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Two-Dimensional Spatial Structure of
the Dissipative Trapped-Electron Mode

G. Rewoldt, W. M. Tang and E. A. Frieman
Plasma Physics Laboratory, Princeton University
Princeton, New Jersey 08540

NOTICE J
* | This report was prepared as an sccount of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
h and D A i ion, nor any of
their employees, nor any of their contractors,
ABSTRACT .. | subcontract ot thelr employees, mokes any | -
warranty, express or implied, or assumes any legal
liability or ibility for the . 1 .
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not |
infringe privately owned rights.

This paper deals with the complete two-dimensional
structure of the dissipative trapped-electron mode over its
full width, which may extend over several mode-rational
surfaces. The complete integro-differential equation is studied
in the limit krpi <1, where oy is the ion gyroradius, and
kr ,'the radial wavenumber, is regarded as a differential
operator. This is converted into a matrix equation which is
then solved by standard numerical methods. Solutions obtained
are in reasonably goéd agreement with one-dimensional analytic
solutions, in the limits where such results are expected to be
valid. More significantly, the prcoent approuacli can readily
treat many physically important cases for which purely analytic
solutions are difficult to obtain. The results indicate that
the differential equation formulation of the eigenmode equation
is valid only for long. wavelength modes;h(képif 0.3 , with ke
being the poloidal wavenumber) . For such cases it is found
that shear stabilization estimates obtained from the one-dimen-
sional radial solution are gquite inaccurate for modes overlappiné
only a small number of mode-rational surfaces, but become more

accurate for modes overlapping many mode-rational surfaces.

o7 £(1)-1)-3073
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. I. INTRODUCTION _

The dissipative trapped-electron mode is expected’' to have
important ;onsequences in tokamaks, and accordingly, has been
the subjec? of many previous studies. However, previous investi-
gations of:the linear stage 6f the mode have generally'been
one-dimensional. 1In particular, either the radial’ structure of

the mode is ignored while solving for the structure pgrallel to

1] é L 3 - 1 2 H * \ . I )
a magnetlcffleld llne,l’ or the parallel structure is ignored

while solving for the radial structure in the viciﬁity of a
_ 5 , .

N

. S '
This paper deals with the complete

. N
two-dimensional structure of the mode over its full width, which

AR

may extend over several mode-rational surfaces. The complete

single mode-~rational surface.

integro-differential equation is studied in the limit kepy <1,
(where kr , the radial wavenumber, is regafaed'as a differential
operator aﬁd p; 1is the ion gyroradius) for the case of a
circular cross-section, large aspect ratio tokamék.with concentric
magnetic su}faces. The perturbed electrostatic potential is
expanded in‘complete sets of radial and poloidal bééis functions,
thereby converting it into a matrix equation, for which eigen-
values and eigenvectors may be obtained by standard.numerical
methods. These eigenfunctions for the perturbed electgostatic
potential sétisfy all periodicity requirements in the presence of
magnetic shear. Also, the effects of temperature gradients and
of magnetic(curvature and gradient drifts are included for both
electrons aﬂd ions. Electron collisions are accounted for by

means of the simplest energy-dependent Krook collision operator,

4 ¢
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while ion collisons are neglected. Mode-particle resonance terms
for circulating ions and electrons are included, while those for
trapped particles are omitted. Mégnetic'drift effects within
these resonance termsvare omitted; this is equivalent to neglect
of finite radial excursion (banana width) effects. The reasons
for these approximations and omissions are given in the following
sections.

Comparison of the numerical solutions obtained with one-
dimensional analytic solutions indicate reasonable agreement in
the limits wherejthe analytic results are expected to be valid.
However, it should be egphaéized here that the present analysis
is applicable to many physically relevant cases which canﬁot be
treated by previous methods. In particular, the stabiliziné
effect of magnetic shear can be compared with estimates obtained
from the radial one-dimensional analysis mentioned above, (i.e.,
from the solution of Weber's equation). For modes overlapping
only a few mode-rational surfaces, the one-dimensional estimates
for growth rates are quite inaccurate. The net effect of the
additional mode—rétional surfaces is stabilizing.for the case
considered, indicating that energy absorption there dominates
energy reflection. For modes overlapping many mode-rational
surfaces, the radial one-dimensional results and the two-dimen-
sional results are surprisingly close, indicating that the net
effect of all of the additional mode-rational surfaces is small.
The final conclusion about shear stabilization from the two-

dimensional results is the same as that obtained from the radial
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one-dimensiénal results, namely, that for normal grédients and
realistic tokamak parameters, the-amount of shear is not suffi-
cient to stabilize the mode, while with the additional strong v
stabilizing effect of oppositely directed density and temperature
gradients,4 the‘amount of shear can be sufficient for stabiliza-

tion. However, it should be emphasized that the achal spatial

structure of the unstable modes is found to be very:different

from the stgucture calculated using the one-dimensional radial |

analysis. An upper limit on k6 , the poloidal wavénumber, for

the Validity.of the differential formulation for finite ion-

Larmor radiu; effects is obtained. It is found to be quite low,

kopiiEO.B ' énd in fact, excludes a very importan£ part of

parameter space. Specifically, the local theory predicts the

fastest growing instabilities to fall in the range kepi> 0.3.

<7

In Sec. II, the notation and the assumptions made about the
equilibrium ére explained, the form used for the éerturbed |
electrostatic potential is discussed, and the results for the
perturbed electron and ion densities are given. In Sec. III, thé
quasi—neutraiity integro-differential equation is presented and
the solutionrmethod discussed. In Sec. IV, numerical results are
given and diécussed, and in Sec. V' conclusions are given. 1In
Appendix A, the derivation for the perturbed electroﬁ density is
given, and in Appendix B the derivation for.the perturbgd ion
density is given. In Appendix C, forms for magnetic drift .

frequencies are aobtained, and computationally convenient forms for

“°

terms entering the integro-differential equation are derived.
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II. PERTURBED ELECTRON AND ION DENSITIES
A. Notation and Equilibrium

In the coordinate system employed, ¢ denotés the toroidal
angle, © the poloidal angle, r the minor radius of a magnetic
surface, Ro the major radius of the magnetic axis, with 8 =0
at the outside of the torus. The inverse aspect ratio is
EO = r/RO < 1. The fgrm for the magnetic field corresponding‘to
the assumption of concentric, circular cross-section magnetic

A}

surfaces 1is

_ 0 ,
B = [Bofir'+Be(r)fie 1/h(6) , (1)
©
where h(6) El-+éo cos 6 . Along a magnetic field line
a4 Rag _ ras (2)
B BC Be
where 2 indicates length along a field line and R==Roh(6),

so that the "safety factor" can be expressed as

rB :
— ar
qlr) = —= = = (3)
R Be
° field line
Since Bg < BO , g is . of order unity and B = |B| =B_/h(6) . In

velocity space two different coordinate systems will he used,

namely v and v , indicating velocity components parallel and
|

perpendicular to the equilibrium magnetic field, as well as the

quantities ¢ = (mj/Z)(vﬁ-fvf) , the kinetic energy, and

A

1

uBO/e , the dimensionless pitch angle variable, where

u (mj/2)vi/B is the magnetic moment, m, is the particle mass,
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and j = e ,1 denote electrons and ions respecti?ely. The ions
have charge e, = +|e| and the electrons charge e. = -|e| .
The parallel velocity has the form

1/2

Vil = 9 [n—?m-m] =A<fnv[1—1\/h<e)]l/2 , (4)

where o = sign(v”) . Circulating particles correspond to

0 <A <l--5O and trapped particles to l-—EO <A*i1'+€o . The

trapped pafticle turning points are % eo = * arccos [(A-—l)/EO] . -

(o)

The equilibrium electric field E'"’ is assumed equal to
zero. Then the éingle particle constants of the motion are

€, A, and the toroidal canonical angular momentum

. - _ a0 :
PC-ij(VC err)-"ijo(V“ err) ’ (5)
hére 9] = e.B,/m and QO = e Bo/m c.
v 03 T S3Te773¢ 83 T T3 T3
The bournce period Ty, for trapped particles i§ given by
! 8
do r3 de © - . ,
= = _— = —— = ? P _H/ e .
"L §dt - §VH By~ o }Vn (6) ”q“OJ A8/ 1wy (8] o)
-0
< o)

Likewise, the transit period for a circulating particle is
™

o= ar, | ae/vy (o) . | (7)

The correspohding bounce and transit fredquencies are defined as

2n/Tb and wy = 2ﬂ/Tt respectively. Note’that Ty * Wy >0,

Wi, =
while sign(ft,wt) = sign(v”) = q) ,- by convention, and that
Ty is equivalent to 2|Ttl at the boundary between trapped and

circulating particles.

s
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The equilibrium distribution function is taken to be

O_ A~ . , .
fg ) = fmj(l-+fj) , Wwhere %j <1,

£ . = n(r) 573 exp{—g/Tfr)] , (8)
M (2nT (r) /mi 177 . »
J J
and
2 =_l«:_[; an_ 1 E(E-L)] | )
) T Q. d T. d 2 T. ! ‘
J 63 n r i r i
where T is the*temperature in energy units. "Neoclassical"

corrections for the circulating particles are neglected. These

‘corrections were shown in Ref. 5 to have only a small effect on

the results.
In terms of the variables ¢ and A, the integral over

velocity space becomes

3/2 o h(6)

[ 43 v, 2 1/2 1
adv = Z(2) EJ de ¢ f an . (10)
J 2m; o’ o o h(0) [1-A/h (8)11/2

at a fixed value of 8. The notation

<.>. =1

3
j H‘[d v £ ‘ (11)

v Emye--

will be used. The integration will sometimes be over only the
trapped (or circulating)! particles, as will be clear from the

context. Note that
<o lzs = . = =, (12) .

and
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<w o= ()L, : (13)
h v. = 2T. m, .
where 3 ( J/ J)

B. Mode Properties

Considering B = 8nn(Te-+Ti)/B§ « 1, the electrostatic

approximation can bé made for the perturbed electric field

e =g . E (14)

A

By virtue of.axisymmetry, for the linear stage of the mode the

~

perturbed electrostatic potential ‘'® can be written as
| . .

