where 
r l. 

p. 
l. 

is the ion gyroradius, and 

kr , the radial wavenumber, is regarded as a differential 

operator. This is converted into a matrix equation which is 

then solved by standard numerical methods.· Solutions obtained 

are in reasonably good agreement with one-dimensional analytic 

solutions, in the limits where such results are expected to be 

valid. More significan~ly, the prcoGnt approacl1 can readily 

treat many physically important cases for which purely analytic 

solutions are difficult to obtain. The results indicate that 

the differential equation formulation of the eigenmode equation 

is valid only for long. w.a:v,eleng-th modes ;,. (k
8 
pi~ 0. 3 , with k 8 

being the peloidal wavenumber) . For such cases it is found 

that shear stabilization estimates obtained from the one-dimen-

sional radial solution are quite inaccurate for modes overlapping 

only a small number of mode-rational surfaces, but become more 

accurate for modes overlapping many mode-rational surfaces. 

~o-r E(l!-tl-3o73 
biSTRIBUTION OF THIS D9CUMEN~ IS UN:LIMIT~. 
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I. INTRODUCTION 

The dissipative trapped-electron mode is expected'to have 

important ~onsequences in tokamaks, and accordingly, has been 

the subjec~ of many previous studies. However, previous investi-
' 

gations of. the linear stage of the mode have gener~lly'been 

one-dimensional. In particular, either the radial' structure of 

the mode i~ igno·red while solvi'ng for the structure p~rallel to 

a magnetic~fieid line,
1

'
2 

or the parallel structure is ignored 
' 

while solving for the radial structure in the vicihity of a 
'\.' 

single mode-rational surface.
3 \. 

This paper deals wtth the complete 

two-dimensional structure of the mode over its ful~ width, which 

may extend over several mode-rational surfaces. The complete 

integra-differential equation is studied in the limit krpi < 1 , 

(where kr ~ the radial wavenumber, is regarded as a differential 

operator an'd p. is the ion gyroradius) for the c~se of a 
~ 

circular cross-section, large aspect ratio tok~mak ~ith concentric 

magnetic surfaces. The perturbed electrostatic potential is 

expanded in complete sets of radial and poloidal ba:sis functions, 

thereby converting it into a matrix equation, for which eigen-

values and eigenvectors may be obtained by standard.numerical 

methods. These eigenfunctions for the perturbed electrostatic 

potential satisfy all periodicity requirements in the presence of 

magnetic shear. Also, the effects of temperature gradients and 

I 

of magnetic curvature and: gradient drifts ate included for both 

electrons and ions. Electron collisions are accounted for by 

means of the simplest energy-dependent Krook collision operator, 

'ij 

• 

.• 

' 

1 (( 
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while ion collisons are neglected. Mode-particle resonance terms 

for circulating ions and electrons are included, wlr-ile those for 

trapped particles are omitted. Magnetic drift effects within 
. 

these resonance terms are omitted; this is equivalent to neglect 

of finite radial excursion (banana width} effects. The reasons 

for these approximations and omissions are given in the following 

sections. 

Comparison of the numerical solutions obtained with one-

dimensional analytic solutions indicate reasonable agreement in 

the limits where the analytic results are expected to be valid. 

However, it should be emphasized here that the present analysis 

is applicable to many physically relevant cases which cannot be 

treated by previous methods. In particular, the stabilizing 

effect of magnetic shear can be compared with estimates obtained 

from the radial one-dimensional analysis mentioned above, (i.e., 

from the solution of Weber's equation}. For modes overlapping 

only a few mode-rational surfaces, the one-dimensional estimates 

for growth rates are quite inaccurate. The net effect of the 

additional mode-rational surfaces is stabilizing.for the case 

considered, indicating that energy absorption there dominates 

energy reflection. For modes overlapping many mode-rational 

surfaces, the radial one-dimensional results and the two-dimen-

sional results are surprisingly close, indicating that the net 

effect of all of the additional mode-rational surfaces is small. 

The final conclusion about shear stabilization from the two~ 

dimensional results is the same as that obtained from the radial 

) 
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one-dimensional results, namely, that for normal gr~dients and 

realistic tokaraak parameter.s, the· amount of shear is not suffi-

cient to stabilize the mode, while with the additional strong 

stabilizing effect of oppositely directed density and temperature 

gradients, 4 the amount of shear can be sufficient for stabiliza-

tion. ijowever, it should be emphasized that the ac~ual spatial 

structure of the unstable modes is found to be very ~ifferertt 

froQ the structure calculated using the one-dimensional radial 

analysis. An upper limit on k
8 

, the peloidal wave'num::::>er, for 

the validity of the differential formulation for finite ion-
: 

Larmer radius effects is obtained. It is found to be quite low, 

and in fact, excludes a very important p~rt of 

parameter space. Specifically, the local theory predicts the 

fastest growing instabilities to fall in the range kePi> 0.3. 

In Sec. II, the notation and the assumptions made about the 

equilibrium are explained, the form used for the perturbed 

electrostatic potential is discussed, and the results for the 

perturbed electron and ion densities are given. In Sec. III, the 

quasi-neutrality integra-differential equation is presented and 

the solution method discussed. In Sec. IV, numerical results are 

given and discussed, and in Sec. v·conclusions are given. In 

Appendix A, the derivation for the perturbed electro~ density is 

given, and in' Appendix B the derivation for .... the perturb.~d ion 

density is given. In Appendix C, forms for magnetic drift 

frequ~ncies are obtained, and computationally convenient forms fo~ 

terms entering the integra-differential equation are derived. 

, .. .. 

~ . . ., 
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II. PERTURBE)J ELECTRON AND ION DENSITIES 

A. Notation and Equilibrium 

In the coordinate system employed, s denotes the toroidal 

angle, 8 the ·poloidal angle, r the minor radius of a magnetic 

surface, R
0 

the major radius of the magnetic axis, with e = 0 

at the outside of the torus. The inverse aspect ratio is 

E = r/R << 1 . 
0 0 

The form for the magnetic field corresponding to 

the assumption of concentric, circular cross-section magnetic 

surfaces is 

0 
B = [ B e + B 

8 
( r ) e 

8 
J /h ( e ) 

/VV> 0 ""'""'"' r """' .., 

where h ( e > = 1 +E. cos e . Along a magnetic field line 
0 , 

.. 

d.R," Rds rd8 
= = 

B Bs Be 

where .R,'' indicates length along a field line and R=R h(8) 
0 

so that the 

Since 

"safety factor" 

q(.r) -

rB 
0 

R B0 

o e 

can be expressed as 

field line 

q is of order unity and B = I n I ~ B /h ( e > 
/VV'o 0 

velocity space two different coordinate systems will he used, 

("1) 

( 2) 

I 

(3) 

In 

namely v 
II 

and vf , indicating velocity components parallel and 

perpendicular to the equilibrium magnetic field, as well as the 

quantities 2 2 
t - (mj/2) Cv

11 
+ v ~) , the kinetic energy, and 

A - ~B 0 /E , the dimensionless pitch angle variable, where 

2 
~ = (mj/2)v,~,/B is the magnetic momen·t, mj is the particle mass, 
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and j = e i denote electrong and ions respectively. The ions 

have charge e. = +lei 
l. 

and the electrons charge ee =-lei . 

The parallel velocity has the form 

2 . l/2 1/2 
vii = all [ID:"(£- ~B)] = .cr11 v[l- J\/h(8)) 

J 

where a 11 = sign (VII) Circulating particles correspond to 

O<J\<1-i: 
- --0 and trapped particles to 1-E <J\<1+£ . 

0 - 0 
The 

( 4) 

± e 
0 

= ± arccos [(J\-1)/~ ] 
0 

trapped particle turning points are 

The equilibrium electric field E ( o) is assumed equal to 

zero. Then the single particle constants of the motion are 

£ , J\ , and the toroidai canonical angular momentum 

where 

0 
Pr ~m.R(v -st

8
.r) ~m.R (v

11 
-n

8
.r) 

.., J 1: J" J 0 J 

and 
0 

ste. -. J e .B
8
° /m. c . 

J J 

The bounce period ~b for trapped particles is given by 

e 

2 f] R 0 f 
0 

d 8 ,I I VII ( 8 ) I 
-e . 

0 

Likewise, the transit period fo~ a circulating part~cle is 

7T 

T t = qRO. r d6/VJJ ( EJ) 
--n . 

( 5) 

( 6) 

( 7) 

The corresponding bounce and t~ansit fre~uencie~ are defined as 

wb :: 2n/Tb and wt:: 2n/Tt respectively. Note'that 1b, wb > 0, 

while sign(Tt,wt) = sign(~ 1 ) =~I ,·by convention, and that 

Tb is equivalent to 21Ttl at the boundary between trapped and 

circulating particles. 

.•. 

• • 
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The equi,librium distribution .function is taken to be 

A 

f . (1 +J;.) 
ffiJ - J. 

f . 
m] 

where f. ~ 1 
J 

f =- vr;, [! dn- __!__ dTj(i- __£)] 
j - n8 j n dr T j dr 2 T j 

(8) 

(9) 

where T· 
J 

is the temperature in energy units. "Neoclassical" 

corrections for the circulating particles are neglected. These 

corrections were shown in Ref. 5 to have only a small effect on 

the results. 

