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Abstract: A finite-element deterministic two-dimensional thermal elasto-plastic contact model
is presented in this article, which facilitates the investigation of the influence of steady-state fric-
tional heating on contacting asperities and subsurface stress fields. This model takes into account
the asperity distortion caused by the temperature variation in a tribological process, microplastic
flow of surface asperities, and coupled thermo-elasto-plastic behaviour of the material, with and
without considering the strain-hardening property of the material. The model is verified through
the contact analysis of a rigid, isothermal cylinder with a thermally conductive, elasto-plastic
plane. The maximum contact pressures increase with frictional heating. Furthermore, thermal
effects on the contact pressure, real area of the contact, and average gap of a real rough surface
with different frictional heat inputs under thermal elasto-plastic contact conditions are numer-
ically investigated. It indicates that neglecting thermal effect overestimates the real area of the
contact and underestimates the average gap between the contacting surfaces.

Keywords: steady state, thermal elasto-plastic, contact, rough surfaces

1 INTRODUCTION

One of the important issues in analysing tribologi-
cal systems is the asperity contact subjected to the
heat transfer across contact interfaces. Variations in
temperature rise at contact interfaces induced by fric-
tional heating may produce thermal expansion and
asperity distortion, which cause the contact pres-
sure distribution and the real area of contact to
change. Many works have been carried out in devel-
oping asperity contact models under thermoelastic
conditions. Early studies were mainly focused on
Hertzian-contact or single asperity-contact problems
for thermal stresses [1–7], which indicated that the
influence of temperature on contacting surfaces due
to friction should be considered in the analysis
of contacting bodies. Barber [2] gave resolution
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of steady-state thermoelastic contacts between two
semi-infinite solids with some simplification assump-
tions. Azarkin et al. [3] presented a numerical pro-
cedure that combined thermoelastic and mechani-
cal behaviours in frictional sliding and investigated
the contact pressures between contacting surfaces
and stress and strain distributions in the contact-
ing bodies of different materials. Bryant et al. [4]
presented a particle ejection theory. By using this
theory, thermal stress and fracture fields of wear in
association with thermal mounding on high-speed
sliders can be analysed. Yevtushenko [5] developed
a procedure that could determine the temperature
fields in concentrated sliding contacts. The effect
of ‘hot spots’ on the temperature of frictional sur-
faces was investigated. Ciavarella et al. [6] presented
a research on the thermoelastic contact of rough
surfaces, in which one of the contact bodies had
a sinusoidal wavy surface. Recently, Afferrante and
Liavarella [7] presented a research on the instability
of thermoelastic contacts for two sliding half-planes
and suggested conditions under which instability
may occur.
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Using the finite-element method (FEM) and the
mathematical programming technique, Wang and
Liu [8, 9] developed a thermoelastic contact model.
The conjugate gradient method-based [10] iteration
procedures were combined with the discrete con-
volution as fast Fourier transform method [11]. The
thermal elasto-perfectly plastic contact model by
Yu et al. [12] considered the variation of the yield
strength as a function of temperature. Recently, Boucly
et al. [13, 14] developed a semi-analytical thermo-
elastic-plastic model to simulate the rolling/sliding
contact between two smooth and two rough surfaces.

A deterministic FEM two-dimensional steady-state
thermal elasto-plastic asperity contact model is pre-
sented, in which the thermal expansion and thermal
stress fields are fully coupled with the elasto-plastic
behaviour of the material by using the FEM, initial
stiffness method, and the incremental mathematical
programming technique. The model is validated by
solving the thermal elasto-plastic contact between a
rigid, isothermal cylinder and a thermally conductive,
elasto-plastic plane. Then, the thermal elasto-plastic
contact model is used to solve the contact problems
between a real rough surface and a rigid plane with
different frictional heat inputs.