®(r,0,c,t) = ¢,(6,r)exp (-iwt+ile), ~as)

where £, the toroidal mode number,; is an integer. It 1is
convenient té choose a "referénge“ mode-rational surface at
r=r, in the radial region of interest, around whigh the mode
is to be localized, such that 'q(roy = mo/Q . The "slow" and
"fast" H-dependence can then be separated without loss of
gcnerality, i.e.,

9(r,0,z,t) = ¢(0,r) exp (~iwt+itz-im®e), (16)

where m° , the poloidal mode number, is an integer, and ¢(6,r)
must be periodic in 6 with pcriod 27 , and |[(3/56)¢]/¢|<<m0 .
The radial distance from r, in units of the spacing of

mode-rational surfaces is now defined by the new radial variable

s(r) = 2q(x) -m® = &lq() —q(r)] . (17)
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“q

b2l

with S(ro) = 0 , Note that S(r) = (r-—ro)/Ars , Wwhere

ar_ = (i(dg/an)1”t = [eq') 7

2

is the spacing of mode-rational

su1 faces, and dzq/dr i's neglected. In terms of S(r) ,

% = [9(6,S) exp (iS6)] exp {i2[z-q(r)6]} exp (-iwt) (18)

Since [z-g(r)®] is approximately constant along a field line,

the variation of ¢ along the field line is given by

&(G,S) exp (iS6). 1In particular

B 5 =1 - NN I .
) ¢ = EeXP{12[§—q(r)e]—lwt}g-é[(p(e,s) exp i56]
= a%;eXp[iﬂ[i—q(r)e]—iwt}exp(isa)(5%~+is)$(e,s), (19)

to lowest order in €O .

C. Perturbed Electron Density

The form of the perturbed electron density response is
derived in Appendix A. It is valid in the limits
|Qe| »<mb>é>mu and k,p, <« 1 , which are the usﬁal parameter
ranyes of interest in dcaling with low-frequency drift modes.
Here @, E—|e[BO/mec, Pe = ve/|Qe| , and k, 1is the wavenumber
perpendicular to the magnetic field. To obtain the perturbed
electron distribution function, the linearized drift kinetic
equation is solved by means of an expansion in bounce and
transit frequenéy harmonics, and an integration along unperturbed
particle orbits. For simplibity, an 'energy-dependent Krook model,
with the effective electron dollision freqﬁency given by

vf(s) = (\)e/g’o)(Te/e)3/2 , has been employed to account for the
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dominant effects of collisions. As demonstrated in work using

the actual Fokker-Planck operatOr? and a number-conserving form
of the BGK operator,7 this simple Krook operator provides

reasonably accurate results in the electrostatic limit.

The perturbed electron density is n( = neexo( iwt+ifz-im°e),

H
where {

e

nl/zh(e)

ol

i
3

o0

-"-J dX_Xz exp (-—Xz) {w—m ll+n (X —3/2 1}
O
. h(8) (o) .

dA[1 - A/h(8) 1 1/? 8.8

) EO | :‘w+i(\)e/€O)X -’mDe X

X

1-€

L S >

o o ‘ p=-x j'=1

(6)
De

<0 (1,0.5) exp Lipn £ (0)1] (b +8)0, +20 hr

4

- o 2
f3l(Ve/xb)Xj"

_l 2
X5, e -X%.)
l ju eXP (=Xy

x.{w-w*e[l-+ne(X?u-3/2)]}>J. . (20)

Here X = (e/Te)l/2 » Wyg = [T /(|e|R BE)](d Lnn/dr)

= [mUcTe/Ielr B )](d hun/dr), and g = kilnT./drVGi%nn/dr)

Also w is the electron magnetic drift frequency, . whose
De

detailed form is given in Appendices A and C. The superscrlpt
zero indicates a time average along a single particle orbit.

A "hat" (") indicates that the X-dependence has beén.factored
3 (o)

out of a quantity. The quantity is the time-averaged
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perturbed potential seén by a trapped particle, while s (P)

is the coefficient function for the p-th transit frequency
harmonic of the perturbed potential for a circulating particle.
Detailed forms of these quantities are given in Appendices A and
C. The parametric time function E(e) along a circulating

particle orbit is defined in Appendix A. The quantities Xj"

represent the five roots of the polynomial X
. -3 _ ~(o0),2 _ o =
w + i(v, /€)X Wpe X7 ~(P+S)w X =0 . (21)

In Eqg. (20) the three terms are the adiabatic term, the trapped-
electron time-averaged term, and the circulating-electron

resonance term.
D. Perturbed Ion Density

The derivation of the perturbed ion distribution function is -
quite similar to that for electrons, and is given in Appendix B.
One important difference is that effects of finite k,p; need to

be included. Note that

Kk = 9.8 (e LTSy exp (ciwt +1f - imOe
%&+¢ z V,0 = %irar'+-fi6r ae)¢(B,b) eXp (-iwt +12Z -1im 9)
. .. . 0 P . mo ~
= exp (-iwt + ifz - im"0) (erﬁ"e gL T)q)(e.S) ' (22)
for Eo « 1, so that kr==- i(3/9r) and ke = (—mQ/r) . Then the

important finite ion gyroradius effects can be included by in-
serting a factor Ji(klvl/ﬂi) , where J0 is the Bessel function

of tne first kind, into the nonadiabatic term in the expression for
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AN

the perturbed ion distribution function.5 The resultant
expression is then expanded for . krpi <1 with kr replaced

by - i(a/ag)

. The perturbed ion density is, ni(l) = hi exp (~iwt +1i2zg ~ im°g),
with n, = BI;]R + n? .  The nonresonant part ﬁ?R , before

expansion for small krpi , 1in terms of bi =bie +bir

_ 2 2 2 .
= (oi/2)(ke+kr) , is

, =b. W, . W
“NR _ _ |e|n{, _ i ( _ *1) _ *xi- _
n, = T, <1 e { 1-—)1, ni o by (T Io)

i w - 2
w w. Wi g
x1 ® L _ t1 l iy 2
B l(l'."zﬁ“)lo_ni "o [Ty ¥by (I~ 1] (2w2(3 +18)

w*i mDi cos b "
+(1--2 )( . ) [I_(2-b;) +1,b,]

W . Wn. COS O

. ' h 2 ol
)[IO‘(2 - 4b, +2b]) +Il(31.oi. 2b7) 1

W ., we. COS B, 2
*1)/"Di _ 2 w2
+ (1- m)(_(T—> [I,(7-6b, +2b%) +1,(5b; - 2b7)]

2
w ., B.. cos b
L)

*1( D ' - . 2 _ 3
- Ny ( [I,(14 - 25b; +19b] .:4bi)
4 I, (17b, - 1762 +4b3)] v Wies . o (23)
B S| A RS ' ~
Here w,; = E--('I'i/'l'(_:‘)w*e PNy o= (4 2n Ti/'dr)/'(d ¢nn/dr) , w—Di
— H - _ ' "'l . _ _
= wgy (£ /R, ry = (dfnn/dr) =, "I = I (b.) and I, =1T,(by)

are modified Bessel functions of the first kind, and IZ\'Di/w|
and lati/w| are taken to be small.

At this point bi will be separated into bi=b:i.9 +bir ’

with bie arbitrary but with bir <1l. Specifically, the

guantities bir’ (u)Di/w) , and (uiti/w) will all be regarded
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2 .
as small (of order o), and all terms through order o~ will be‘

kept. Expanding EI;IR to second order in a Taylor series in bir

yields

1 T,
i w

NR R . , W . ' 2
- ...lE.lﬂ[l-exp (bi.e)<(l - *l){Io+bir(Il—Io) + (bir/z)

. W .
X [2(1,-1y) - Iy /byglh-ng —={b, g (1) - 1))

. . ’ 2
—bir[I0 + 2bie (.Il - Io)] + (bir/2) [3IO - Il + 4bi6

Wei Wi
(1) - 1)1} - | ( 'T)Io'”iT'[Io“bie(Il‘Io)?