In terms of the variables £ and fl. I the integral over 

velocity space becomes 

h ( e > 3/2 00 

= 'IT (_1_) ~J d£ 
2m· L- · 

J 011 0 

1/2 
£ I 

d/1. 1 

0 h(8) [1-11./11(8)] 1 / 2 • 

at a fixed value of e . The notation 

< ... > j :: ~ J d 3~ f Mj ••• 

( 10) 

(11) 

will be used. The integration will sometimes be over only the 

trapped (or circulating~ particles, as will be clear from the 

context. Note that 

and 

v. 
_]_ 

- qR I 

0 

(12) 
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~ (lEo) l(2w . 
2 : t) 

' 1/2 
( 2T. /m.) 

J J 

B. Mode Properties 

Considering B = 8rrn (T + T.) /13·
2 

« 1 , the electrostatic e 1 o 

approximatidn can be made for the perturbed electric field 

By virtue of axisymrnetry, for the linear stage of the mode the 

-
perturbed el~ctrostatic potential ·~ can be writteri as 

-
~ ( r , e , 1:.: , t) = <P 5I, ( 8 , r) exp (- i wt + i 5I, 1:.:) , 

where 5I, , the toroidal mode. number, is an integer. It is 

convenient to choose a "reference"· mode-rational surface at 

( 13) 

(14) 

( 15) 

r = r in the radial region of interest, around which the mode 
0 

is to be localized, such that q(r 0 )~ = m
0
/Q. The "slow'' and 

"fast'' 8-dependence can then be separated without loss of 
: 

generality, i.e., 

-
~(r,8,l;,t) = rp(S,r) cxp (-iwt+i·SI,~;;-im 0 8), ( 16) 

where m0 
, the peloidal mode number, is an integer, .and rp(8,r) 

must be periodic in e with period 2rr , .and I [(a;ae>¢JI¢1<<m
0 

• 

The radial distance from r
0 

in units of the spacing of 

mode-rational surfaces is now defined by the new radial variable 

S(r) _ Sl,q(r) -m0 = Q.[q(r) -q(r
0

)] ( 17) 

\ .. 

.• , t 
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with S(r
0

) = 0 . Note that 

6r - [~(dq/dr)]-l ~ I1q'J-l 
s 

-9-

S(r) ~ (r-r )/6r , where 
0 s 

is the spacing of mode-rational 

su1faces, and d 2q/dr
2 

is neglected. In terms of S(r) , 

¢ = [¢(e,s) e;xp (iS8)] exp{i1[~;;-q(r)8]} exp (-iwt) 
(18) 

Since [1;;-q(r)8] is approximately constant along a field line, 

the variation of ¢ along the field line is given by 

-
¢(8,S) exp (iS8). In particular 

= Rl exp{i1[~;;-q(r)8]-iwt}aae[¢(e,s) expise] 
q: u 

= - 1-exp (i1[~;;-q(r)8]-iwt} exp (iS8) (aae + is)¢(e,s) (19) 
qRo . 

to lowest order in € 
0 

• 

c. Perturbed Electron Density 

~4e· form of the perturbed electron density response is 

derived in Appendix A. It is valid in t~e limits 

I ne I »(wb) e »w and k.l.pe « 1 , which are the usual parameter 

L"dlll::les of i11te:rest: in dealing with low-f:reCJnP.ncy drift modes. 

Here n = - I e I B /rn c , P = v I I n I e o e e e e 
and is the wavenumber. 

perpendicular to the magnetic field. To obtain the perturbed 

electron distribution function, the linearized drift kinetic 

equation is solved by means of an expansion in bounce and 

transit frequency harmonics, and an integration along_ unperturbed 

particle orbits. For simplicity, an'energy-dependent Krock model, 

with the effective electron collision frequency given by 

3/2 . 
vf(E) = (ve/{.

0
) (Te/E) , has been employed to account for the 
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dominant effects of coll1"s;ons. A d t d · · • . s emons rate- 1n work using 

the actual _Fokker-Planck operator~ and a number-conserving form 

of the BGK operator,
7 

this simple Krook operator provides 

reasonably accurate results in the electrostatic limit. 

/l,he perturbed electron density is n~l):: ;;e exp ~-iwt+i£.~:;-im 0 8), 

\vhere 

()() 

J 
~ '"I 

.v. dXX exp (-X'-) {W-Ill (l+n (X.2-312))} 
*e e 

,0 

. h ( 8) 

xj di\[1-J\Ih(8)]- 112 

·1- ~ 

<I> (o) (1\, 8 ,s)· 

0 . 

1 -C 
112 '· 0 

+ i ~ (8 > L J 
()() 

u A [ J. - i\ lh ( e ) l -1 I 2 L 5 

L 
a

11 
o 

-cp> " I " <o> 
x <I> (J\,8,S) exp [iptlltt(8)]. (p+S)wt +2w

0
e Xj" 

. I- -4,-l 2 2 + 31 ( v c.. ) X . ,. X . ,. exp (-X . ,. ) 
. e o J J J 

x . { w - w •e [ 1 + n, ( x~,. - 3/2) .J } ) J . ( 2 0) 

Here· x = (£IT e) 
112 

, w*e - [ £-cTel (I e I R
0

Be) J (d £-n nldr) 

= [m
0
cTellelr B ) ] (d £-nnldr), 

0 0 
and n = (d £-n T .ldr)l(d £-n nldr) . e e · 

Also w 
De 

ij ~he electron magnetic rlrift frequency,.whose 

detailed form is given in Appendice~ .A and C. The superscript 

zero inqicates a time average along a single particle orbit. 

A "hat" ( ") i-ndicates that the X-dependence has been factored 

- ( 0) ; 
out of a quantity. The quantity <I> lS the time-averaged 

.•. 
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perturbed potential seen by a t~apped particle, whi~e 
.. ( p) 
ct> 

is the coefficient function for the p-th transit frequency 

harmonic of the perturbed potential.for a circulating particle. 

Detailed forms of .these quanti ties are given in Appendices A and 

" C. The parametric time function t(8) along a circulating 

particle orbit is defined in Appendi·x A. The quantities 

represent the five roots of t~e polynomial 

w + i(v ;~ )x-
3 - ~(o)x 2 -(p+S)~ x = o. 

e co · De t 

X. II 
J 

( 21) 

In Eq. (20) the three terms are the adiabatic term, the trapped-

electron time-averaged term, and the circulating-electron 

resonance term. 

D. Perturbed Ion Density 

The derivation of the perturbed ion distribution function is 

quite similar to that for electrons, and is given in Appendix B. 

One important difference is that. effects of finite need to· 

be included. Note that 

a o -
~ exp (-iwt + i.R-z;; - im 0 8) (e -- e i mr )q>(8 ,S) (22) 

""" r a r NV' 8 

for E
0

«1, so that kr=- i(a/ar) and k
8 

= (-m
0
/r) Then the 

important finite ion gyroradius effects can be included by in-

2 
serting a factor J (k~v~/Q.), where J is the Bessel function 

0 1 0 

of the first kind, into the nonadiabatic term in the expression for 
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the perturbed ion distribution fu~ction. 5 
The resultant 

expression is then expanded for. k p. < 1 with kr repiaced 
. r ~ 

by - i ca;at) 

The perturbed ion density is, n.(l) = n. exp (-iw~ +t.!U;- im 0
8) 1 

~ ~ J 

vli th 
-NR -R 

n. = n. + n. 
~ . ~ ~ 

-NR 
The nonresenant part n. , befor~ 

~ 

expansion for small k p. , in terms of b. =b. 
8 

+b. 
r ~ ~ ~ ~r 

- ( p~ /2) Ck
8
2 

+ k
2 

> I is 
~ r 

-NR I~ I""( -b · {( W ·) w · = - ~~ l - e 1 
1 - ~ I - n . ~. b. (I - I ) 

ni T. w o ~ w . ~ 1 o 
~ . 

lili W· J - l (1 - ~-) I - n . --~~ [I + b . (I - I ) ] 
Ill 0 ~ w 0 ~ 1 0 

w .(w0 .cos8 2 2 
~~ 1 )ri (2-4b.+·2b.)+I (3b 2b >1 - n i w w o· ~ 1. 1 . i - i · 

w . w . cos 8 2 2 
+ (1- *~\( D~ ) [I (7-6b. +2b~) +I1(Sb. -2b.)] 

w 7 . w 0 ~ :L ' l. ~ 

2 

_ n. w *i (wDi cos 8_) 
~ w w 

. 2 3 
[I (14- 25b. + 19b. -.4b.) 

0 l ~ . ~ 

( 2 3) 

are modifie~ Bessel functions of the first kind, and 

Il = Il (bi) 

1-;;:,-Di/wl 

and lwti/wl are taken to be small. 

At this point b. 
~ 

will be separated into b.=b.
8

+b. , 
J. l. ~r 

with bi
8 

arbitrary but with 

quantities b. 
~r 

b. < 1 . 
~r 

Specifically, the 

will all be regarded 

... 
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as small (ot order a.), and all terms through order a
2 

will be 

kept. Expanding 
-NR 
n. to second order in a Taylor series in 

l. 

' 
yields 

n~R =-';'n{l-exp (b.
8
l(1-w*i_\{I +b. (I

1
-I) + (b~ /2) 

i 1. · ~ w I o 1.r o 1.r 

r 

w . w . ] 
x (I l - I ) ) } - (1 - ~) I - n . ~- [I + b . ( I - I ) 1 

0 w 0 l. w 0 1.8 1 0 J 

+b [I . 2 
ir o ( - b + llbie - 4bie) 

< 1) 

¢(8,S), ( 2 4) 



0 

-1·~-

The ion resonant term will be regarded as small (~t.-least 

-second order in~), so that only k
8 

needs to be·kept in the 

argument of the Bessel function J 
0 

~oting that 

1/2 c ::::; (2b. 
8

A) .X , to lowest order in ~;;. , the resonant part of n. 
1. . 0 1. 

is 

1-E oo ·.''2 

. 'll'l./
2 ~ ( 

0 
dfl [1·- A/h(8) ll/.2.-~ .·.~ •• Fl. = - ~.1..!!. 

n. T 
1. . 