2 HEAT TRANSFER MODEL

A thermal–mechanical asperity contact can be mod-
elled based on the geometry shown in Fig. 1(a) as
a plane–strain problem. As the measurement of a
real rough surface usually depends on the resolution
and the sampling range of instruments, one needs
to present a reasonable representation for a stochas-
tic infinite rough surface by using a surface with a
limited sampling length. Here, it assumes that the
profile of a real random rough surface may be numer-
ically generated by symmetrical extensions of a profile
digitized in a finite sampling length L. If the entire
surface is subjected to the same contact and heat-
transfer conditions, the heat exchange and transverse
deformation across the boundaries of the profile seg-
ment may be negligible because of the geometric
symmetry.

The heat transfer due to asperity contact and fric-
tional heating can be described by the heat conduction
expressed by equation (1), subjected to the boundary
conditions given by equation (2a) to (c)
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= 0, (x, y) ⊂ S2, S3 (2b)

T = T0, (x, y) ⊂ S4 (2c)

In these equations, k is the thermal conductivity of
the material, and � is the solid domain. The thermal
boundary conditions are denoted by S1 through S4,
where S1 is the heat-input boundary and S2 and S3

are the adiabatic interfaces between adjacent asper-
ity profiles. T is the temperature rise relative to the
prescribed ambient reference temperature T0, which
may be proper for the base S4 of the present model.
The asperity contact surface is subjected to pressure,
traction, and frictional heating. The effects of asperity
thermal distortion on contact pressure and real area of
contact were taken into account in the model.

In order to simplify the solution process, material
properties are assumed to be independent of tem-
perature variation. At a surface location xi, frictional
heat flux q(xi) is proportional to the contact pressure
p(xi) over a differential area �A or to the surface nodal
force Ri

q(xi) = fv · β · p(xi) = fv · β

�A
· Ri, i = 1, 2, . . ., m (3)

where f is the frictional coefficient, v is the sliding
speed, β is the heat partition coefficient, and �A is
the differential area over the contact pressure p(xi)

located at xi. The frictional tangential nodal force is
proportional to the normal nodal force and equals fRi.
In equation (3), the product of frictional coefficient
and sliding speed fv is a factor that is proportional to
the heat flux and employed to measure the amount
of frictional heat input. Although the current model
can handle variable heat partition coefficient, β is still
supposed to be constant along the contacting surfaces
for simplicity. However, it should be addressed that,
in reality, β is usually not a prescribed function. As
can be seen in Fig. 1, the direction of the surface trac-
tions, which is mentioned in this study, is along the
positive direction of the x-axis, which means that the
slider moves from right to left over the surface of the
substrate.

For mechanical boundary conditions, the left and
right boundaries, S2 and S3, are fixed along the direc-
tion x and, boundary S4 is fixed in both x and y
directions. A series of constraint coefficients, {d1}T ,
{d1}N , {d2}T , and {d2}N caused by the unit shear and
normal loads, and {DT

1 }, {DN
1 }, {DT

2 }, and {DN
2 } by the

real loads for boundaries BC1 and BC2, are introduced
to evaluate the deformation along the boundaries of
the calculation domain.

An extended model that deals with the shear-
traction effect on the thermoelastic stress distribu-
tions was developed by Liu and Wang [9]. Owing to the
symmetric extension of the surface profile, the trac-
tions on the surface should also be symmetric with
respect to each boundary, as shown in Fig. 1(b). For
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a pair of shear and normal loads, Rti and Rni, at the
distance xi right to the boundary, there should exist
another pair with the same magnitude located on the
other side of the boundary.

3 INCREMENTAL THEOREM AND INITIAL
STIFFNESS METHOD FOR THERMAL
ELASTO-PLASTIC PROBLEMS

3.1 Thermal elasto-plastic stress–strain
relationship

For the thermoelastic problem described in the coor-
dinate system shown in Fig. 1(a), the stress tensor in
the plane can be expressed as

σ = De(ε − ε0) = Deε − Deε0 (4)

where De is the elastic matrix, ε is the strain vector,
and ε0 is the free thermal strain vector. For plane stress
problems, Deε0 can be obtained as [8]

Deε0 = EθT e
α

1 − ν

⎛
⎝1

1
0

⎞
⎠ (5)

where θ is the thermal expansion coefficient and T e
α

is the element average temperature. E and ν are the

Young’s modulus and Poisson’s ratio, respectively. For
plane strain problems, E , ν, and θ in equation (6)
should be substituted by E/(1–ν2), ν/(1–ν), and
(1 + ν)θ , respectively.