-2 -
W, 2 w, . W, . cos B
ti, 9 | . *iy( D1 """ ) _ :
3 (35 +i5) (1 2B (11, (2 - by y) +I;byq)
® :

w*i (wDi cos 6)

+b, [T (2b;, =3) +I;(2-2b,g)]} - ny —= =

0

. _ 2 o2
X g_IO(Z 4bie +2bie) +Il(3bie Zbie)

- . 2
+bir[_[o( 6+.I.J.bie—4bie)

2 ' w*i
+1,(2-9b, +4b% )1} + <l,' * )

w_. cos 6, 2 '
Di 2 2
(2 _——) (T,(7 = 6b; g +2b5y) + T, (Sbyg - 2b7,)]
w,: B, COS. 0,2
_ '*1("Di ) . 2 .3
ni 5 ( — [Io(l4 25}.).1e +19bie 4bie) +Il

: 2 3 ~ ‘
x (17b,, = 17b5 ¢ +4bie)]>] $(6,5), (24)



wQere now Io = Io(bie) and I, = Il(biel .

1
The ion resonant term will be regarded as small (at .least
-second order in o), so that only ke needs to be ‘kept in the

argument of the Bessel function JO . Noting that (kevi/ﬂi)

= (2bieA)l/gX , to lowest order in Q), the resonant part of n,

i
is
i - 1-€ ' 12
R =__|u]n,iwl/2l ’ OdA[lH-A/h(e)fl/z'Ef:r'z :
i - _Ti h(6) o ¢ dpiah
: 9y p=°«9°4 j "=1
1pm t(e) R -
w‘p)(/\es)e I(p+S)w + 20 (O)jl
2 X 2
Xjn e (w-w*i[l"'ni(xjn _3/2)]
> 1/2 : .
XJO[(ZbieA) Xj"] , - (25)
where the Xj" are the roots of the polynomial
w - S0y - (p+S) e X =0 . (26)

D1

~y
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III. INTEGRO DIFFERENTIAL EQUATION AND SOLUTION METHOD
Since the dissipative trapped-electron mode has wavelength

long compared to the Debye length, the appropriate normal mode

equation is just the quasi-neutrality condition } ejﬁj =0 , or
J
no=n, = o® + 0k, (27)
e i i i
=~ ~NR ~R .
where n, . Ny, and n, are given by Egs. (20), (24) and (25)

respectively. This general integro-differential equation contains
information about several different radial length scales,
specifically about variation over the length scale of the spacing
of mode rational surfaces Arg and over the equilibrium length
scale r_ . For realistic parameters for the mode with (q'r/q)

~1, Ars << r . This fact may be exploited by making a multiple

radial length scale expansion of Eq. (27) in the parameter Ars/rn

and treating only the lowest order equation in the hierarchy of
equations that results. This is equivalent to taking all of the
radial equilibrium gradients to be constant in Egqg. (27), so that

the effects of the real variation of n, Ti’ Te’ and g over

the tokamak crouss=scction are simplified. With this approximation,
by ='-(pi/2)82/ar2 = —(pi/ZAri)(az/asz) , and only the explicit
ENR '

~R . . .
i and ni 1s to be considered in

S-dependence in ng .

solving the integro-differential equation. Making the

abbreviations
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Te Y Wee
— 4 - - *
(_.T ; ) (I, IO), N [IO +2bi

8(Ars)

o) s (30)

2
- 2b ,)lexp (=b,g)

(3D)

o (32)

A = (I, -1
i v w 6 1 o)1
, Te w*e wDi.cos 0 :
+ ==+ = - ~
. w*e mDi cos 6) p .
+ . - - -— ‘
R ( - [T,(=6+1lb; - 4b].)
:1. 02
+ I,(2-9b,, +4b% )1l exp (-b,.) ——t—
<71 i ig’ P 7054 2
. - 2(Ar )
T LW w : . wt.
- ’_§+__l"§_ : *e _ R - ) . 1 , 29
- [(T. ? W )Io-+ni w [Io.+bie(Il lo)J]eXP ( ble) 2w2 (29)
T T w w : ‘
e (. e’ *€ _ _ *E . -7 -b.
1 +F'_('.'If+ w )Io exp biG) T bi;ﬁ (Il Io)eécp.( bl
i i :
Ty W0 ﬁDicose) ;
—(T—i+ Y )( m [I,(2-Db;q) +I1bjglexp (=b;g4)
w*e Zx:lDi cos 6 : 5
-n;,— ( - )[10(2 =4b;, +2b7 ) +1;(3b,
T, W, GDicose )
-(i;i—+ w)( - ) [I.(7-6b, +2b% ) +I,
2 w*eHEDicose .
. . - axp (=L -n. I (14 ~ 25b,
(Sbjg = 2bjg)lexp (=byg)=ny = [I,(14~25b;4
+19b2 —4b3 ) +I,(17b —l7b? -P4b? )] exp(-b.,) ,
16 i6 1 i i6 i6 16"
T w w
- e *e : ' e *e
E =- i_(ﬁ‘:+ w ) [2(Io - Il) ~Il/bi6] + r]i )
. . 4
1 _ Py
s3I, -1y +dbyg (I =T exp (-byg) ——3
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h(8) ~(o) .
kly = - 2 J an —2 " (h,8,8)
R h(6) [1 - A/h(6)17/2
<,
” 2 w-w [l+nem2-3/m]
J dXXze-X '*e_ — "(o) 5 - (33)
o w+i(v, /€)X
1-¢
27 1/2 [ © H(X )
K"¢ = 1im dA .,
) h(e) [1 - A/h(e)]l72 ji: :E: 2

p==x® j"_l O”—_

-1
¥ 2 2 - ~(0)
. 3(P) (A,S,8) X5, exPp (—Xj,,)"(p +S)w, + 2w XJ,

" - L / 2 ‘
. " 2 L _ 2 _
- exp Lipu ()] To1(2b3 oM Xyul(w =g [T4ny (X,

(NTYW)

)]), (34)

and

1-€

s 5
35 s 1/2 I © 1 }E: . 5
K ¢ = 1T ah H(X.")
n(8) [1 - A/h(8)]1/2 :E: :E: i

0

p=-« j"=1 0”=tl

. 3 (P) 2 2 ~ , -4
® (A,S,G)Xj" exp ( Xj") (p-+S)mt-+31(ve/€O)xj“

-] ;2 )
+2wlgg) j"‘ (w-w*e[l+n (x 3" ~3/2) )exp[ipwtt(g)]’ (35)

L4

the integro-differential equation can be written as

_ 52 ) 2 . 34 - 1~ 2¥ 3~
0 = [A(B) =5 +B(3z +18) +C+D(8) +E—71¢(8,5) +K"¢ +K"¢ +K" ¢,
35S oS (36)

or, as

0.= L¢ , . (37)
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where L 1is an integro-differential operator.
In order to solve Eq. (37), in which L is a complex,
linear, non-Hermitian integro-differential operator, 5(6,8) is
expanded in complete sets of basis functions in both the S

and 6 directions, thus converting the integro-differential )

equation into a matrix equation. Specifically,

Z Z ¢Jng (Ong(5) . ¢ (38)

n=o0 j=-

where the ng(e) and the 4hn(S) may be chosen for numerical
efficiency, but must be complete, orthonormal sets of fnnctions,
with the gj(e) being periodic with period 27 , and the hn(S)
satisfying the boundary conditions, which will be left indefinite
for now. Note that Eq. (38) does not involve any assumption of

separabilify. Hence the’ gj(e) and hn(s) have the properties

m :

and

|asny i, () = 6, (40)

Equation (37) now becomes

0 Z ¢ ng(e)hn(S) ’ ; (41)
j.»n

so that

I LY A
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L
N ~ o~
= . = . L. . '
0 f deJngj.(e)_hn.(S) z: ¢, L5020y, (S) 2:¢J,HJJ',HH ,
o j.n j.n
(42)
which is the desired matrix equation with
m . .
= *
Lyt S J dejds g% (8)h,, (S) Lo, (8)hy (S) - (43)
This can be broken up into terms corresponding to the terms in
Eq. (36), namely.
L., . 2 AL, , +B. ., , +C8..,86__, +D.., .
JJ ,nn JJ .,nn JJ ,nn JJ  nn JJ .nn
1 2 .3 (44)
. . + K> . -
* Ey50,nnt T X530 0nt T R55 e T30 nn
The quantity to be considered as the "eigenvalue" is just
the constant complex quantity (- C), since
2 %33 nn 7055 0 0y =Gy - (4s)

J.n

Since the frequency w enters Eq. (37) in a complicated
fashion, an approximate value W, for the frequency can be’
"corrected" by a frequency shift dw = W= < obtained
from a perturbation expansion. Thus, w can be obtained
recursively, starting with an initial guess obtained, for
instance, from a "local" numerical code_for the dissipative

trapped-electron mode.8 Considering only the lowest order terms
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1/2 : . ‘
o/ gnd o 1in Eq. (36), and expanding to first order in

in €

Gw/wo » the result for 6w is

2 ~',A )
Sw _ _( U)O ) (- C) + C(w =.w0). ‘ (46)
Wee Yee [Io-*-nibie(ll'-Io)]eXp “'bie) '
where (-6) is the eigenvalue for the considered - of
the matrix (ij',nn'-Cdjj'dhn')hf=wo .