1. 

1 1-ile">- ·L..J J L.. t...J 
0 

all p=--90 j"=l 

: . . ,.. -1 
-· < > l.pwt t < e > I ,.. ,.. <a> I 

x <I>· P c A ; a , s ) e < p + s > w t + 2 w0 i x j " 

2 
2 -X.·., 2 

X . ., e J (w-w. [1 +TJ. (X . .,- 3/2)] 
J *1. 1. J 

2 1/2 
xJ [(2b.

8
A) X . .,], 

0 1. J 

where the x ... are the roots of the polynomial 
J 

"(o) 2 
w - WDi X 

.· 

( 25) 

( 2 6) 

, 

.• 
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III. INTEGRO DIFFERENTIAL EQUATION AND SOLUTION METHOD 

Since the dissipative trapped-electron mode has wavelength 

long compared to the Debye length, the appropriate normal mode 

equation is just the quasi-neutrality condition I e.~. = 0 , or 
j J J 

where 11 
e 

-NR 
n. 

l 
and 

-NR -R 
n = n. = n. + n. 

e 1 1 1 
(27) 

-R 
n. are given by Eqs. (20), (24) and (25) 

l 

respectively. This general integra-differential equation contains 

information about several different radial length scales, 

specifically about variation over the length scale of the spacing 

of mode rational surfaces 6rs and over the equilibrium length 

scale r 
n 

For realistic parameters for the mode with (q'r/q) 

- 1 , 6r s << rn This fact may be exploited by making a multiple 

radial length scale expansion of Eq. (27) in the parameter 6r /r 
s n 

and treating only the lowest order equation in the hierarchy of 

equations that results. This is equival~nt to taking all of the 

radial equilibrium gradients to be constant in Eq. (27), so that 

the effects of the real variation of n, T., T , and q over 
1 e 

the tokamak cross-~e~tiun are simplified. With this appr9ximation, 

S-dependence in n , 
e 

- (pf/2L':\r~) ca 2;as2
> , and only the explicit 

n~R and n~ is to be considered in 
l l 

solving the integra-differential equation. Making the 

abbreviations 
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.W 

(I1 -I
0
l-n

1
. ~[I +2b. (I

1
-I )] 

w 0 1,(3 . 0 

l.' 

w (·w0 . cos e) -
+ n~ ~ 1 

· [I (--6+11b. -4b~) 
.,L w w 0 1e . 1e 

+. r 1 (2 - 9bie + 4b~ 8 l l] 
2 p. 

<-bie> 
1 

{ 2 8) exp 

2(6rs>
2 

I .... ?. [ c ,W ) w J wti e *e · ~ [ I + b . 
8 

( I 
1 

- I ) ] exp (-bie> ( 2 9) B - -- +~. ___ I + n. ~, 
T. ' w o 1 ~ 0 l 0 . 1 . 2w 

'l' (·T w ) w . 
1 e · · e·+ *e I ( b ) ~b.- (I -I··)exp.(-b

1
.e), (3.0) c _ + -· - : - -- exp - . 0 - n . o J 

T . T . w 0 l ~· ]. /.1) J: II . 0 
1 l 

D::: -(Te +~*e)(WDi cos e) [I {2 -b. ) +I b ]exp {-b1 .. e) .• 
T. w ul o 1e 1 ie 

l 

,, ..• 

T w w . cos e 
2 

- (~ + ~) ( Dl . ) [I {7 - 6b. + 2b~ ) 
T· w w o· 1.0 1.0 +I1 

l. 

2 w*e .wDi cos 8 
• (Sb.e-2i>.

8
)]ex,cl(-b.

8
)-,1 ... --~ 

l l .1::"' l. l w w 
[I (14"-25b.

8 0 - l. 

{ 31) 

[(
Te w*e) . . _ 

E ::: - - + - [ 2 {I - I 
1

) "'""I] /b . e ] + n . 
T. w o .. 1. 1. 

1 

~--

Ill 

{32) 

,, 
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h(8) -(o) ' 
J dA <I> (A,S,8) 

l-~ h(8),[1-A/h(8)]
1

/
2 

0 

cJJ-w [l+n (X
2

-3/2)] 
*e e . ( 3 3) 

. · -3 "(o) 2 
w+l(V /f.. )X -tll X 

e o De 

1- E. 00 2 

K
2;, - '.. 1/2 

'+' = 1Tf f 
o dA 1 

. h < e > [ 1 - A/h < e > J l/ 
2 

0 

2:2:L: 
p=-oo j"=l 011=±l 

-1 

• ;f;(P) (A,S,8)X~,exp (-X~,),(p+S)~t. +2~~~)Xj"' 

2 
H (X 0 II) 

J 

,, 2 1/2- (' 2 3 ) 
.• exp [ipwtt(8)] J [(2b.

8
fi.J x.,] u..1-w. [l+n. (X., --2->J, (34) 

0 l J *l 1 J 

and 

K
3: _·. 1/2 

'+' = 1Tf 

1-E: 

f 

0 

dA l 

h(8) [1- A/h(8) 1
1

/
2 

00 5 

2 
H (X. II) 

J 
0 

p=-oo j "=1 011 =±1 

-(p) 2 2 ,, "· 3' ( I )X-4 
• <P (A,S,8)X.,exp (-X.,) p+S)cut+ l \) E ., 

J J · e o J 

the integra-differential equation can be written as 

a2 a 2 a4 - 1- ?- 3-
o = [A ( e ) -2 + B (as + is ) + c + D ( e ) + E -4 ] <P ( e I s ) + K <P + K- <P + K <P I 

as as (36) 

or, as 

-
0 = L¢ , (37) 
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where L is an integra-differential operate~. 

In order to solve Eq. (37), in which L is a complex, 

linear, nori-Hermitian integra-differential operator, ~(B,S) is 

expanded in complete sets of basis functions ~n both the s 

and e directions, thus converting the integra-differential 

equation into a matrix equation. Specifically, 

()() . ()() 

~.(B,S) = ~ ~ 

where the : g . (e) 
J 

n=o j=-oo 

and the h (S) 
·n 

- . 
~ j n g j (e) hn ( s) 

; 

~ay be chosen for numerical 

(38) 

efficiency, but must be completer orthonormal sets of functions, 

with the g. < e > 
J 

being periodic with period 2n, and the hn(S) 

satisfying·the boundary conditions, which will be left indefinite 

for now. Note that Eq. (38) does not involve any assumption of 

separability. 

and 

Hence the. g . (B) 
J 

rr 

and h (S) 
n 

f u.e~:~.(e)~:~~.<e> ~ 6 ... , 
-n J J J J 

0 1 • 
nn 

Equation (37) now becomes 

0="'¢. Lg.(B)h (S) £..J J,n J. n 
j ,n 

so that 

' 1.1, -:~: : .... ' 

have the properties 

(39) 

(40) 

(41) 

.. 

. . 
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7f 

0 = J de J dS gj, (B)hn' (S) L: <Pj,n Lgj (6)hn(S) = E' ¢j,nLjj',nn , 

-7f 
j ,n j ,n 

( 42) 

which is the desired matrix equation with 

7f 

Ljjl;nn~= I de I dSgj 1 (6)hn 1 (S) Lgj(B)hn(S) ( 4 3) 

-TI. . 

This can be broken up into terms corresponding to the terms in 

Eq. (36), namely. 

Lj j I , nn I 
A ... I I +B .. I I +co .. I o I + n .. I I 

J J , nn J J , nn J J nn J J , nn 

1 2 3 (44) 
+E .. , ,+K .. ,- 1 +K .. , ,+K .. , ,. 

J J , nn J J , nn J J , nn J J , nn 

The quantity to be considered as the "eigenvalue" is just 

the constant complex quantity (- C ) , since 

E (LJ·J·',nn' -co .. ,o 1 }cJ>. =-CcJ>. 1 1 • JJ nn Jn J n 
J ,n 

Since thP. frequency w enters Eq. (37) in a complicated 

fashion, an approximate value w 
0 

"corrected" by a frequency shift 

for the frequenriy can be·· 

ow :: w- w <- w obtnined 
0 0 

from a perturbation expansion. Thus, w can be obtained 

recursively, starting with an initial guess obtained, for 

(45) 

instance, from a "local" numerical code for the dissipative 

trapped-electron mode.
8 

Considering only the lowest order terms 
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in c l/2 
c:. and a 

• 0 I in Eq. (36), and expanding to first order in 

ow/w 
0 

where 

the result for ow is 

A 

.,. 
(- C.) + C (w = .w ) . 

0 

(-C) is the eigenvalue for the considered 

the matrix (L .. , , -Co. . o- ) I · · 
J J , nn J J ' nn ' 111 = w 

0 

, 

To hP mnrA sp~cific, the choices which will be made for 

g. ·(e) - (2n)-1; 2 .exp (ije) 
J 

a Fourier series, and 

a Hermite function series,.where Hn denotes a Hermite poly-

nomial and a is a parameter [with 

(46) 

· of 

(47) 

(48) 

Re (a) > 0] which can be adjusted to niinimi'ze the number ot radial 

basis functiqns which need to be retained. Note that a need 

not be the value which would be calculated from Weber's equ~tion. 9 

In what follows, calculations using -Weber's equation will be 

referred to ~s local. Considering ~nat the equation to be solved 

is t.he lowest in a hierarchy in ( t.r /r ) , the limits of the s 
s n 

integration may be extended from those corresponding to the 

magnetic axis, and the limiter to ±oo , (or more specifically, 

± 00 • 
-1/2 

a ) • The boundary conditions to be imposed are 
-
¢-+0 

as S-+ ±co , which are automatically satisfied for Re (a) > 0 • 

This corresponds to "globally" localized modes which may spread 

... 