The von Mises yield criterion is used to predict the
plastic zone. The equivalent von Mises stress, σe, is
defined as

σe = √
3 · ( J ′

2)
1/2 (6)

where J ′
2 is the second deviatoric stress invariant,

which can be written as

J ′
2 = 1

2
[σ ′

x
2 + σ ′

y
2 + σ ′

z
2] + τ 2

xy + τ 2
yz + τ 2

zx (7)

where σ ′
i = σi − σ̄ (i = x, y, z) and σ̄ = 1/3(σx + σy +

σz) is the average stress. When σe is greater than the
yield strength of the material, the σY , the material
begins to yield.

Owing to yielding, the stress–strain relationship of
the material is no longer linear, and an elasto-plastic
stress–strain relationship has been introduced [15].
By including the thermal effect, the stress increments
during any load increment can be obtained as follows

�σ = Dep · (�ε − �ε0) (8)

where �σ is the stress increment, �ε is the strain incre-
ment, �ε0 is the free strain increment, and Dep is the

Fig. 1 Frictional heating and thermal boundary constraints defined for the thermal–mechanical
asperity contact model: (a) contact, frictional heating, and thermal boundaries of a
calculation domain and (b) extended domain for boundary constraint definition
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elasto-plastic matrix, which can be expressed as

Dep = De − Dp (9)

where De is the elastic matrix and Dp is the plastic
matrix, which can be expressed as

Dp = De · q′ · w ′ (10)

where

q′ =
√

3
σe

(
σ ′

x

2
,
σ ′

y

2
,
σ ′

z

2
, τxy , τyz , τzx

)T

(11)

w ′ = q′TDe

H ′ + q′TDeq′ (12)

In equation (13), H ′ is the strain-hardening function
related to the elasto-plastic tangential modulus, ET,
and can be expressed as

H ′ = ET

1 − ET/E
(13)

In this article, the strain-hardening property of the
material is considered to be linear and isotropic. The
equations mentioned earlier are also valid for elastic-
perfectly-plastic materials, for which ET should be
zero, with H ′ being zero.

3.2 Initial stiffness method for thermal
elasto-plastic problems

For any load increment, �Rm, a discretized non-linear
system can generally be expressed as a set of algebraic
equations of the form

Kep · �u = �Rm − �Rt (14)

where �u is the displacement increment and �Rt =
H · �Rm is the equivalent thermal load increment,
where H is a function that relates the equivalent ther-
mal and the surface nodal forces. The mathematical
expression of H for FEM programming may be found
in reference [8]. Kep is the elasto-plastic stiffness matrix
defined as

Kep = Ke − Kp (15)

where Ke is the elastic stiffness matrix, which can be
written as

Ke =
∫

�

BTDeB d� (16)

where B is the strain matrix. In equation (15), Kp is
called the plastic stiffness matrix.

Substituting equation (15) into equation (14)
results in

Ke · �u = �Rm − �Rt + �Rσ (17)

where �Rσ = Kp · �u is the initial force vector [16] or
the unbalanced force vector [17], which is express as

�Rσ = −
∑ ∫

�

BT · �σ0 d� (18)

For each yielded element i, the incremental initial
stresses �σi

0 are

�σi
0 = −Dp · (�εi − �εi

0) (19)

where �εi and �εi
0 are the incremental strain vector

and free thermal strain vector of the yielded element i,
respectively. The corresponding elemental initial force
is given as

�Ri
σ = −

∫
�

BT · �σi
0 d� (20)

The total initial force of equation (18) can be writ-
ten as the sum of the yielded elemental initial force
vectors as

�Rσ =
∑

�Ri
σ (21)