Ta he more specific, the choices which will be made for

gj(e) and ihn(s) are

C g5t = em T Zexp (130) j (47)
a Fourier sefies, and

h (s) = dn(o S) exp (~0S/2) M ' (48)

a Hermite function series, . where Hn denotes a Hermite poly-’

1/22pn1 . Heré o is a parameter [with

nomial and Mn = (n/0)
Re (o) > 0] which can be adjustéd to minimize the humbér ét radial
basis functions which need to be retained. Note that o need
not be the value which would be calculated from Webér's equ&‘i'tion.9
In what follows, calculations using Weber's eqﬁation'will be
referred to és local. Considering that the equation to be solved
is the lowest in a hierarchy in (Ars/rn) . the limifs”of the S
integration may be extended from thdée corresponding(to the
magnetic axis;and the limiter to *« , (Or more specifically,

too e 0—1/2) . The boundary conditions to be imposed are $-+O

as S->t», which are automatically satisfied for Re(c) >0 .

This corresponds to "globally" localized modes which may spread
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over a number of mode-rational surfaces, and to outgoing energy
at S > 1w
Using the expressions in Egs. (47) and (48) for the basis
functions, some of the terms in Eq. (44) can be cémputed analyti-
cally. Using the differentiation and recursion relations for

Hermite functionslO gives

2
d 1/2
= [ty (07

1
- (n+3%)H
S 2 2'"'n

S)exp (-05%/2)] = 0[% H_,

+ n(n-1)H_ _,lexp (—082/2). (49)

Using Eq. (49) and simple trigonometric identities gives

/T w w
- e, “xe _ _ xe _ _ :
Ajj':nn'-_{éjj'[ (Ti+ w )(Io Ty)=ny =5 o +bigTy Io)]}

W g T w
D1 e *e
_e . -3
O +aj_l,j.)[(Ti+ * )[10(2’019 )
FT.(2-2b. )] 41, —*€[T (=6 + 11b. . - 4p> )
11973970 TN Ty o io = “Pig
_ -
"2 . i 1
+I,(2=-9b., +4b" )]}}.exp (-b, ) c{--(n+——)6 ,
1 i6 ,16 i@ 2(Ars)2 2’ "'nn
M2 Yz | 1 Mp+2 L2 ]
+ -1 = ) § if_n (50)
n(n )( M,/ n—2,n'4_4( M ) 6n+2,n'

The. recursion relation for Hermite functions then gives
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and

j3',nn' Bajj'\:énn'[-:' - (n+3)5]
1/2
b 5 (52)
— ]
n-1,n 01/2 M
0 M +1l/2
i ) (33
n+l,n 401/2 Mn
1/2
+ s n(n—l))(Mn-2)
- ! .
n-2,n o Mn
’ 1/2
+ 8 l§\,/(Mn+2 o ‘]
i n+2,n'(40) Mn ' J
_Dl Te *e) .
— ’ — ___+ ' A - s
S Bg41,50 T 8501,5002 [(ri w ) o027 Py9)
“x€ 1 (2-4b, . +2b2 ) +I,(3b,, - 2b2.)]
*Ijbygl +ny = [T,(274byg +2D54) ¥ 1789059 7 “P4e
cexp (Db, ) =8 (8uir 28 o an
P ie nn' ' jj' -2 j+2,3
-2
T w
1 “Di{( e , “xe —6b. 4 2b2
T2 dj‘Z,,j'),,w?- [:(Ti e )[Io(7 b6 ig)
2 3

‘ 2
*e
+ _ 14.— 25b. + 19b° - 4b; )
+I] (5be 2b9)] n. [] ( 4 9 i 8 i0

: 2 3
- -b. ’
+Il(l7bie 17bie-+4bie)ﬂ exp ( le)

(51)
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Ejj',nn' —~6jj'E° ‘Snn,(2 n"+5n

3
2+2n++ 8, i (20-1in(n-1)]

1/2 1/2
.(MH'Z) +6 [ (ln-+§)(Mn+2) ]
M n+2,n' 2 4 M
n n
1/2

M,
+an_4,n,[n(n—1)gn—2)(n—3)q( n

n

1/2

v s 1 (In+a
n+4,n' 16 M
n

. 17 27

The integral terms K ¢ , K

tionally convenient forms in Appendix C.

(53)

) ,’and K3¢ are put into computa-
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IV. NUMERICAL RESULTS

Six diﬁferent cases have been investigated with the computer
o ‘ :
code which implements the procedure described in the preceding
section. The chosen and derived parameters for these céses are
. . ' * : : -
given in Table I. 1In Table I, v~ is defined as v‘/(€3/2w ) .
: : e e o} te
The perturbe@ electrostatic potential for Case (a) is reasonably
localized radially, allowing comparison to previous Weber's

3,8

equation solutions for the radial dependence. Case (b) is set

up to allow comparison with previous results for the .poloidal de-

pendence. ™’

The parameﬁers of Case (c) are chosen such that the
expansion for krpi <1 Jjust breaks down, so that a iimit for the
region of vaiidity in parameter space for the presen£ formalism
can be ascertained. Case (d) is a basic case of praétical interest,
for which a Ekrpi <1l expansion converges properly. EIt has been
run with dif%erent terms in Eg. (44) turned on and off, to allow
assessment of their individual effects. Case (e) differs from
Case (d) onl§ in the assumed aspect'ratio, to investigate thg
effects of varying this parameter. Likewise, Case (f) differs
from Case (ds only in choosing opposite signs for the density and
temperature gradients in order to study this~stabili%ing effect?
in the context of a nonlocal caléulation.

The fiqal results for w==wr-+iy and o==or-+ioi for the
six cases aré given-in Table II. These results are obtained with
all of the terms in Eg. (44) included, except for Caée (b) (see
below). Only results for the lowest eigenmode, thatlis, the one
with the least number of radial and poloidal nodes, are given for

ecach case. This is generally seen to be the eigenmode correspond-

ing to the largest growth rate, and is therefore of most interest.
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. . C . 1,3
It should be noted here that. previous one-dimensional studies™’

also indicate this basic trend; i.e., the lowest eigenmodes have
the largest growth rates. Higher eigenmodes can be investigated
by the two-dimensional code, but this will be left for future
investigation. The general procedure was to choose a value for o
and then to compute the value of ® recursively with Eq. (46)
until it converged for the lowest eigénmode. The value of o

is then varied to get the best convergence of the coefficients of
the radial basis functions. The value of w 1is computed i
recursively again until it converges on a final value. The final
results presented in Table II are generally for eleven radial basis
functions (n =0 through 10), seven poloidal basis functions |

(j == 3 through 3), and eleven transit frequency harmonics in the
resonance terms (p=-5 through 5), except as noted below. This
means that it was necessary to numerically solve a (77 x77) matrix
for the eigenfunction. Plots of the final lowest eigenfunctions
for the six cascs considered are shown in Figs. 1 through 6. For
Cases (a), (c), (d), (e), and (f) these are three-dimensional plots
of the real and imaginary parts of é(e,S) . Only positive values
of S are shown, since the lowest eigenfunction is always
symmetric in (S8) . Higher eigenfunctions can be either even or
odd in (S8). In Table II, results for w and o obtained from
the local code of Ref. 8 are also given. Here the value of ¢

obtained by solving Weber's equation is just9

€

-1
< 4'r y > 'nTo Pre (4 ) (54)
o = . ; Yy t1iw .
2 i g i6 r g w§-+Y2 r

HIH
]
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However, to @ake the comparison between the local and tﬁe two-
dimensional results more meanihgful, the first and sécoﬁd order
'ion magneticgdrift terms, as given in Egqg. (23), have been added to
the local coée. Also added was the Weber's equation correction

to the dispersiop relation (shear-dependent convective term) which
was derived in Ref. 8, but was only used to determine marginal
stability conditions there. Note that all of the fréquencies

presented in'Table II are 1in unils of an +hn£ physical

*xe !

frequencies and growth rates are proportional to the numbers

listed multiplied by biéz :
For Case (a), the parameters are chosen so that comparison

is possible to a radial one-dimensional analysis3 which applies to
the dissipative trapped-electron mode a method first used by
Pearlstein and Berkll for the "universal" electron drift mode.

The éalculat;on in Ref. 3 includes only the first raﬁial finite

ion Larmor radius correction term, the ion sound term, and the

spatially constant terms, with no poloidal dependence. These
correspond to the A', B, C, and Kl terms-in Eq. (44).

Therefore, the other terms and the poloidal dependeﬁce have been

suppressed ih‘the two-dimensional code in making the comparison.
The solutions of the Weber's equation obtained in Réf.;3 are just
the Hermite functions used as basis functions for the two-dimen-

sional calculation, if ¢ 1is taken equal to o , With ¢

2 L
computed from Eq. (54) using the values of W and Y obtained
from the local code8 with the corresponding terms suppressed. A

"radial diagonal dominance index" is defined as the ‘sum of the

absolute squares of all the radially off-diagonal (n' #n) elements
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of the ( -Cé8 8 n,) matrix divided by the sum of the

33''n
absolute squares.of all the radially diagonal (n=n') elements.

331, nn'

This index was computed as the real and imaginary parts of o
were varied, keeping the first five Hermite functions in the
basis, and was found to be a minimum when o=0, . This means
that the set of numerically computed eigenfunctions was closest
to the set of Hermite function solutions of Weber's equation

when o=o0 as would be expected for a mode localized around

9 7
one mode-rational surface. It thus constitutes a check of con-
sisteﬁcy between the two-dimensional computation and a previous
one-dimensional calculation, for parameters such that the latter
is expected to be a reasonable approximation. Note that thié

was with the poloidal dependence suppressed; when this dependence
was included, the value of ¢ which minimized the index

shifted significantly from o Also note that the index is

. -
useful only for global coﬁparisons of all the radial eigenmodes;
it is not particularly useful for testing the convergence of

the coefficients for any single eigenfunction.