• J 
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over a number o~ mode-r~tional surfaces, and to outgoing energy 

at s + ±oo • 

Using the expressions in Eqs. (47) and (48) for the basis 

functions, some of the terms in Eq. (44) can be computed analyti-

cally. Using the differentiation and recursion relations for 

Hermite functions
10 

gives 

a2 
1/2 2 

-
2

[Hn(cr S)exp (-crs /2)] 
as 

= cr[i Hn+2- (n +~)Hn 
2 

+ n(n-l)H 
2

Jexp (-crs /2). 
n- . 

Using Eq. (49) and simple trigonometric identities gives 

A,.' ' JJ ,nn 
= {.r: .. [ '"".(·T e + w *e) (I -I ) - n. w *e [I + b · (I - I ) ]] . 

UJJ 1 T. w 0 1 l w 0 i8 1 0 
l 

. T w 

+ -
2
- ( o. +l . , + o. l . , ) ~ + ~ [I ( 2b. 

8 
- 3) WDi ~( ~ 

w J ,J J- ,J Ti w o l 

2 

(49) 

pi [ 1 (-b.
8

) 
2

cr -(n+-
2

)o , 
1 2 ( t.r ) nn 

s 

M 1/2 M 1/2 J 
+n(n -1)( ~- 2 ) o + 1( n+2) (SO) 

-~ n-2,n' 4 ~ 0n+2,n' 

The. recursion relation for Hermite functions then gives 
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B .. ' I J J 1 nn 

. 1/2 

+ 0 (- -· ~-) (Mn-1)·· 
n-l,n 1 _1 1/2 M · 

a · n . 
· M 1/2 

+ 0 (- · 1 ) ( n+ 1) 
n+l,n 1 

· J V2. ·~. 
a n 

. M 1/2 
+ 0 (-n (n-1)") (~) 

n-2~n 1 , a · M . n 

. : 1/2 

( 
· 1" '(M ) l · - , n+2 · 

. + Q 11 + 2 1 11 1 lo) ~ .. J. ( C) 1 ) 

Also 

.• 

DJ. J. I 'nn' = - o ' ( o . +1 . ' + 6 . 1 . ') wDi [(Te + w ~e\ '[I . (2 -b. ) 
nn J 1 J 1 - , J 2 w r . w ") o 1. e 

- 1 

• exp (- b 
1
. 

6 
) - o , ( o . . 1 + -

2
1 o ·. 

2 
. , 

nn JJ . J+ 1 J 

-2 
w . [(T w ) 01 e *e 2 . o._

2 
.,)--

2 
.-T +--rr (7-6b. 6 +2b. 6 ) 

J ,.J ? . w 0 1 1 .... w .., 1 . 

(52) 

and 
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E .. 
1 1 

= o .. 
1
Ea

2
\5 

1 
(
2
3 

n
2 +-

2
3 

n +l
4

)+ o 
2 1 [- (2n-l)n{n-l)] 

J J , nn · · J J nn n- , n 

H 1/2 

( 
n-4) + o [n (n-1) (n-2) (n-3 H --

n-4,n' . Mn 

1/21· 1 Mn+4 · 
+ 0n+4,n' 16 ( ~) 

n 

(53) 

The integral terms are put into computa-

tionally convenient forms in Appendix c. 
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IV. NUMERICAL RESULTS 

Six different cases have been investigated with the computer 

t 
code which i~plements the procedure described in the: preceding 

section. The chosen and derived parameters for these c~ses are 

given in Table I. In Table I, v *. is defined as v ~I (~J/ 2 wt ) . 
e e o e 

The perturbe~ electrostatic potential for Case (a) i~ reasonably 

localized ra?ially, allowing comparison to previous Weber's 

equation solutions for the radial dependence.
3

• 8 Case (b) is set 

up to allow ~omparison with previous results for the·poloidal de-

d 
1,2 

pen ence. 

expansion for 

' 

The parameters of Case (c) are chosen .such that the 

k p. < 1 
r l. 

just breaks down, so that a limit for.the 

region of vaiidity in parameter space for the present formalism 

can be ascertained. Case (d) is a basic case of practical interest, 

for which a :k p. < 1 expansion converges properly. ·It has been 
r l. . 

run with different terms in Eq. (44) turned on and off, to allow 

assessment o£ their individual effects. Case (e) differs from 

Case (d) only in the assumed aspect ratio, to investigate the 

effects of varying this parameter. Likewise, Case (f) differs 

from Case (d) only in choosing opposite signs for the density and 

temperature 9radients in order to study this ·Stabili~ing effect
4 

in the context of a nonlocal calculation. 

The final results for 
I 

w = w + i y and a= a + ia. 
r r 1. 

for the 

six cases ar~ given in Table II. These results are 6bt?ined with 

all of the t~rms in Eq. (44) included, except for Case (b) (see 

below). Only results for the lowest eigenmode, that:is, the one 

with the leas.t number of radial and peloidal nodes, are given for 

each case. T:his is generally seen to be the eigenmode correspond­

ing to the la.rgest growth rate, and is therefore of most interes·t. 

\. 

.• 
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I ld b . d . . . 1 d . 1 , 3 
t shou e noted h.ere that. prev1.ous one,_ ~mens1.ona stu 1.es 

also indicate this basic trend; i.e., the lowest eigenmodes have 

the largest growth rates. Higher eigenmodes can be investigated 

by the two-dimensional code, but this will be left for future 

investigation. The general procedure was to choose a value for a 

and then to compute the value of w recursively with Eq. (46) 

until it converged for the lowest eigenmode. The value of a 

is then varied to get the best convergence of the coefficients of 

the radial basis functions. The value of w is computed 

recursively again until it converges on a final value. The final 

results presented in Table II are generally for eleven radial basis 

functions (n :o 0 through 10) , seven peloidal basis functions 

(j =- 3 through 3), and eleven transit frequency harmonics in the 

resonance terms (p =- 5 through 5) , except as noted below. This 

means that it was necessary to numerically solve a (77 x 77) matrix 

for the eigenfunction. Plots of the final lowest eigenfunctions 

for the six cases considered are shown in Figs. 1 through 6. For 

Cases (a), (c), (d), (e), and (f) these are three-dimensional plots 

-
of the real and imaginary parts of ~(8,S) . Only positive values 

of S are shown, since the lowest eigenfunction is always 

symmetric in (S8) . Higher eigenfunctions can be either even or 

odd in (S8). In Table II, results for w and a obtained from 

• 
the local code of Ref. 8 are also given. Here the value of ·a 

obtained by solving Weber's equation is just
9 

e a'r (T )-1 
= - :.L...::. b 

T. q ie 
1. 

r 
n 

r 

£ w 
o *e (y + iw ) 

q w2 + y2 r 
r 

(54) 
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However, to make the comparison between the local and the two-

• c 

dimensional results more meaningfui, the first and second order 

ion magnetic:drift terms, as given in Eq. (23), have been added to 

the local code. Also added was the Weber's equation correction 

to the dispersion relation (shear-dependent convective term) which 

was derived in Ref. 8, but was only used to determine marginal 

stability co~ditions there. Note that all of the fr~quenci~s 

presented in·Table II ar~ in u11lLs of 

frequencies ~nd growth rates are proportional to the·numbers 

listed multiplied by b
l/2 
ie · 

For Case (a) , the parameters are chosen so that comparison 

is possible to a radial one-dimensional analysis
3 

which applies to 

the dissipative trapped-electron mode a method.first used by 

Pearlstein and Berk
11 

for the "universal" electron d·rift mode. 

The calculation in Ref. 3 inqludes only the first radial finite 

ion Larmer radius correction term, the ion sound term, and the 

spatially constant terms, with no poloidRl depen4enci~. These 

correspond to the A, B, C, and Kl terms· in Eq. (44). 

Therefore, the other terms and the peloidal dependence have been 

suppressed in .the two-dimensional code in making the comparison. 

The solution's of the Weber's equation obtained in Ref. :3 are just 

the Hermite _functions used as ba~i3 f~nctions fo~ the two-dimen-

sional calc~lation, if a is taken equal to with 

computed from Eq. (54) using the values of wr and· Y obtained 

from the lo6al code8 with the corresponding terms suppressed. A 

"radial diagonal dominance index" is defined as the'sum of the 

absolute squares of all the radially off-diagonal (~' ~n) elements 
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of the (L .. 1 , -Co .. 1 6 , ) matrix divided by the sum of the 
JJ ,nn JJ nn · 

absolute squares .of all the radially diagonal (n = n') elements. 

This index was computed as the real and imaginary parts of a 

were varied, keeping the first five Hermite functions in the 

basis, and was found to be a minimum when a= a 5I. • This means 

that the set of numerically computed eigenfunctions was closest 

to the set of Hermite function solutions of Weber's equation 

when a= a 5I. , as would be expected for a mode localized around 

one mode-rational surface. It thus constitutes a check of con-

sistency between the two-dimensional computation and a prev·ious 

one-dimensional calculation, for parameters such that the latter 

is expected to be a reasonable approximation. Note that this 

was with the poloidal dependence suppressed; when this dependence 

was included, the value of a which minimized the index 

shifted significantly from afl. Also note that the index is 

useful only for global comparisons of all the radial eigenmodes; 

it is not particularly useful for testing the convergence of 

the coefficients for any single eigenfunction. 