3.3 Iteration formulas of the thermal
elasto-plastic contact problems

Combining the linear programming technique with
the initial stiffness method, an incremental iteration
algorithm for the elasto-plastic contact problems was
presented by Liu et al. [15]. The algorithm is mod-
ified here to take thermal effects into account. By
multiplying the inverse matrix of the elastic stiffness
matrix, K−1

e , to both sides of equation (17), the incre-
ment of the thermal elasto-plastic deformation can be
expressed as

�u = K−1
e · �Rm − K−1

e · �Rt + K−1
e · �Rσ = �um

e

− �ut
e + �uI (22)

where �uI, �um
e , and �ut

e are the plastic, elastic
mechanical, and thermal deformations, respectively,
which can be calculated as follows

�uI = K−1
e �Rσ = K−1

e ·
∑ ∫

�

−BT · �σ0 d� (23)

�um
e = K−1

e · �Rm = Am · �Rm (24)

�ut
e = K−1

e · �Rt = K−1
e · H · �Rm = At · �Rm (25)

In equations (24) and (25), Am is the mechanical influ-
ence function matrix, and At is the thermal influence
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function matrix, which was explained in detail in
reference [8].

Figure 2 illustrates the thermal–mechanical defor-
mation of asperity contacts. The incremental itera-
tion formulas for the jth step of loading �Pj can be
expressed in a simplex-type form as

{
−(�um

ej − �ut
ej) + �αj · e + I · y j = yj−1 + �uIj

eT�Rm
j = �Pj

(26)

where �αj is the rigid-body displacement increment,
y j is the surface separation vector after deformation
or the slack vector for the jth step of loading, �Rm

j is
the nodal contact force vector of the jth incremental
loading, y j−1 is the surface separation vector at the end
of the (j − 1)th incremental loading, e is the unit vec-
tor, and I is the identity matrix. The von Mises yield
criterion is used to determine the coupled stress level
at which plastic deformation begins. The incremental
iteration formulas of equation (26) is subjected to the
following contact conditions

⎧⎪⎪⎨
⎪⎪⎩

if (yj)i = 0, (�Rm
j )i � 0, within the contact area

if (yj)i > 0, (�Rm
j )i = 0,

outside of the

contact area

(i = 1, 2, . . . , N ) (27)

and non-negative constraints

(�Rm
j )i � 0, �αj � 0, (�yj)i � 0, (i = 1, 2, . . . , N )

(28)

where N is the number of nodes in the possible region
of the surface in contact.

Fig. 2 Thermal deformations (O, original profile; M,
deformed due to pressure; T, further deformed
due to frictional heating)

3.4 Numerical implementation

The procedure for numerical implementation of
the incremental-initial stiffness method for thermal
elasto-plastic contact problems is given as follows.

1. Discretize the contacting bodies and form the influ-
ence matrix, Am and At, for the candidate contact
nodes with the finite-element technique.

2. Calculate the contact problems under total applied
load. Compute the thermo-elastic deformation u,
the elastic strain ε, and the elastic stress σ and then
obtain the equivalent von Mises stress, σνm, of each
element.

3. If the von Mises stress of the element σνm is less than
the yield strength σY , go to step 4, else go to step 6.

4. Begin to increase the applied load and set the load
increment counter j = 1.
(a) Compute the load increment �Pj .
(b) Set iteration counter IE = 1 and �uIj = 0 for the

first iteration.
(c) Calculate the surface separation vector y0j =

y j−1 + �uIj . For the first load increment, y01 =
y0 is the initial separation.

(d) Evaluate the nodal load increment �Rm
j and the

deformed separation y j .
(e) Calculate the increment equivalent thermal

nodal forces �Rt
j under �Rm

j and the tempera-
ture rise increment �T j .

(f ) Compute the increments of the elastic defor-
mation �um

ej = K−1
e · �Rm

j , and the thermal
deformation �ut

ej = K−1
e · �Rt

j .
(g) Calculate the thermo-elastic strain and stress

increments by using the total deformation
increments �uej = �um

ej − �ut
ej .

(h) Accumulate the total strains and stresses and
monitor the equivalent von Mises stress of each
element to check whether the element yields
according to the von Mises yield criterion.