Another check of the two-dimensional code was performed
using the parameters . of Case (a). To verify that the eigen-
function obtained is reasonably independent of the choice of o,
the final eigenfunctions for Case (a), including all terms, were’
recomputed for two other values of o . The lowest eigen-
function, as measured by the S-values of the zeroes of its
theta-average, changed by about 12% for a(20% reduction in o

and by about 15% for a 40% reduction. These changes in the

eigenfunction are of the same order as the inverse of the
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number of radial basis functions used, that is 9% for l{ Hermité
functions. Thus the accuracy obtained is about what:would be
expected.

The parameters of Case (b) are chosen to allow co&parison
with previoué ohe—dimensional analyses of the mode structure
along a field line.l’2 For a one-dimensional integrél équation
which would éorrespond to Eg. (36) with only the C iand K1
terms retainéd, for bi « 1 , a result close to %(e)a-cosz(e/Z)
« (1 +cos e)f was obtained. 1In running Case (b) onl§ the
corresponding terms were retained, The result for ¢(8,5=0),
shown in Fig. 2, is also similar to (1l +cos 6) . This constitutes
another checﬁ of the two-dimensional calculation against a previous
one—dimensioﬁal analytic result. The entries in Tabie\II fér
Case (b) refxect only the retained C and K1l termé. This
simple (l-+¢os 6) dependence will, of course, be modified by the
omitted terms, in particular by the ion sound and ion curvature
drift terms.:

Case (c) has been used to test thé limit of validity of the
b, .= - (piz/ﬁri)(az/asz) <1 assumption that has been made. In
particular, éhe limit on bie that,this implies is §hecked
a posteriori: 'Estimating the maximum valué of (82$Z882)/$ from
Fig. 3 indicates that bir—v2 , so that bir/bie~ 205. Thus the
b. <1 assumption has broken down, and the Case (c)'results are

ilr

really only an extrapolation of the b,

ir <1 formulation, somewhat

beyond its range of validity. If bir/bie~f10 to 20., as is
also indicated by the results for Case (d), then the limit on

bie is biB £0.05 , and on ke is kepi $0.3 . Treating larger
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values of bi would thus require a more general formulation

6
for treating finite ion Larmor radius effects, specifically an
integral instead of a differential method. This generalization
is currently under investigation.

For Case (d), bie =0.025 and, as can be verified from
Fig. 4, b._ <1 here. Tor the parameters of Case (d), the

ir
effects on w of turning on and off the various terms in Eq. (44)
are given in Table III. Comparing the résults, it may be seen

that the ion sound term, the B term in Eg. (44), is substantially
stabilizing. This is expected since this is the term which is
mainly responsible for energy convection away from the radial
region where the mode is localized. The first order ion magnectic
drift term, which is part of the E term in Eqg. (44), causes a
large decrease in W, which has a stabilizing effect in this
instance. Results from the local code also exhibit this behavior.
The second order ion magnetic drift term, the other part of the

E term in Eq. (44), serves to partially reverse the effects of

the first order term. This trend again corresponds to results

from the local code. As expected, the ion resonance term, the

K2 term in Eq. (44), is somewhat stabilizing. The electron

3 term in Eq. (44), is also somewhat

resonance term, the K
stabilizing, which indicates that the effect of energy absorption
at mode-rational surfaces is stronger than the effect of energy
reflection there.

The only chosen parameter in Case (e) which differs from

Case (d) is the inverse aspect ratio (E.0 . It is seen that the

effect of decreasing eo from 0.25 to 0.12 is destabilizing in its
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net effect on the mode. The same behavior is seen iin the results

from the local code. This trend will, of course, rniot continue as

-

€5 approaches zero, since the main destabilizing term, the

trapped electron time-average term, would thereby be eliminated;
thus this observed destabilization should not be geheralized
indiscriminately.

Case (f) differs from Case Sd) only in the signs of Ny and

ne'. This change was seen to be strongly stabilizing in lpcal
calculations,4’,8 and it remains so in this two-dimensional
calculation. Hence, an equilibrium situation with oppositely
directed density and temperature gradients is more favorable in

terms of dissipative trapped-electron mode stability.
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V. CONCLUSIONS

As pointed out in the preceding discussion of Cases (a) and
(b), the present two-dimensional calculation can reproduce charac—!
teristic features of previous one-dimensional analytic solutions in
limits for which these one—dimensionél solutions are expected to be
valid. Also the solution method for the two-dimensional integro-
differeﬂtial equation permits the treatment of cases such as (c),
(d), (e), and (f), for which previous solutions are invalid. It
allows examination of the results of the interaction of different
terms, and of the radial and poloidal dependences of the potential,
which would not be possible with a simple perturbation approach.

Certailn conclugions about the effectiveness of sﬁear
stabilization can be drawn from the results presented in Table II.
For Case (a), which is illustrated in Fig. 1, the mode overlaps
the mode-rational surfaces at |[S| =1 strongly, but not those at
larger values of |S| . The growth rate from the two-dimensional
calculation is much less than predicted by the Weber's equation
solution, implemented in the local code. Thus the |S| =1 mode-
rational surfaces cause a substantial change in the growth rate.
A possible explanation of this behavior is that energy absorption,
which tends to decrease the growth rate, dominates over energy
reflection, which would tend to increase the growth rate. These
effects enter mainly through the circulating-electron resonance
term. For Cases (c), (d), (e), and (f), where the ﬁodes overlap
more mode-rational surfaces, the differences between the local and
two-dimensional growth rates are much smaller. Here a possible

explanation is that the large number of mode-rational surfaces
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overlapped b¥ the mode tend to can¢el one another out ih their net
effect on the growth rate. This is consistent with the smallness

of the elect;oh resonance term for Case (d), as is séen in

Table III. Then the dominant remaining effect is the convection

of energy, bgcause of the ion-sound term, which is iﬁcluded in

both the localxand two—dimensional results. Thus, tﬁe local code,
with the Weber's equation solution correction to the;dispersion
rclation, is'in fact more accurate in estimating sheér stabilization
than might bg expected. However, Fig. 4, for example, shows that
the actual mode structure 15 quile Jdifferent. DNote that, in general,

the local code predicts that the amount of magnetic éhear in real

tokamaks wil} be insufficient to stabilize the dissiﬁative trapped-
electron modé for normal gradients, and the two—dimeﬁsional results
confirm this. For oppositely directed temperature aﬁd density
gradients, héwever, both codes predict that rcalistic amounts of
shear can stabilize this mode.

The most important limitation on the present aﬁalysis is the
requirement £hat bir Ekipi/z <1 . The results presénted in the
preccding segtion indicate that generally bir/bio Ebir/(kgpi/Z)

10 to 20 .. The local code predicts that the maximum growth rates

1R

will occur fqr bie ~0.5 to 1.0 or even more.8 Thus} the most
interesting part of parameter space is, in fact, inaccessible to
the present éode. To reach this part of parameter space will
require the abandonment of the simple differential formulation of
the finite ion Larmor radius effects employed here, for a formula-

i ' . i blem is currently under
tion valid for larger bir This pgo e y

investigatioﬁ. The present integrofdifferential equation and its
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solution method nevertheleésArepresent a substantial improvement
over previous studies of the spatial structure of this mode. It
is anticipated that other improvements, such as the inclusion in
the integro-differential equation of some terms omitted here, the
use of a more accurate electron collision operator, and the
addition of ion collisional effects will also be incorporated in
future work. This should allow study of the mode for higher
collisionalities, which are relevant for interpreting the experi-

mental results from present machines.

ACKNOWLEDGMENTS

1his work was supported by U.S. Energy Research and Develop-

ment Administration Contract E(11-1)-3073.