Another check of the two-dimensional code was performed 

using the parameters.of Case (a). To verify that the eigen-

function obtained is reasonably independent of the choice of a , 

the final eigenfunctions for Case (a), including all terms, were 

recomputed for two other values of a . The lowest eigen-

function, as measured by the S-values of the zeroes of its 

theta-average, changed by about 12% for a 20% reduction in a 

and by about 15% for a 40% reduction. These changes in the 

eigenfunction are of the same order as the inverse of the 
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i 
number of radial basis functions us"ed, that is 9% for 11 Hermite 

functions. Thus the accuracy obtained is about what would be 

expected. 

The parameters of Case (b) are chosen to allow comparison 

with previous one-dimensional analyses of the mode structure 

along a f1.eld l1'ne. 1 ' 2 F ~· · · ; · · or a one-~1mens1onal 1ntegral equat1on 

which would sorrespond to Eq. 

terms retained, for b. « 1 , 
1 

(36) with only the 

a result close to 

C ·and K1 

2 
<P (8) a: cos (8/2) 

a: ( 1 +cos 8 ) was obtained. In running Case (b) only the 

corresponding terms w~re retained, The result for <P ( e, S = 0) , 

shown in Fig: 2, is also similar to (1 +cos 8) . This constitutes 

another check of the two-dimensional calculation against a previous 

one-dimensional analytic result. The entries in Table II for 

Case (b) reflect only the retained C and Kl terms. This 

simple ( 1 +cos 8) dependence will, of course, be mo4ified by the 

omitted terms, in particular by the ion sound and ion curvature 

drift terms .. 

Case (c) has been used to test the limit of validity of the 

b. =- (p.
2;6r2 ) (a 2;as2 ) < 1 assumption that has been made. In 

1r 1 s 

particular, the limit on bi 8 
that this implies is 8hecked 

a posteriori. 'Estimating the maximum value of 

Fiq. 3 indicates that b. - 2 , so that b. /b. 
9

- 2 0 '· 
1r 1r 1. : 

Thus the 

b. < 1 assumption has broken down, and the Case (c) results are 
1r 

really only an extrapolation of the 

beyond its range of validity. If 

b. < 1 
1r 

formulation, somewhat 

b . /b . "' 1 0 to 2 0 . , as is 
1r 18 

also indicated by the results for Case (d), then the limit on 

is b i e ~ 0 • 0 5 , and on is k P· $0.3 
8 1 

Treating larger 

'>· 
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values of bie would thus require a more general formulation 

for treating ~inite ion Larmor radius effects, specifically an 

integral instead of a differential method. This generalization 

is currently under investigation. 

For Case (d), b. 
8 

= 0. 025 and, as can be verified from 
·1. 

Fig. 4, b. < 1 here. 
l.r 

For the parameters of Case (d) , the 

effects on w of turning on· and off the various terms in Eq. ( 4 4) 

are given in Table III. Comparing the results, it may be seen 

that the ion sound term, the B term in Eq. (44), is substantially 

stabilizing. This is expected since this is the term which is 

mainly responsible for energy convection away from the radial 

region where the mode is localized. The first order ion magnetic 

drift term, which is part of the E term in Eq. (44), causes a 

large decrease in wr , which has a stabilizing effect in this 

instance. Results from the local code also exhibit this behavior. 

The second order ion magnetic drift term, the other part of the 

E term in Eq. (44), serves to partially reverse the effects of 

the first order term. This trend again corresponds to results 

from the local code. As expected, the ion resonance term, the 

K
2 

term in Eq. (44), is somewhat stabilizing. The electron 

resonance term, the K3 term in Eq~ (44), is also somewhat 

stabilizing, which indicates that the effect of energy absorption 

at mode-rational surfaces is stronger than the effect of energy 

reflection there. 

The only chosen parameter in Case (e) which differs from 

Case (d) is the inverse aspect ratio E. . 
0 

It is seen that the 

effect of decreasing €
0 

from 0.25 to 0.12 is destabilizing in its 
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net effect on the mode. The same behavior is seen 'in the results 

from the local code. This trend .will, of course, riot continue as 

t approaches zero, since the main destabilizing ~erm, the 
0 

trapped electron time-average term, would t~ereby be eliminated; 

thus this observed destabilization should not be generalized 

indiscriminately. 

Case (f) differs from Case (d) only in the signs of · ni and 

n • 
e 

This change was seen to be strongly stabilizing in local 

calculations, 4 ~ 8 and it remains so in this two-dimensional 

calculation. Hence, an equiliprium situation with oppositely 

directed density and temperature gradients is more favorable in 

terms of dissipative trapped-electron mode stability. 
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V. CONCLUSIONS 

As pointed out in the preceding discussion of Cases (a} and 

(b), the present two-dimensional calculation can reproduce charac­

teristic features of previous one-dimensional analytic solutions in 

limits for which these one-dimensional solutions are expected to be 

valid. Also the solution method for the two-dimensional integra­

differential equation permits the treatment of cases such as (c), 

(d), (e), and (f), for which previous solutions are invalid. It 

allows examination of the results of the interaction of different 

terms, and of the radial and peloidal dependences of the potential, 

which would not be possible with a simple perturbation approach. 

c~rtain conclusions about the effectiveness of shear 

stabilization can be drawn from the results presented in Table II. 

For Case (a}, which is illustrated in Fig. 1, the mode overlaps 

the mode-rational surfaces at lSI =1 strongly, but not those at 

larger values of lsi . The growth rate from the two-dimensional 

calculation is much less than predict~d by the Weber's equation 

solution, implemented in the local code. Thus the lsi =1 mode­

rational surfaces cause a substantial change in the growth rate. 

A possible explanation of this behavior is that energy absorption, 

which tends to decrease the growth rate, dominates over energy 

reflection, which would tend to increase the growth rate. These 

effects enter mainly through the circulating-electron resonance 

term. For Cases (c), (d), (e), and (f), where the modes overlap 

more mode-rational surfaces, the differences between the local and 

two-dimensional growth rates are much smaller. Here a possible 

eX]:Jlanation is that the large number of mode-rational surfaces 
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overlapped by the mode tend to cancel one another out in their net 

effect on the growth rate. This is consistent with the smallness 

of the electro'n resonance term for Case (d) , as is seen in 

Table III. rhen the dominant remaining effect is the convection 

of energy, because of the ion-sound term, which is included in 

both the local and two-dimensional results. Thus, the local code, 

with the Weber's equation solution correction to the· dispersion 

relation, is in fact more accurate in estimating shear stabilization 

than might. be expected. However, Fig. 4, for example, 'shows that 

the actual mode structure is qulL~ Jlff~ren~. Nota that, in g~neral, 

the local code predicts that the amount of magnetic shear in real 

tokamaks will be insufficient to stabilize the dissipative trapped-

electron mode for normal gradients, and the two-dimepsiortal results 

confirm this. For oppositely directed temperature apd density 

gradients, however, both codes predict that realistic amounts of 

shear can stabilize this mode. 

The mo~t important limitation on the present analysis is the 

requirement that The results presented in the 

preceding section indicate that generalJy 
_ I 2 2 

bir/biO = ·bir/ (kepi/2 ) 

~ 10 to 20 .. The local code predicts that the maximum g:r:owth rates 

will occur for 
8 

b . 
8 

~ 0. 5 to 1. 0 or even more. 
1 . 

'l'hus.~ the most 

interesting part of parameter space is, in fact, inaccessible to 

the present code. To reach this part of parameter space will 

require the abandonment of the simple differential formulation of 

the finite ion Larmor radius effects employed here, for a formula-

tion valid for larger b. 
1r 

This problem is currently under 

investigation. The present integro~differen·tial equation and its 
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solution method nevertheless represent a substantial improvement 

over previous studies of the spatial structure of this mode. It 

is anticipated that other improvements, such as the inclusion in 

the integro-differential equation of some terms omitted here, the 

use of a more accurate electron collision operator, and the 

addition of ion collisional effects will also be incorporated in 

future work. This should allow study of the mode for higher 

collisionalities, which are relevant for interpreting the experi­

mental results from present machines. 
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APPENDIX A 

The linearized drift kinetic equation (for a magnetic field 

independent of time), in terms of the quantities defined in 

Section II, is 

= - v< 1 ) . 'I f ( o ) 
"""'E e 

-
e ( ~II +~B) • 'I¢ 

X 

Clf(o) 
e 
at v (c) [f.{l)- (e¢/T )fM ] , (Al) 

f e · e e 

whcro f (l) 'i R thP. perturbed electron distribution function, 
e 

v(l) is the 'perturbed electric drift velocity, and 
"""'E. 

magnetic drift velocity. Using the assumed form for 

~B is the 

f ( 0 ) . gives 
e 

'-

where 

e 
T 

e 

ClfMe 

--ar 

v [ f ( l) - ( e ¢ /T. ) fM ] 
f e e e 

(A2) 

(A3) 
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and (d/dt) jb indicates the total derivative along a guiding-

center (banana) orbit. Note that 

can be neglected relative to ~~~ . Also is smaller by 

one order in E
0 

than 1/(me~l) for the trapped and barely cir­

culating particles which are of most interest. Thus we have 

dt 
e d I a b "' T e f Me ( d t b - at + v f) <P 

-lei 
- [m st 

e ee 

af . 
" :.T: + ( 1 ) 1 Me f ( l ) 
VII'¥ VEr • ar- \) f e 

(A4) 

to lowest order in € . Since a¢/as = i~¢ 
0 

this may be rewritten 

as 

( ~ I + v ) f ( 1 ) = e f Me [ ( ddt_, b + v f ) <P + i ( w - w '; ) ¢ 1 
dt b f e Te e 