(i) For the yield element, compute the modified
plastic deformation increments �uIj .

(j) Check if �uIj convergence (accuracy controlled
as max{�uIj/uIj} � 0.01 per cent)? If yes, go to
step 5, else set IE = IE + 1 and go to step 4(c).

5. If j equals to the total increment number, go to step
6, otherwise set j = j + 1 and go to step 4(a).

6. Output the results. End.

4 THERMAL ELASTO-PLASTIC CONTACT
BETWEEN CYLINDER AND PLANE

The thermal elasto-plastic contact between a rigid, iso-
lated cylinder and a conductive, elasto-plastic plane is
studied to verify the present model. The radius of the
cylinder is 0.5 mm, the Young’s modulus and Poisson’s
ratio are E = 200 GPa and ν = 0.3, and two elasto-
plastic tangential moduli are ET = 0 and ET = 0.1E .
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The thermal conductivity is k = 50.2W/m K, the ther-
mal expansion coefficient is θ = 11.7 μm/m K, and the
heat partition coefficient is β = 1. The length of the
calculation domain L is 0.128 mm. The normal load
is 15 N/mm and the yield strength of the plane is
σY = 600 MPa. The elasto-plastic plane is discretized
into 22 832 three-node triangular finite elements and
11 603 nodes. The number of possible contact nodes
on the contacting surfaces is 257. On the surface, there
are 40 layers of fine elements with the vertical nodal
space of 0.9625 μm, and the other elements are coarse
with different vertical nodal spaces.

As the basis of the present model, Wang and Liu [8]
compared the numerical results of the thermoelastic

contacts of sinusoidal multi-asperities having differ-
ent values of fv with the theoretical results presented
by Johnson [18]. They suggested that for a value of fv
lower than 0.5, the contact pressure distributions were
close to Johnson’s theoretical results. The calculation
domain of the present model is taken as the same as
that of the thermoelastic model presented by Wang
and Liu’s [8] study, in which the depth of the domain
is about 0.8 times of the length L.

The relationships between the non-dimensional
contact pressure p/P0 and the non-dimensional con-
tact half width x/a for different frictional heat inputs
and frictional coefficients are given in Figs 3(a) to
(c), where fv = 0.0 is the solution without considering
the thermal effect and P0 and a are the maximum

Fig. 3 Pressure distributions and temperature rise of the elastic and thermal elasto-plastic con-
tacts with different frictional heat inputs and frictional coefficients: (a) pressures with yield
strength σY = 600 MPa; (b) pressures when when ET = 0.0 with yield strength σY = 600 MPa;
(c) pressures considering the effect of frictional shear subject to different yield strengths
when fv = 0.2m/s, f = 0.5; and (d) temperature rise distributions on the contacting surface
when ET = 0.0 with yield strength σY = 600 MPa
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contact pressure and the contact half width of the the-
oretical Hertzian solution, respectively. Six different
cases – elastic, elastic-perfectly-plastic, elasto-plastic,
thermoelastic, thermal elastic-perfectly-plastic, and
thermal elasto-plastic – are shown in Figs 3(a) and
(b). In Fig. 3(a), the results of the elastic contact agree
well with the Hertzian solution. The maximum contact
pressure of the thermoelastic contact of fv = 0.3 m/s is
1.0136P0, which is higher than that of the Hertzian con-
tact because of thermal expansion. It can be observed
that the influence of frictional shear is small for
thermoelastic cases but significant for thermal elasto-
plastic cases. In Fig. 3(b), for thermal elasto-plastic
contacts with the same frictional coefficient, the max-
imum contact pressures increase, but the real areas
of contact decrease with the frictional heat input. It
also reveals that the contact pressures are no longer
symmetric, but skew when the fictional coefficient
is not zero. Figure 3(c) compares the contact pres-
sures with different yield strengths for fv = 0.2 m/s
and f = 0.5 with ET = 0. Three yield strengths are cho-
sen: σY = 600 MPa, σY = 800 MPa, and σY = 1200 MPa.
When the yield strength increases, the degree of asym-
metry of the contact pressure decreases. When the
yield strength is 1200 MPa, the contact pressures are
still elastic and symmetrical, because the contact
stresses do not exceed the yield strength under the
normal load P = 15 N/mm. The comparison proves