~34-
APPENDIX A
The linearized drift kinetic equation (for a magnetic field

independent of time), in terms of the quantities defined in

Section II, is

9 . 1y _ _ (1) | (o) _ , N oL ogn
e + (Y vys) - Vg oo E VEe MANATIRAA-RE
5 (0)
x —2 v ()£ C(eB/T yE 1, (Al)
ot f e /e’ "Me” '

(1)

whoro fe ia the perturbed electron distribution function,

v;}? is the perturbed electric drift velocity, and Voo is the
magnetic drift wvelocity. Using the assumed form for féo) . gives
ag " 3 (1)
at |, Tl T LN tie) VIt
:=3(v +YV ) e VIE, - mo—m (V +v)-V<T><X“——l>
e ) | gpo) £ - ed/r e, (A2)
or B e f " "e e’ "Me !
where
*he = f (L dn _ 1 EE_ 3 - & (A3)
or Me 'n dr Te dr 2 Te
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and (d/dt) lb indicates the total derivative along a guiding-
center (banana) orbit. Note that VB/VH = O(pi/RO), so that Vg
can be neglected relative to v” . Also (v”/Te) is smaller by

one order in 60 than l/(mevH) for the trapped and barely cir-

culating particles which are of most interest. Thus we have
(1)
daf
e e d 9 ~
—_— ~ — f (5 - =—+v.) 0
dt b T, Me dt b ot f
of
-le] ~ (1) Me (1)

{ | Vo +v 1 - v _f

m_ Qg 1 Er or £

e d . >

~ = f (= +iw+tv,.) 0
Te Me 'dt b f
of ~
_ _c Me 3¢ _ (1)

RB, dr 9t ffe ! (nd)
to lowest order in €o . Since 3d/3c¢ = ifd , this may be rewritten
as

a (1) _ e d ~ . T | x
(dt +\)f)fe = T—,fMe [(a—E- +\)f)<1> + 1(w—w*e)<b] ' (AS5)
o] e b
where the definition
T _ 3
Wi T Wagll + n_(-3)] (A6)
e
has been used. Equation (A5) is equivalent to
d (1) _ e d . T ~
3t N [fe exp (\)ft)] = ifMe [az b+ l(w—w*e)] [® exp (\)ft)] . (A7)
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Equation (A7) may be integrated along the unperturbed guiding-

center orbité to obtain

: t
ef
(1) _ Me _~ . T - -
Here t' 1is the time parameter along the unperturbed orbit, and
the integration is subject to the boundary conditions 6(t'=t) = 6
and r(t'=t) = r. Adopting the notation
e 1) = F avp (—imt 400z - inf0) ' (A9)
e e ‘ :
Eg. (A8) can be rewritten as
p e (- T - ~
— . - T ' '
fe = Te {¢p(9,8) + i(w w*e) J dat'¢ (8',s8")
X exp [—i(w+ivf)(t'—t)] exp [i(lc'—moe')-i(RC—moe)]} + (A10)
where the abbreviation 6(t') = 6', r(t') =r', o(t') =1¢',
and S' = S[r(t')] have been used.
To do thé t! integration, an explicit form is needed for

Rc'-moe' , specifically

tl
O.

(87" - m Q') = SL[ at"” TeT q(r,)

db

vl + (z-m%e) (A11)

o .
recalling that q(ro) =m /2. Notice that

dr a _
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results from the instantaneous magnetic (gradient and curvaturc)

drift velocity YMD of the guiding center, so that
(22" -m%") = 2{qlr®1 -q(x ) }o - 0)
t! ,
" " _m° Al7
+fdthe(t)+(2c m0) , (A13)
t
where
= A ) _ (O) doé
e = ?-(RMU+{q(r) qlr 1} a?"') (A11)
and
0 = 1 §dtr (A15)
b, t

is the time average of r along the guiding-center orbit, with

Th equaling T, or T, as appropriate. Equation Al3) becomes
L oF: Ony - o (0) 4y (0) L ()
R L "y - - = - v
(¢ mo0') (L2 - m 6)_ S (6 B) + WpE (t t) + Woo'o
(Al6)

with the definitions

g (o) - R[q[r(o)]—q(ro)} , (A17)
o . .
wég) = - j( dt" wy, (€M), (A18)

b,t
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and )
tl
("’) = " " ‘ (O)
W o [ dt [wDe(t )-wDe ] . (A19)
t
Then for trapped particles
!
(c' -m%8") - (2r -m%0) = w 2 (e - ) 4 p !~ € (A20)
where
(~) fevy = <(O) oAy 4 (=) ’
Pb_ (t'y = 8 (6' =0) + Yhe , (A21)

+w S(O)

. ("') '
" J(t ‘t,) + Pt (t") . (A22)

where

( (~)

De

.Péw)(t') = S(O)(et -9) - w O)(t'-t) + w (A23)

tS

Note that Pé~)(t') and Péw)(t') are periodic funclions of ('

with periods T and |t respectively. Therefore it is useful

b

to employ the decompositions
!

¢ |

b(o',5") exp iP)")(£")] = p;w 8 P exp (ipuy (RI0(ED]} .,  (a24)

where the summation is over all irteger values of p, and Pé~i
i 14
~ ' . ' (-
and Wp ¢ mean Pé ) and Wy for trapped particles and Pt )
and wy for circulating particles. The parametric function %(e)

is defined by

s e
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0
t(e) = aR I de'/wl(e') + constant , (A25)
0o

and the constant can be chosen such that E[e(t')] = t' over some
bounce or transit period of interest. The inversion formula is

3Py - _1_ § dt'¢ (6',S') exp [iP
b,t .

)

(~ ' I £ '
b,t(t )] exp {-ipw tfo(t')ll (A26)

b,t
at constant 6 . By means of these decompositions the time integra-

tion in Eq. (Al0) can be done exactly

’ t
ef
o M . . T , ~ (p)
te = -5 e <¢,(e,5) + 1(w-w*e) J dt %:@ P

e

xexp {ipw. . £(6(t')1} exp {-ilw+iv, - w(o)—S(o)th(Ac—/\)] (' —t) }>

b,t f De

ef < 5(p) exp [ipwb tE(e)]

Me a;(e,s) - (w—mfe)z ) ) > (A27)
- Wpa - [pt+S H(AC—A)]wb,t

Te‘ p w+iv

f

where H 1is the Heaviside step function and AC = l-Eé, so that
H(AC—A) = 0 for trapped particles and H(AC—A) = 1 for circulating
particles. This difference in the form of the denominator in Eq.
(A27) reflects the fact that circulating particles sample the entire
field line. They are therefore sensitive to the mode-rationality

or -irrationality of the magnetic surface on which they move, i.e.

to S or S(O)

. Trapped particles, on the other hand, sample
only a part of a field line and are not sensitive to this difference.

From Lhe result given in Eq. (A27),
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5 3 P) exp lipw,  £(0)] : ,
" AN ) IS 1 N (A28)
p w4—1vf wDe [p+S H(Ac A)]wb N

This result includes the effects of the electron banana width
Npe - Huwever, for thic proklem the dominant radial length is the

ion gyroradius_-oi , which is large compared to

(~) (o)

pbe :for realistlic

can therefore be

neqglected. For (q'r/q) of order unity, the quantity wé;) is

parameters. Terms of order S £ 8-S

found to be of. the same order, so that it can also be neglected.

then n becomes

e
h(o)
~ _en [x T ,2 . 3/2 f 1
n =-—{¢6(6,8) - 5—(=) dA .
e T, < . 2nmg 9N ‘o h(0) [1-A/h(8)] /2
x f ae e%g, (e) lumuy_(e)) }_:_m 3 ®)(r,6,5) exp Lipwy, (E(8)]
0 p=
« {w 4 iv.a(e) - 0 (A, e) - (p+SHUA -Mlw, (A,e)} L (A29)
w . £ De ! P e b,t"! ’
wherc now
5(p) = - 1 § dat’ &(e',r') exp {iS(6'-6) - ith[E(e')

- t(G)]H(Ac—A)}exp{—ipwb,tt[e(t')]} . (A30)

% -
e
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In Eq. (A30), if 6 is not to be regarded as constant, then dat’
is to be interpreted as dt' = qROd(G' - 6)/v“ (6') , so that
5(p) (A,6,S) will be explicitly periodic in 0 .

This result for ﬁe will now be specialized to the case

(o) CN
< { :
WeVerpg \“b’e

trapped-electron mode in the banana regime, so that the denominators

<wt>e , as is appropriate for the dissipative

of all the terms may be expanded, except the p = 0 (i.e. time
average) trapped-electron term. This yields, assuming W, = Re(w)

> v = Im(w) ,

e B )iy gy - (2,37 1 1/2 i T
n_ow {¢(U.b) >n (mo) E: I de € fe (6) (w-w

e T h(8) *e
e O“ 0
h(6) - (0)
XU dn (1 - A/n) 172 25 - 2 3™ exp (ipu,b)
1-€ w-fivf-mDe p#0
o
. (0)
W+ iv, - w .
x {pib + g 3 De iﬂd[w+ivf—wég) —pwb]}>
P Wy
1—60 .
- [ da (1 - A/h)-l/ZZ(B(p) exp (ipwt{\:){(_p_:éﬂu—
0 P t
: (o) _
w+iv, - w.
+ f 5 12)e +i‘n’5[w+i\)f - wég) _ (p+S)wt]}J} . (A31)
(p+S) "w

t
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Defining X = (a/Te)l/2 and using a "hat" (") to specify that
the X dependence has been factored out of a quantity, the

trapped-electron delta function can be written as

. 0 , : :
Slu + ivi(e) - wi®(n,e) - pu, (A, €)] .
’ . _3 ~ LO 2 ~
= Slw + i(v /€)X 7 - wD(e) (MX° - pd, (MX]
5
= Z (X -X.,) |po, +2089) % . +3i(v /‘~G)><""'1"—l (A32)
j "=Al ] ” p b De j " - e 'O j n ’
where the Xj" are the five roots of the polynomial
~(0) 5 A 4 _ o3 P
Whe (A)yX™ + pwb(A)X wX 1(ve/€o) =0 . | (A33)

The result for the circulating-éelectron delta function term
ﬂrcsonant term) is similar in form.