(AS) 

where the definition 

(A6) 

has been used. Equation (AS) is equivalent to 

(A 7) 
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Equation (A7) may be integrated along the unperturbed guiding-

center orbits to obtain 

t 

efMe - T J 
= [ <P + i ( w- w * ) e xp (- v f t) 

.T e 
e 

(A8) 

-oo 

Here t' is the time parameter along the unperturbed orbit, and 

the integration iS SUbjeCt tO the bOUndary COnditiOnS e (t I = t) = e 

and r ( t' = t ). = r . Adopting the notation 

f ( 
1 ) = f P¥n (- i lilt. + i R, r. - im 0 e) e e .1.· 

(A9) 

Eq. (AS) can be rewritten as 

t 
efMe T J 

f = { ~ ( e, s) + i ( w - w* ) 
e Te e 

-
dt I ¢ ( e I IS I ) 

-en 

x exp [-i (w+ivf) (t'-t)] exp [i (£1;; '-m
0
8') - ·i (tc:;-m

0
8)]} , (AlO) 

Where the abbreviation e (t I) = e I I r(t') = r', C:(t') = (;', 

and S' = S[r(t')] have been used. 

To do the t' integration, an explicit form is needed for 

n I Qe I ...,r._: - m , specifically 

t' 

(.Q_r; I - m Q e I ) = Q, J dt II [ d~~l - q ( r Q) :t~l] + ( Q, c:; - ffi Q e) I 

t 

recalling that 

dl;; 
dt" - q (r) 

Notice that 

d8 
dt" 

(All) 

(Al2) 
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results from the instantaneous magnetic (gradient and curvature) 

drift velocity vMD of the guiding center, so that 

where 

and 

= .11, { q [ r ( 
0 

) J - -q ( r ) } ( e ' - e ) 
0 

t' 

+ J 
t 

dt" w (t") + (Q,I;;- m
0

0) 
De 

( 0) 
r 

1 f dt r 

is the time average of r along the guiding-center orbit, with 

( l\11 ) 

(Al5) 

Tb,t equaling Tb or Tt as appropriate. Equation Al3) becomes 

with the definitions 

= s(o) (8'- 8) + w(u) (t'- t) + (-) 
DE woe 

f dtll w (t") 
De 

(Al6) 

{Al 7) 

(Al8) 
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and 

t' 

(-) f 
WDe - dt" [w (t").-w(o)] 

De De 
t 

Then for trapped particles 

where 

( S/_ S I - m O .8 I ) - ( S/_ S - m O 8 ) = (l) 6: ) ( t I - t ) + p ~- ) ( t I ) 

pb~- ) ( t 1 ) = s ( O ) ( 8 I - 0 ) -\- 'W ( ., ) 

De 

while for circulating particles 

where 

.p~-)(t') = s(o) (A'- 8) - w s(o) (t' -t) + w<-> 
t De 

(Al9) 

(A2 0) 

(A21) 

(A2 2) 

(A2 3) 

Note that 

with periods .Tb and 

and P~~) (t') are periodic funclions of t' 

!Ttl respectively. Therefore it is useful 

to employ the.decompositions 
I 

~(8',S') exp [iP~-;~(t')] = I: ¢ (p) exp {ipwb,tt.[O (t')]} 
p=-oo 

where the summation is over all iRteger values of p, and P(-) 
b,t 

and wb,t mean P~-) and wb for trapped particles and p~-) 

" 

(A2 4) 

and wt for circulating particles. The parametric function t(8) 

is defined by · 



A 

t ( 8) - qR 
0 
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8 

J d8
1 /vll (8

1

) 

0 " 

+ constant (A2 5) 

and the cons-tant can be chosen such that t [ 8 (t 1 
) ] = t 1 over some 

bounce or transit period of interest. The inversion formula is 

f dt 1 ¢(8 1 ,S 1
) exp [iP~~~(t 1 )] exp {-ipwb,tt[O(t

1
)]} 

(A2 6) 

at constant 8 • By means of these decompositions the t.ime integra-

tion in Eq. (AlO) can be done exactly 

efMe 
= --;y;-

e (

- ,.. T . ;p(p)exp[ipwb,tt(8)] ) 
¢(8,a)- (w-w* ) L ( ) ( ) (A27) 

e p w + i v - w 
0 

- [p+S 
0 

H (fl. -fl.) ] w 
f De c b, t 

where H is the Heaviside step function and fl. - 1- E" so that 
c 0 

H (fl. -fl.) = 0 for trapped particles and H(fl. -fl.) = 1 for circulating 
c c 

particles. This difference in the form of the denominator in Eq. 

(A27) reflects the fact that circulating particles sample the entire 

field line. They are therefore sensitive to the mode-rationality 

or -irrationality of the magnetic surface on which they move, i.e. 

to S or S ( 0 ) • Trapped particles, on the other hand, sample 

only a part of a field line and are not sensitive to this difference. 

From Llle result given in Eq. (A2 7) , 



n 
e 
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- r = ;n ( ¢ ( 8, S) 

e 

¢ (p) exp 

xi: 
p w+iv -w(o)­

f De 

3 T 
d v fM (w-w* ) 

""""' e e 

(A28) 

This result includes the effects of the electron panana width 

()be · !'lvwt:! ver, for thic probl~rn thP nnminant ,J:"adial lengt.h is the 

ion gyroradius Pi , which is large compared to pbe for reallslic 

parameters. Terms of order S (-) = S - S ( 
0

) can thei"etore lJI::! 

neqlected. For (qlr/q) of order unity, the quantity 
(- ) 

WDe is 

found to be of. the same order, so that it can also be neglected. 

then n becomes 
·e 

n = en ((j) (8 S) _ ~(_2__) 3/2 ~ 
e T ' 2n m LJ 

e : e _ oil 

h ( 8) 

I dl\ 1 

h(8) [l-l\/h(8)] 
112 

0 

00 

X f dE 

0 

where no·l'l 

;p (p) = 

c:n 

l: ¢(P) (1\,8,8) exp [ipwb tt(8)] 
: I p=-oo 

1 I d t 1 ¢ ( 8 1 
, r 1 

) e xp { is ( 8 1 
- 8 ) - i w t s [ t ( 8 1 

) 

Tb,t J 

- t ( 8) ] H ( 1\ -1\) } exp {- ipwb · t t [ 8 ( t 1 
) l } 

C - I 

(A29) 

(A30) 
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In Eq. (A30), if e is not to be regarded as constant, then dt
1 

is to be interpreted as dt 1 = qR
0 

d ( e I - e) /vii ( e 1 
) , so that 

~(p) (A,8,S) will be explicitly periodic in e. 

This result for n will now be specialized to the case 
e 

(o) < / ' < ( '-
w, v f' woe \ wb' e w tIe ' as is appropriate for the dissipative 

·trapped-electron mode in the banana regime, so that the denominators 

of all the terms may be expanded, except the p = 0 (i.e. time 

average). trapped-electron term. This yields, assuming 

> y :: Im ( w) , 

00 

11 - eT4ne {¢ (8,8) - 2nn (.2_) ~/? l L I 
e me h (e) 

0
11 0 

[ 

h < e > 

X I dA 

1-E 
0 

1 
X {-- + 

pwb 

1-E 

(1- A/h) -1/2(--~~(o_>_,_ 
w+iv -w(o) 

f De 

w+iv -w(o) 
f De 

I 0

dA(l-A/h)-l/ 2 L~(p) 
0 p 

A 1 
exp (ipwtt) { (p+S)wt 

w = Re(w) 
r 

(A31) 



Defining X - (E/T )l/2 
e 
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and using a "hat" (") to specify that 

the X dependence has been factored out of a quantity, the 

trapped-electron delta function can be written as 

6 [ w + i v f (E) - w6~) ( 1\., E:) - pwb ( 1\., E) ] 
I 

5 

'""" I ,, . A ( 0 ) . . . ·-41-1 L....! o(X-X.,) pwb+2lll X.,+3i(v /E )x.,· 
j " = 1 J De J e o J 

where the X., are the five roots of the polynomial 
J 

The result fof the circulating-~lectron delta functiort ~erm 

(resonant term) is similar in formw 

The interesting terms in Eq. (A31) for the dissipative 

trapped-electron mode, aside from the p = 0 trapped-electron 

term, are the resonant terms, so the others will be dropped at 

this point. Using the delta functions to do the E '(or X) in-

tegration for• the resonant terms gives, finally 

(A32) 

(A33) 
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~ 
en 
T 

e 
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h <e) 

X f 
- ( 0) 

di\ < 1 - A/h > -1 I 2 _____ <P _ ___,.-~-,---=-

w + i < v /E. ) x- 3 
- w

0
< 

0 
> x2 

1- t. e o e 
0 

h < e > 5 

X L f di\ 
0

11 1-e 
(1- J\/h)-1/2 2:: L exp 

piO j"=l 
0 

I 
-1 

A A ( 0) , -4 2 2 
X pwb+2wD x.,.+3l(V /E )X., x.,.exp (-X.,) 

e J eo J J J 

1-c 

+ i 
1/2 

71" 
-h-

2 
X {ul-W* (l+n (X.,-3/2))} + i I 

0 

di\ ( 1 - J\jh) -1/2 
e e J 

0 

0) 5 

L: 
j"=l 

;f: ( p) exp ( . . .. ) I A 2 A ( o) 3 . I~ - 4j-l 
'¥ 1pwtt (p+S)wt+ ul

0 
X.,+ J.(v \;. )X.,I 

· e J e o J 
X 2: 

p=-ao 

x X~,exp(-X~,){w-w* [l+n {X~,-3/2)]}) 
J J e e J 

where 
2 

H(X.,) = 0 
J 

for 
2 

X. II < 0 
J 

and 
2 

H(X.,) = 1 
J 

for 
2 

X. II 2 0 • 
J 

The result (A34) shows that the trapped-electron resonance term 

(A34) 

does not have the explicit S-dependence of the circulating-electron 

resonance term. The former is therefore not expected to have any 

significant effect on the radial structure of the mode, and can 

thus be neglected .. 