that plastic deformation of contacting bodies results
in contact pressure asymmetry. In Fig. 3(d), the tem-
perature rise distributions on the elasto-plastic surface
with different parameters are presented. When fv =
0.0, as there is no thermal effect, the temperature rise
is equal to zero at every contact point. When the fric-
tional shear is taken into account, it can be seen from
Fig. 3(d) that the temperature rises are no longer sym-
metric with the centre-line of the contact region and
move with the surface tractions.

As shown in Fig. 4, the subsurface von Mises stress
contours of the thermoelastic and thermal elasto-
plastic contact with and without strain hardening
(ET = 0.0 and ET = 0.1E , respectively) are presented,
under the condition of different values of fv = 0.0,
0.1, 0.2, and 0.5 m/s and f = 0.2. The yield strength
is σY = 600 MPa. The contours show that the plastic
region of the plane tends to be reduced when the
frictional heat input increases. Owing to the temper-
ature rise of the contacting bodies, the regions with
stress < 100 MPa become larger. Table 1 gives the
maximum von Mises stresses of the subsurface with
different frictional heat inputs. For the thermal elasto-
plastic contact without strain hardening (ET = 0.0),
the maximum von Mises stresses almost equal the
yield strength σY = 600 MPa. For the thermal elastic
and thermal elasto-plastic contacts with strain hard-
ening (ET = 0.1E), the maximum von Mises stress first

Fig. 4 Subsurface von Mises stress contours of the thermal contact under different frictional heat
inputs when f = 0.2 (unit: MPa): (a) thermoelastic; (b) thermal elastic-perfectly-plastic, (c)
thermal elasto-plastic
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Table 1 Maximum subsurface von Mises stress under the
thermal elastic and thermal elasto-plastic condi-
tions with different frictional heat inputs when
f = 0.2

Thermal elastic-plastic
Frictional Thermal σvm(MPa)
heat input, elasto
fv (m/s) σvm(MPa) ET = 0.0 ET = 0.1E

0.0 844.91 599.65 644.62
0.1 797.24 599.45 636.22
0.2 771.96 598.88 639.85
0.5 856.96 598.86 663.43

reduces and then increases with an increase of in fric-
tional heat input. Thermal expansion plays a major
role in the deformation of the contacting bodies when
the frictional heat input is low. When the frictional
heat input further increases, thermal expansion can-
not resist the compression of mechanical deformation
and the maximum von Mises stress increases. This is
because that the thermal expansion and the surface
compression are in the opposite direction and the vari-
ation of the stresses in the contacting bodies depends
on the direction of motion during the contact process.
When the parameter fv is larger, the contacting bodies
are sufficiently expanded due to thermal deformation
and then there is no further possibility to decrease the
von Mises stress.

Figure 5 shows the comparison of the thermoelas-
tic and thermal elasto-plastic (ET = 0.0 and ET = 0.1E ,
respectively) von Mises stresses along the depth of
different locations with two values of frictional heat
input, fv = 0.0 m/s and fv = 0.5 m/s, when f = 0.5. In
Fig. 5, r is the distance from the centre-line of the
contact region to the location of interest and ac is
the contact half width. Negative value of r/ac means
that the location is on the left side of the centre-
line of the contact region. Figure 5 shows that the
von Mises stresses of the elastic contact ( fv = 0.0 m/s,
f = 0.5) agree well with the theoretical solutions pre-
sented by Sackfield and Hills [19]. The maximum
von Mises stresses of the elasto-plastic and the ther-
mal elasto-plastic contact without strain hardening
(ET = 0.0) are almost equal to the yield strength of
600 MPa (∼0.404P0), indicating that the region comes
into yield under the coupled efforts of thermal and
elasto-plastic stresses. As shown in Table 2, at the
location of r/ac = −0.5, the non-dimensional max-
imum von Mises stresses (σvm/P0) of the thermoe-
lastic and the strain-hardening thermal elasto-plastic
contacts decrease with an increase in the frictional
heat input because of thermal expansion. However,
at the locations of r/ac = 0.0 and r/ac = 0.5, the
non-dimensional maximum von Mises stresses sub-
ject to thermoelasticity and thermal elasto-plasticity