The interesting terms in Eq. (A31l) for the dissipative
trapped-electron mode, aside from the p = 0 trapped-electron
term, are the resonant terms, so the others will be dropped at

this point. Using the delta functions to do the e ‘(or X) in-

tegration fort the resonant terms gives, finally



43—

o]

~ ~ 2 2 2 2
n, = %E <¢(6,S) - 173 f dX X© exp (-X ){w-w*e[l-+ne(X -3/2)1}
e T h
0
h(8) ~
§ ~1/2 3 (o) g1/
dA (l—A/h) - -3 ’\(O) 2 + 1 T
1- & w"hl(\)e/éo)X ~ “pe X
o
h(96) 5
x Z f © dA (1-A/n)y Y2 Z Z exp (ipwb?:)é(p)ﬂ(x:;,,)
o _ p#0 j"=1
1 A
N ~(0) . —a|™t 2 2
x pwb+2wDe Xju +3l(\)e/€O)Xj" Xjn exp (—Xj")
1-€
1/2 o _
o=, [ ng (5,=3/2)1) + 1 ZJ an (1- /) L2
I o
o 5 ! . l_l
— _ - . - ' -4
x pzz_:w j;;l ®(p) exp (1pmtt) (p+s)wt + ZmIgg)Xj,, + 3J.(ve/€o)xj,,|
x X2, exp (-x> ) {w-w, (1+n (x2,-3/2)1} (A34)
jn jn *e e jl! ’
where H(X?,,) - 0 for xi <0 and H(X?,,) =1 for x§ 2 0.

The result (A34) shows that the trapped-electron resonance term
does not have the explicit S-dependence of the circulating-electron
resonance term. The former is thecrcfore not expected to have any
significant effect on the radial structure of the mode, and can

thus be neglected..
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APPENDIX B

The result for the ions corrésponding to Eq. (A28) for the

electrons is -

~  _ _enfx 1( 43 o2 |
n, —TT—i—<¢(6,S) —-ﬁjd ,waMi(w w*i)Jo(k-'-v-'-/Qi)4Z
p .
.3 (P . (?Xp [lpwb";t;e)] _ ->, (BL) -
. 0) 0) ., '
w+1\)f—wDi - [p+sS H(AC_A)]wb,t
with w*i==—'(Ti/Te)m*e and wDi=r--(Ti/Te)wDe . For the ions the

relevant frequency ordering is

. -~ ~N > .
Y { e~ . " B2
w>wpe s Lwess >SSy (\)l/ o) . , (B2)

Ion collisional effects are weak for k,p. <1, and to a good approx-

imation can be neglected.5 Expanding the dehominator-then gives

~ en|~ 1 3. .., _. T 2 ¢ :(p)
ni:—f.—[d)(e,S)"H[d v £ (w w )JOECD .

~~ M1 *]

* P
_ A wéz)+[p+s‘°’mwb,t
.. exp (ipwb,tt)(a + wz

, A

(o) (o)

)+ [p+S Hlw, ..}
+.{wm FP : b,t "iﬂé{w—wéi)

w

—[p-+S(O)H]wb B ..)]”. (B3)

Sum rules can be derived which make it possible to perform

the P summations by the following procedure for circulating
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particles. Trapped particles may be treated similarly. The

analog of Eg. (A24) is, for circulating ions,

$(8',8') = exp [—ipf)(e')125‘9) exp [ipw t(8')1, (B4)
P
where
(~)_o(0) jar _ _ (o) ;v _ (~)
P, =S (6 8) -w.S (t t) W ., (B5)
so that, using the definition of wéi),
R gR
d Tiav a1y = (_a1al0) . (o)q_o__.__o_ v _ .. (0)
-—§r¢(6 ,S$') ={-1S8 -+1th v J.V”(e.ﬂwDi(e ) U 1}
L gt an “(p) PWeAR, ()
¢(06',8") +Z<b vll-z—e—l)—- exp [1pwtt(6 )—1Pt ] . (Bo6)
P
Notice that, from Egs. (17), (Al4), and (Al7),
v . v v
wo. +s@ g g1l 45— (B7)
Di qR, = "MDT ®FR; T “pi(1) T @R, -
Using this result, Eq. (B6) can be rearranged, for  8' =6 , as
) , . 9R, ~ _ iqRo = (p) . 2
[5% + iS * T8y “bi (1) (8)14(6,8) =5 (e)2® exp [ipw, £ (0)]
p .
. (o) (o), .
{wDi +[p+S ]wt} . (B8)

Then obviously



(3 + qRo 2~ iqRo ? (p)
= +is +3i 2 ={ —°2 ipw, t
50 TS TR Dl(l)) ¢(8,8) ( o ) E:‘D exp (ipw t)
‘ p
(0) (o), 2
. {wDi +[p+S ]mt} . (B9)

Analogous formulas can be obtained for trapped particles. Using

tnese results in Eg. (B3) gives

~ L ( 3 Ill 2 l V||
n. =-=-— - _ 1_ 9
i Ti ! (6,59) [d vV £y (w w*i)Jo{[w i 5 (5 +18)
’ qROw
. 2 5
Wy s 9 v R )
Di (1) I (a . 9Ry )] -
+ I __ o .
2 : 2 3 Z)e+ls+l v wDi-(l) , p(6,8) +...

w ) 2R o I
—1nzq~>(p exp (ipw £) 6 {w _w(o) p + S(O)H]w } (B10)
b,t Di : b,t .
P.
Notice that the two terms in Eq. (B10) which are odd in vi|

vanish due to the velocity space integral, so that

~ _ _enf: 1 (33 o241 Moin
ni = ;I,—i[cp(e,S) HJd waMi(w (u*i)Jo<[&—)+T
wz' v
Di(1l) _ H 3 2 ~
+ = 3 2 3(De+lS) +...1¢0(8,8)
w q
o
- iﬂZé(p) exp (ipw t)é{w w](Dl -[p+S(O)H]wb't,})] . (B1ll)
P

. Ce s - _ 22 402
In Appendix € it is shown that wDi(l)-—wDicose(vl-+2v“) , where

- : - -1 _ /2 ~o_
Whi Zw (rn/RO) P X E -(d ¢n n/dr) P Vi = (2Ti/mi) AE v“/vi ,

and v, #v,/v. . The integra}
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3 Wy .cosG ~2 a2
j d (1—u) /w)J (k,v /Q ) [1 + (——————) (v_,_+2v”)

+V2

X (v4 + 4v”v + 4v“ )

0 —00

w.. cos 6 w,. . cos
2 ~ D ~ ~2 D 2
2 -%) 1392 (ko 9,0 [1+ () (V] + 291) (DL

n2n2 Yei 9 252

oo

w

2 i ‘ ~2 2 - * 3 A2 3
2 J dv, v, exp (—V_,_)Jo(k_Lin_L)({l———-u—)i [1+n,;( "-2‘)]}

itVa
0

w_. cos B

~2

y (v +1) + (—T—) (v, +2v + 3)

—2 N
e wn; Cos 0

ti 3 . 2 : 3
;;5 (§§~+1S) 1 + (—n. +(“*—jr———4 ( V; _)

av, v exp (—\’;2) j av exp (-\/\/2){1——)*—'1;[l+n.(\’\72
172 e i [ [ 5 i)

(B12)
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can be performed by means of standard procedures. To do the
Gl—integration we use the general formula12
B 2, .2 1 2 a2 \
- = — - s , B13
J dt t exp (-pt )Jo(at) = 75 exp (-a /2p)IO(2p) ( )
0
where Iv is the modified Bessel function of the first kind.

From Eq. (Bl3)

o

~ ~ /\2 _2 ~ N '
2 J‘ dv; v, exp (=vl)Jo(k1plvi) = To(hi) exp (—bi) (B14)
o
A A ,
where bi = (l/2)kip; . By successive differentiation ot Eq.

(B1l3) with respect to p, the othervneeded formulas can be obtained

o]

2 [ av, 3 exp (-Gfmi ('k_,_piQ\I_,.)
0
=exp'(-bi){Io(bi) +b, [T (by) - I,(b)1} (B15)

-~ /\5 ~2 2 S
2 [ dv, v exp (—vl)JO(k*inL)
0

- 2 i 2
=exp (-b;) [T (b;) (2 -4b, +2bj) + I,(b;)(3b;, -2b7)] , (B16)
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and
2 J dv, V;eXP(“VL)Jg(k;in;)
0
= b I (b.)(6-18b -+17b2-4b3)
=exp (=b ) [1, (b i i~ 4b;
+ I.(b.)(11lb, —15b2+4b.3)-] . (B17)
1'7d 1 i i .

Using these formulas in Eq. (Bl12), the nonresonant part of n.

is then given by Eq. (23).

The resonant part of the perturbed ion density may bé

treated in the same way as that for electrons. In particular
_ (o) _ _ _~(0),2 _ _~
S (w wh pwb) = §(w W X pwa)
2
= 2; § (X Xj,,)lpwb+2wDi xj,,l , (B18)
=1
where the Xj" are the two roots of the quadratic equation in X

in the argument of the second delta function.

As with the electrons, the trapped-ion resonance term does
not contain the explicit S-dependence of the circulating-ion
resonance term, and therefore will not contribute to the radial

structure of the mode in a significant way, and will be dropped.

(~)

Di will be dropped

Also terms of order S(N) E'S-S(O) and w
from the circulating—ion resonance term. These terms are not
always small, but, since the ion resonance is not localized in

\

S for w > (wf>i, this omission is not expected to have a
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strong effect on the spatial structure either. As is seen in
Section IV, the net effect of the ion-resonance term is quite
small for realistic parameters, so that the net effect of this
omission is also small. The final expression for the resonant

-part of Bi is then given by Eq. (25).