.',; 
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APPENDIX B 

The resUlt for the ions corresponding to Eq. (A28) for the 

electrons is 

n. 
1. 

en(-=-Ti ¢(8,8) 
1 J 3 T. 2 - - d v fM. ( w - w . ) J (k~ v ~/r;t . ) ""' 
n /VV' 1. *l. o 1. .L..J 

p 

{B.L) 

with w . = - (T . /T ) w and w
01

. = - ( T
1
. /Te) wDe . For the ions the 

*1. :1. e *e 

relevant frequency ordering is 

(v. I .. ·) 
1. 0 • 

(B2) 

Ion· collisional effects are weak for k~p. < l , and to a good approx­
J_ 

imation can be neglected.
5 

Expanding th~ denominator- then gives 

ni o -~:[~(9,5) -~ J d 3 ~fMj_(w- w;i)J; L:~(p) 
p 

A (l 
•.exp (ipwb,tt) w + 

w~~) + [p + S ( 
0

) H] wb, t 

2 
w 

2 
{ (o) + [ +S(o)H] } 

· WDi p wb;t . 1:{ (o) 
+ 3 :- 1. 'Tfu w-w

0
i 

w 

Sum rules can be derived .which make it possible to perform 

the p summations by the following procedure for circulating 

(B3) 



-45-

p~rticles. Trapped particles may be treated similarly. The 

analog of Eq. (A24) is, for circulating ions, 

cp(8',S') = exp [-iP~-) (8')J"L:¢(P) exp [ipwtt(8')], (B4) 

p 

where 

(BS) 

so that, using the definition of 

- ( ) ipwtqR0 ( ) 
• <j>{8',S') +~<P p exp [ipwtt(8')-iPr-- ] . (B6) 

LJ VII ( 8 I) -

p 

Notice that, from Eqs. (17), (Al4), and (Al7), 

v,, 
- WDi ( 1) + S qR

0 

Using this result, Eq. (B6) can be rearranged, for· 8' =8 , as 

'I'hen obviously 

(B7) 

(B8) 
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2 - 2 

{i~l +iS + i :~ w0i (l)) ~ (9, S) ~( i~~~o) L $ (p) exp (ipwtfl 

p 

. 2 
{w~~)+ [p + S (o)] wt} (B9) 

Analogous formulas can be obtained· for trapped particles. Using 

b1ese result~ in Eq. (B3) gives 

n . = - CI~I ( ~ ( 8 , S) 
1 T. \ · 

-· ! f d 3v f . ( w - w'l'. ) J2 {[.!. -i VIi (:a . ) 
n ."""" M1 * 1 o w 2 -a~e + lS 

J . qR w 
.0 

2 
VII ( () . . . qRO 

· ~2 ---=-2 --=-3 -()-8 + 1 S + 1 -v-
11
-

q R t.1.l 
0 

2 

r.llni < 1 > ) ] .• ¢ < e , s > + ... 

-inl:~<Pl exp <ipwb,ttJO!w -w~~l- lP + s<olnlwb,tl}) 

P. 

Notice that the two terms in Eq. (BlO) which are odd in ~I 

vanish due to the velocity space integral, so that 

n. 
l 

= - TE:m. ( ¢ ( e , s ) - !_ J d 3 v f ( (J) - r.ll '1' . ) J 2 ( [!. + r ••• l u .i ( 1 ) 
n """' Mi * 1 o ul 2 

1 w 

2 

+ WDi(l) 
.3 

(J,) 

2 
"il () 2 
2 2 3<~-+~S) + .••• J¢<e,s) 

q R w . 
0 

~ - ( p) o A • ( 0) ( 0) l)] 
-inl..J¢ exp(1pwb,tt)o{w-wDi -[p+S H]wb,t 

p 

(BlO) 

(Bll) 

In Appendi~ C it is shown that wDi(l) 

-1 
wD

1
.::uJ .(riR),r :.:-(d!l.nnldr) ,v.:: 

A2 ,A2 
= WDi cos 8 (V .1. + 2VII ) , Where 

*1 n o n 1 
(2 I ) 112 A - I 

T i m i , . vii = vii vi , 

The integral 
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1 J 3 . T 2 woi cos e "'2 .. , 2 
d v f . (1- w*.jw)J (k~v~/SG.) [1 + ( ) (v~ + 2vll) 

n Ml 1 o 1 w 

00 00 

"' "' "'2 f dv ~ v ~ exp ( -v ~) 

-00 

-2 
"4 "'2"'2 ,..4 wti () . 2"'2 

x (v~+4v 11 v~+4vll)- 2 (a9+1S) vii] 
w . 

00 

"' . .--.2 2 ·"' ( w*i "'2 3 
d v ~ v ~ e xp (-v ~ ) J ( k ~ p . v ~ ) { 1 - -- [ 1 + n 

1
. ( v ~ - -

2 
) ] } 

0 l w 

w
0

i cos e ,.. 
2 

w . cos e 
x [ 1 + ( w ) (v ~ + 1) + ( Dl w ) 2 (~ 1 + 2~i + 3) 

w . cos e ) 
+ ( o l w > 2 ( ~ v 1 + 3vi + 12s > J (Bl2) 
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can be performed by means of standard procedures. To do the 

v.~.-integrati,on we pse the general formula 12 

00 

f 
0 

2 2 
d t t e xp (- p t ) J ( at ) 

0 

where I is the modified ·Bessel function of the fi~~t kind. 
v 

From Eq. (Bl3) 

00 

"2 .2 " 
v .1. exp ( =v .1.) J 

0 
( k.:a. p 

1 
'r"") 

where 
2 2 

b. :: (l/2)k.~.P· . 
1 1 

By successive differentiation ot Eq. 

( Bl3) 

{Bl4) 

( Bl3) with respect to p , the other needed formulas can be obtained 

00 

00 

= e xp' (-b . ) { I ( b . ) + b . [I l ( b . ) - I ( b . ) ] } 
1 0 1 1 1 0 1 

. . 2 . 2 
= exp (-b.) (I (b.) (2- 4b. + 2b.) + I

1 
(b.) (3b.- 2b.)] , 

1 0 1 1 1 1 1 1 

., .. 

(Bl5) 

(Bl6) 
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and 

00 

2 3 
= exp (-b.) [I (b.) (6 -18b. + 17b.- 4b.) 

l 0 l l l l 

+ I
1

(b.)(llb. -15b~+4b~H 
~ l l l 

Using these formulas in Eq. (Bl2), the nonresonant part of 

is then given by Eq. (23). 

The resonant part of the perturbed ion dens1ty may be 

n. 
l 

treated in the same way as that for electrons. In particular 

( Bl 7) 

(Bl8) 

where the X." are the two roots of the quadratic equation 1n X 
J 

in the argument of the second delta funct.ion. 

As with the electrons, the trapped-ion resonance term does 

not contain the explicit S-dependence of the circulating-ion 

resonance term, and therefore will not contribute to the radial 

structure of the mode in a significant way, and will be dropped. 

Also terms of order s(-) =·s-s(u) and will be dropped 

from the circulating-ion resonance term. These terms are not 

always small, but, since the ion resonance is not localized in 

s I ' for ul > \wt )]_ this omission is not expected to have a 
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strong effect on the spatial structure either. As is seen in 

Section IV, the net effect of the ion-resonance term is quite 

small for realistic parameters, so that the net effect of this 

omission is also small. The final expression for the resonant 

part of n. is then given by Eq. (25). 
~ 
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APPENDIX C 

The magnetic drift frequency 

~ Q. { B MD + q ' [ r - r ( o ) ] ~ ~ } 

where q' ~ dqldr is taken as constant, can be put into a more 

useful term. 

with the (vMD)s 

Thus 

Now· SMD ~ (dsldt) - q(r) (d8ldt) ~ -(qlr) (vMD>
8

, 

' 
Lt:uu lJeing ot higher order in 

0 
B

8
1B = E lq . 

0 0 

Using B ~ B
0
1h(8)-::: B 1[1+ (riR) case], 

0 0 
'VB ~ [B I (h

2
R ) ] 

0 0 

(Cl) 

(C2) 

x (-~rcos8+ ~ 8 sin8), and(~ x'i7B)
8 

~ - [B
2 
I ( R h 

3
) ] cos 8 

0 0 
gives 

. 
9 2 1 2 

SMD ~ (vii + 2 v ~) cos 8 
r2 ;R r 

OJ 0 

where r2 
oj - e.B lm.c Using Eq. ( 5) gives 

J 0 J 

[v - v(o) 11r2 . 
S S OJ 

Noting that d8ldt = ,ll(qR
0
), and that 

2 
tqv 

2r2 .R r 
U I 0 

2-
= X wDj 

(C3) 

(C4) 

(C5) 
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' J 
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frequency b~c6mes 

The time-average 

-52-

and 

of 

~ 2 

q ~0 

is computed in detail in Ref. 