Fig. 5 Comparison of the thermoelastic and the thermal
elasto-plastic von Mises stresses along the depth
direction under different locations, obtained with
different frictional heat inputs when f = 0.5: (a)
r/ac = −0.5, (b) r/ac = 0.0, and (c) r/ac = 0.5

with strain hardening are larger than the correspond-
ing solutions without considering the thermal effect,
because the thermal expansion cannot resist the com-
pression of the contact pressure at these locations.
Considering that the thermal expansion and the sur-
face compression are in the opposite direction, the
moving direction during the contact process will be
a major factor influencing the change of stresses in
contacting bodies.
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Table 2 Non-dimensional maximum von Mises stress (σvm/P0) obtained from the numer-
ical calculations along the depth of different locations under the thermal elastic
and thermal elasto-plastic conditions with different frictional heat inputs when
f = 0.5

Non-dimensional maximum von Mises stress,
σvm/P0, at different locations

Frictional heat input, fv (m/s) r/ac = −0.5 r/ac = 0.0 r/ac = 0.5

Elastic/thermal elastic fv = 0.0 0.76 0.85 0.88
fv = 0.5 0.66 0.88 1.00

Thermal elasto- plastic (ET = 0.1E) fv = 0.0 0.56 0.57 0.55
fv = 0.5 0.54 0.58 0.58

The subsurface von Mises stress contours of the
thermoelastic and thermal elasto-plastic contacts with
and without strain hardening (ET = 0.0 and ET = 0.1E ,
respectively), under different frictional heat inputs
with frictional coefficient f = 0.5, are presented in
Fig. 6. The location of the maximum Mises stress
shifts towards the surface as the fictional heat input
increases. Table 3 gives the maximum von Mises stress
of the subsurface with different frictional heat inputs
of the thermal elastic and thermal elasto-plastic con-
tacts. Different from the cases when the frictional
coefficient is f = 0.2, the maximum von Mises stresses
of the thermal elastic and thermal elasto-plastic con-
tacts with strain hardening increase with the frictional
heat input, which again means that thermal expansion

can no longer resist mechanical compression even
for the lower frictional heat input when the frictional
coefficient is sufficiently high.

5 THERMAL ELASTO-PLASTIC CONTACT OF
ROUGH SURFACES

A thermal elasto-plastic contact problem between a
flat, rigid plane and a conductive, elasto-plastic rough
surface is studied in this section. The contact model
is presented in Fig. 1(a). The root-mean-square (RMS)
roughness is rms = 0.16 μm. The length of the rough
surface is L = 0.256 mm. Because the RMS roughness
of the surface profile used in this research is the order

Fig. 6 Subsurface von Mises stress contours of the thermal contact under different frictional heat
inputs when f = 0.5 (unit: MPa): (a) thermoelastic, (b) thermal elastic-perfectly-plastic, and
(c) thermal elasto-plastic
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Table 3 Maximum subsurface von Mises stress under the
thermal elastic and thermal elasto-plastic condi-
tions with different frictional heat inputs when
f = 0.5

Thermal elastic-plastic,
Frictional Thermal σ vm (MPa)
heat input, elasto
fv (m/s) σvm (MPa) ET = 0.0 ET = 0.1E

0.0 1166.57 599.98 841.70
0.1 1200.18 599.98 853.29
0.2 1237.45 599.98 858.79
0.5 1381.55 599.98 871.11

of 0.1–0.2 μm, 40 layers of fine elements with a vertical
nodal space of 0.4 μm are meshed. The elasto-plastic
plane is discretized into 22 832 three-node triangu-
lar finite elements and 11 603 nodes. The number of
possible contact nodes on the contacting surfaces is
257. The geometric and material parameters are the
same as those used in section 4. Two cases, ET = 0.0
and ET = 0.1E , are studied. The nominal pressure is,
which is the equivalent uniform pressure whose sum is
equal to the sum of the real pressure distribution, p =
351.56 MPa. The time consumption of the calculations
for the contact problems by using the FEM is one of
the major effects, which should be considered. In the
current model, the procedures were coded by the FOR-
TRAN language, and the computing time is ∼1–3 h
depending on different parameters, which is imple-
mented by a computer with 1.6 GHz process speed and
512 M memory.