G
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APPENDIX C

The magnetic drift frequency

R de
ij = Q(BMD + {q(r)-q[r(o)]} EE)

- old [r-r(0)) 4O c1
= 2{Byy +a'lr-r I 3§t (C1)

where q' = dg/dr 1is taken as constant, can be put into a more

useful form. Now' BMD = (dg/dt) - g(r) (de/dt) = —(q/r)(vMD)e,

. . . & _
with the (‘MD)C Lerm being ot higher order in Be/B0 = Eo/q .

Thus

. g ™¢ 2.1 2
BMD = - T - B3 (V” +'§ V_,_) (,E\ XVB)G . (C2)
j.
Using B = B /h(8) = B_/[1+ (r/R)) cos®], UB = [Bo/(tho)]
: L n2 3 .
X (—jir_cos 64-516 sin 0), and (ji><VB)e = [Bo/(Roh )] cos B8 gives
8 a9 (2412
BMD onRor (v”+2 v,) cos b , (C3)
where on = ejBo/mjc . Using Eq. (5) gives
(o) _ (0),, (0) 00 '
r - ~ - Q .= - Q. . C4
r [VQ VC 1/ 07 [V” VH 1/ 85 ( )
Noting that d6/dt = Wl/(qRO)' and that
2
Lqv 2—
5wy - X Yp5y (C3)

uitto
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_ 1/2 — ‘ f
h X = . . - ic i
where {e/T]) and “pj (rn/Ro)w*j , the magngtlc drift

frequency becomes

q eO V2

: o2 : o e () :
w ._=ijz[(l+;%—)cose +Cllr._2__“[lL I ]]

= ®h4 (1) + Wp4(2) - ' (C6)
The time—avgrage wég) of ij is computed in detail in Ref.
13. The reéult can be exprcsséd in terms of complete elliptic
integrals. -chever, for gq'r/q ~ 1, wég) can be épproxi—
mated by wé§) = GDjXZG, where the constant G - 1.0 to 1.2 far
trapped particles and G = 0 for circulating particles. This

approximation facilitates comparison with the local code,8 where

the same approximation is made.

The coefficient function é(p) of the p-th bounce frequency

harmonic for trapped particles may be put into a more useful

() ana w!'?), Eq. (a28)

form for computation. Neglecting S D3

becomes

5@ = 1§ aer exp (15(67-0) - ipu, E(0)15(0",8) (c7)
b
Defining a time té such that Wl > 0 for té < t' < té-+rb/2

and using'the decomposi-

and W| < 0 for té-%Tb/Z < t' < té'+Tb,

tion (38), 5(p) becomes
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‘ t +1,/2
1 o b
h (s) — J dt' [exp (is8')g.(6")
n T J
b t
o}

~(p) _ ~
¢ T4 . ¢j,n

J.

+ (-1)P exp (-i56') g, (-6")] exp [-ipw €(6')] exp (-iS0)

from the symmetry in 6 of a trapped-particle orbit. This may

be written as a 6'-integration:

ei/z (eo éxp [—ipmbt/:.(e')]
—_— de'
4ﬂLb(A) [l—A/h(Q')]l/z
: 0

n n(S)

5P _ Z(; h
J.n 3

(C8)

x [exp (ise')gj(e') + (—l)E)exp (-ise')gj(—e')] exp (-is60) , (C9)

where

61/2 GO(A)

de [1- As/h(e)] Y/2

-6, (4)

Similarly, for circulating particles,

~ (p) - E:i/z T ekp [—i(p+S)wt€(6'n
o = Z 95,0Pn (8) Ty J de" 177
j.,n ! t - [1-A/h(86')]

* exp [iS(0'-0)1g (6") exp [iwtsE(e)] ,
where

ae [1-A/h(8)] /2

(C10)

(Cl1l1)

(C12)
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Using these forms in Eq. (33), the trapped-electron time-
average term gives, using the resultant symmetry in 6 and 6'
from the explicit form of gj(e),

o

;o= —oq3/2 J dx Xzexp(—Xz) -3_n(0) 2
. 0 w+l(Ve/€O)X —wDe X

w-w, (140 (x*-3/2) ]

jj',nn

mmﬂ—l/Z .

ds h_(S)h_, (8) I dé cos [(j'+S)0]

<
: 0_1/2 0

-—00 e

h () 1/2
* J dA 1 — o
L h(e)[1-a/h(e) 11/ Ty

(n)

y I dp' Cos [(j+s)6']
(1-A/h(6')11/2

(C13)

Similarly the circulating electron resonance (35) gives, setting

~(0) _
UJDe 0 ’
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K2 S S J ds h_, (S)h_(S) f ° an
J3%emnt 172 ~1y2  n'n
—m.o’ o
Tr [o¢]
1 I .
) J de h(e) [1-A/h(8) ] p;wCOS [€3'+8)6 — (P+S)w, (0)]
0

X

4
Z Z H(Xgu)xin exp (—xiu)

o=*1 3"=1
o2 1/2
) w-w*ell+ne(xj"—3/2)1 €<> !
R . _4’ ﬂLt(A7
| (1:,>+S)wt(1\)+31(\)e/GO)Xj wl
o
XJ a8" [1-1/h(8")1 % cos [(348)8" - (p+S)w, E(6")] . (CL4)
0

Likewise the ion-resonancc term (34) gives
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we g 1/2 1-€
ds hn'(S)hn(S) [ dA
0

—C0 e

0—1/2

00

1 . 2 2
X J ds h 6V TI=A/h(0)] pZ;L)cos [(3 +S)6—(p+S)wtt(6)]H(Xl)
0 .

2.y - 1/2
[1+n _(X7-3/2)] . €
e 1 2 L w1/2 0

Jo [(2b; g1 77 7K, ] 7L, (D)

w=w
*e

|(p+s)at(A)|

- 2
Axlexp( Xl)

j
xJ dae' [1-A/h(6')1”
0

l/2cos[(j+S)e'—(p+s)th(e')] . (C15)
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Table I. Chosen and derived parameters of

Chosen Parameters

cases considered.

Derived Parameters

Case & o Te/Ti 4a 4q'r/q n; g rn/r G mi/me \); bie ve/é‘ow*e u‘ti/w*e wte/w*e pi/Ars
(a) 0.12 2. 3.5 1. . 1. 1. 0.5 1.0 3672 0.158 0.00L 1.3 ¢.383 32.82 0.0447
(b) 0.12 ; 2. 3.5 1 1 1. 0.5 1.0 3672 0.00012 0.001 0.00134 - — 0.0447
(c) 0.25 1. 2.5 1. 1. 1. 1. 1.2 3672 0.06 0.1 0.814 C.447 27.09 0.447
(d) 0.25 2. 2.5 1. 1. 1. 1. 1.2 3672 0.06 0.025 1.15 0. 447 38.31 0.224
(e) 0.12 2. 2.5 1. 1. 1. 1. 1.2 3672 0.06 0.025 0.382 0.215 ' 18.42 0.224
(f) 0.25 2. 2.5 1. -1l. -1. 1. 1.2 3672 0.06 0.025 1.15 C.447 38.31 0.224
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Table II. Results for ®w and from local code and two-
dimensioral cod=. Here W, and Yy are in units of ﬁ@*; -
Local Code Two-Dimensional Corje_-\
Case wr Y . i wr Y cr Oi
(a) 0.600 0.181 3.65 13.09 0.726 0.029 4.37 Z.35
{b) 0.7¢5 -0.037 -0.55 11.31 0.781 -0.009 1.D00 1..54
{c) 0.928 0.143 0.162 1.053 0.915 0.125 0.944 .23
(d) 0.785 0.1.71 | 0.530 2.432 0.831 0.178 1.98 0.501
{e) 0.47¢ 0.296 0.896 1.450 0.567 0.232 2.12 0.247
(f) 0.492 -O.le .039 1.946 0.590 c.c04 .77 0.800




“

Table III. Effects on wr and y of turning on and

off terms in Eq. (44) for case (d) paraneters. Here
wr and Y are in units of m*e
. 2 2 .
ion w_. w_. b, ion electr. w Y
Di -Di, 1ix r
sound res. res.

0 0] 0 0 0] 0.918 0.315
#0 o 0 0 0 0.999  0.247
#0 #0 0 0 0 0.412 0.13%6
#0 #C #0 0 0 0.818 0.210
#0 #C #0 #0 0 0.8z3 0.203
#0 #0 #0 #0 #0 0.831 0.178

=t
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Fig. 1. Real and imaginary parts of the perturbed electro-
static potential eigenfunction $(6,S) for case (a). Note that
the poloidal angle 6 is zero at the outside of the torus, and that
the radial variable S is S= (r - rg)/Arg, where rp is the radius

of the mode-rational surface around which the mode is centered,
and Arg is the spacing of mode-rational surfaces. Only positive
values of S are shown since the eigenfunction is symmetric in (S6).
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Fig. 2. Real and imaginary parts of ¢(6,8) for case (b)

at s=0.
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Fig. 3. Real and imaginary parts of ¢(6,S) for case (c).
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Fig. 4. Real and imaginary parts of ¢(6,S) for case (d).
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Fig. 5. Real and imaginary parts of $(6,8) for case (e).
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Real and imaginary parts of ¢(6,S) for case (f).