13. The res_ult can be expressed in t.P.rms of complete elliptic 

integrals. However, for q I r/q - 1 1 can be qpproxi-

(C6) 

( 0) - 2 
mated by w

0
. = w

0
. X G , where the constant G - 1. 0 to 1. 2 fnr 

J J 

trapped particles and G ~ 0 for circulating particles. This 

8 
approximation facilitates comparison with the local code, where 

the same approximation is made . 

The coefficient function 
.. ( p) 
ci> of the p-th bounce frequency 

harmonic for trapped part.icles may be put lnto a more useful 

form for computation. Neglecting and 
( ~) 

WDj I Eq. (A26) 

becornes 

;;. (p) -- 1 ,( A -

'¥ T b j d t I eXp [ i 8 ( e I - e ) - i pWb t ( e ) ] cp ( 0 I 1 S) 

Defining a time tl 
0 

such that for 

( C7) 

and vii < 0 for 

- (p) 
(38), ci> 

t I + T 
. 0 b 

and using the dccomposi-

tion becomes 



~ (p) 
<P =I: 

j 'n 

¢. h (S) l 
J,n n Tb 
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[ e Xp ( iS e I ) g · ( e I ) 

J 

+ (-l)pexp (-ise')gj(-e')] exp [-ipwbt(e')] exp (-iSO) (C8) 

from the symmetry in e of a trapped-particle orbit. This may 

be written as a e'-integration: 

~ (p) 
<P = L: 

j 'n 

€. 1/2 

~ . h ( s ) -,---.....:..0 ~-:-
J,n n 4nLb(J\) 

e 
( 0 

J 
0 

0 

exp [-ipwbt(e')] 
de' 

[1-A/h ce ·) 1
112 

x [exp (iSe')g.(e') + (-l)pexp (-ise')g.(-e')] exp (-iS0) , (C9) 
J J 

where 

e (A> 

J 
0 

de [1- A/h(e) J- 1
1

2 

-e (A) 
0 

Similarly, for circulating particles, 

- (p) 
<I> 

where 

= ~ LJ 

f. 1/2 'IT 

<P . h ( s) 
0 J' 

J,n n 2nLt(J\) 
-n 

" exp [-i(p+S)wtt(8')] 
de' 

[ 1 - A/h c e ' > J 1/2 j 'n 

(\ 

x exp [iS(e'-e)]gj(e'·) exp [iwtSt(e)] 

E 1/2 n 

0 f Lt(A) - 2TI d8 [1-A/h(e)]-l/2 

-'IT 

(ClO) 

(Cll) 

(Cl2) 
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Using these forms in Eq_. (33), the trapped-electron time-

average term gives_, using the resultant symmetry in e and e 1 

from the explicit form of 

00 

g . -< e > ' 
J 

2 
w-w* [l+n (X -3/2)] 1 

Kjj I ,nnl 
- -21T-3/2 f 

0 

·· e e 2 2 
dX X exp (-X ) 

-3 "(0) 2 

00 .• (T 
-1/2 

x f dS 
-1/2 

-oo•a 

e < J\ > 

X 

J 

0 

de I 

0 

w + i ( v If. ) X - WD X 
e o e 

1T 

h < s·> h I < s > n n 
J de cos [ < j I +s.> e 1 

0 

cos [(j+S-)8 1
] 

[l-J\/h(8 1
)]

1/ 2 

Similarly the circulating electron resonance (35) givesJ setting 

"(o) = 0 , 
uJDe 

(Cl3) 
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oc,. a -1/2 
1- € 

3 
Kjj I ,nnl = I dS 

-1/2 
-oo•o 

h I (S)h (S) 
n n f 

0 

dA 

0 

7T 

"' 
[(-j 1 +S)8- (p+S)wtt(O)] 

X I 
0 

de h c e > [ 1-
1
A/h <eTr f: cos 

p=-oo 

4 

X L: L H (X~ II ) X~ II exp (-X~ II ) 

~,=±1 j 11 =1 J J J 

£ l/2 
0 

X 

w-w* ll+n (X~~~-3/2)J 
.e e J 

"' -4 
I (p+S)wt(A)+3i(v /€ )X. 11 1 

· · e u J 

7T 

x J d8 1 [1-A/h(8 1
)]-

1
/

2 
cos [(j+S)8 1

- (p+S)wtt(8 1
)] • (C14) 

0 

Likewise the ion-resonance term (34) gives 

. '•' 
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Kjj I ,nnl = 

2i 
;-1/2 

7T 
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oo•a -1/2 

I dS h I ( s) h ( s) 
-1/2 n n 

-oo•a 

1- E 

f 
0 

di\ 

0 

X f 1 
d 

8 
h ( 8) [ 1-1\/h ( 8) ] 

p=-oo 
cos [(j 1 +S)8-(p+S)wt£(8)]H(X~) 

0 

w-w* [l+n (xi-3/2)] € 1/i 
__ e ___ e __ -=---- J2 [ ( 2b. 1\ f 1/2 X ] __ o~..,... 

I A I 0 18 1 TILt ( J\) 
(p+S)wt(J\) 

7T 

X f d8 I 
. -1/2 

[1-J\/h (8 1
)] cos [ (j+S) 8 1

- (p+S) wt t (0 1
)] (C15) 

0 

•• 
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Table I. Chosen and derived parameters of ::ases considered. 

Chosen Parameters Derived Parameters 

Case Eo T /T. q q'r/q n. n r /r G m./m v* bi6 v /~ w* u.: .. /w* w /w* P./l:::.r 
e ~ ~ e n ~ e e e o e t~ e te e ~ s 

(a) 0.12 2. 3.5 1. 1. l. 0.5 1.0 3672 0.158 O.OO.L 1.8 0.383 32.82 0.0447 

(b) 0 .. 12 2. 3.5 1. 1. 1. 0.5 1.0 3672 0.00012 0.001 o. 00134 0.0447 

(c) 0.25 1. 2.5 1. '1. 1. 1. 1.2 3672 0.06 0.1 0.814 0.447 27.09 0.447 

(d) 0. 25 2. 2.5 l. 1. 1. 1. 1.2 3672 0.06 0.025 1.15 0.447 38.31 0.224 

(e) 0.12 2. 2.5 1. 1. 1. 1. 1.2 3672 0.06 0.025 0.382 0. 215 18.42 0.224 

(f) 0.25 2. 2.5 1. -1. -1. 1. 1.2 3672 0.06 0.025 1.15 0.447 38.31 0.224 
I 

1../1 
\.0 
I 



Table 'II. Results for w and 0 from local code and two-

dimensior.al code. Here w and y are in units of w*e -
~ . -. -· ·-· r 

Local Code Two-Dimensional Coje· 

Case w y 0 0. w y c a. 
r r l r r l 

(a) 0.600 0.181 3.95 13.09 0.726 0.029 4.37 :::..35 

(b) 0.765 -0.037 -0.55 11.31 0.781 -0.009 1.00 1:::..54 

I 

{c) 0.928 0.143 0.162 1. 053 0. 915 0.125 0.944 :::..23 
0'1 
0 
I 

(d) o.7es 0.171 0.530 2. 432 0.831 0.178 1.98 0.501 

(e) 0.479 0.296 0.896 1.450 0.567 0.23::. 2. 12 0.247 

\f) 0.493 -0.010 -0.039 1.946 0.590 G.004 '-· 77 0.800 



( 

Table III. Effects on w 
r 

and y of turning on and 

off terms in Eq. (44) for case (d) paraneters. Here 

w and y are in units of w*e r 

ion 
2 b2 ion electr. 

WDi WD. w y 

sound 
. l, 1r r 

res. res. 

0 0 0 0 0 0.918 0.315 
I 
0' 

~0 0 0 0 0 0. 9<.:·9 0.247 
...... 
I 

~0 ~0 0 0 0 0.41:2 0.196 

~0 ~c jiO 0 0 0.818 0.210 

~0 ~c ~0 ~0 0 0.8:<:3 0.203 

~0 ~0 ~0 ~0 #0 0.831 0.178 
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27r 

Re ¢ (B,S) 

0 2 
s 

,.., 
Imfj>(B,S) 

0 

0 2 
s 

762220 
Fig. 1. Real and imaginary parts of the perturbed electro­

static potent~al eigenfunction ~(8,5) for case (a}. Note that 
the peloidal angle 8 is zero at the- outside of the torus, and that 
the radial va.r.iable s is s = (r- r 0 )/6rs, where r 0 is the radius 
of the mode-rational surface around which the mode is centered, 
and Ars is the spacing of mode-rati9nal surfaces. Only positive 
values of S are shown since the eigenfunction is symmetric in (58). 

<.) • 



cp(8,S=O) 

Im ¢ (B,S=O) 

o~~====~--------------------~==========9 

0 rr/2 
8 

762151 
Fig. 2. Real and imaginary parts of ~ ( 8 ,S) for case (b) 

at s = 0. 
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762221 
Fig. 3. Real and imaginary parts of ¢( O,S) for case {c). 

2tr 

2tr 

.. . 



. . 

-65-

0 2 3 s 4 

'V 
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762218 
Fig. 4. Real and imaginary parts of ~ ( 8 ,S) for case (d). 
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Fig. 5. Real and imaginary parts of ¢ ( 8 ,S) for case (e) . 
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762222 
Fig. 6. Real and imaginary parts of tj> ( 8 ,S) for case (f). 
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