The non-dimensional contact pressures and the
non-dimensional deformed profiles due to different
frictional heat inputs and frictional coefficients, when
ET = 0.0 and ET = 0.1E , respectively, are shown in
Figs 7 and 8, where Cyd means the yield strength,
σY . Because the effect of strain hardening has been

Fig. 7 Contact pressures and the deformed profiles
when the rough surface is in contact with a rigid
plane, ET = 0.0

Fig. 8 Contact pressures and the deformed profiles
when the rough surface is in contact with a rigid
plane, ET = 0.1E

included when ET = 0.1E , the maximum contact pres-
sures are larger than those for the corresponding cases
when ET = 0.0. It is observed that the maximum con-
tact pressures and gaps become larger due to thermal
expansion. When the frictional heat input increases,
the maximum contact pressures of the contact regions
associated with larger contact areas increase and those
with smaller contact areas decrease. That is to say, as a
result of frictional heating increases, the contacts are
more and more concentrated at larger contact spots.

The subsurface von Mises stress contours of the
thermal elasto-plastic contact with different frictional
heat inputs, when ET = 0.0 and ET = 0.1E , respectively,
in Figs 9 and 10, show that the plastic regions under
the largest contact pressures in Figs 7 and 8 become
larger with an increase in the frictional heat input,
whereas the stress values of the other contact regions
decrease. Table 4 gives the maximum subsurface von
Mises stresses of the thermal elasto-plastic contact
with different conditions when ET = 0.1E . For the
same frictional coefficient, the maximum von Mises
stress increases with the frictional heat input.

Figure 11 gives the relationship between the non-
dimensional contact pressure p̄ = pT/3σY and the
non-dimensional contact area Ā = A/Anom, under dif-
ferent frictional heat inputs and frictional coefficients,
where pT is the sum of the pressures of each contact
pair on the surface, A the real area of contact and
Anom the nominal area of contact. Figure 12 shows
the relationship between the non-dimensional aver-
age gap h̄ = hT/rms and the non-dimensional contact
pressure p̄ = pT/3σY under different frictional heat
inputs and friction coefficients. The elasto-plastic tan-
gential modulus is ET = 0.1E . These two figures show
that for the same frictional coefficient, the real area
of contact decreases and the average gap increases
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Fig. 9 Subsurface von Mises stress contours of the thermal elasto-plastic contact of the rough sur-
face subject to different frictional heat inputs, ET = 0.0 (unit: MPa): (a) fv = 0.0m/s, f = 0.0;
(b) fv = 0.1m/s, f = 0.2; (c) fv = 0.2m/s, f = 0.2; (d) fv = 0.5m/s, f = 0.2; (e) fv = 0.1m/s,
f = 0.5; and (f) fv = 0.2m/s, f = 0.5

Fig. 10 Subsurface von Mises stress contours of the thermal elasto-plastic contact of the rough
surface subject to different frictional heat inputs, ET = 0.1E (unit: MPa): (a) fv = 0.0m/s,
f = 0.0; (b) fv = 0.1m/s, f = 0.2; (c) fv = 0.2m/s, f = 0.2; (d) fv = 0.5m/s, f = 0.2; (e)
fv = 0.1m/s, f = 0.5; and (f) fv = 0.2m/s, f = 0.5

with the frictional heat input under the same con-
tact pressure, which means that thermal expansion
produces opposite displacements versus the action of
the contact pressures.With the same value of frictional
heat input, fv, the real area of contact becomes larger
and the average gap becomes smaller with an increase
in the frictional coefficient.When the contact is deeper
and the value of frictional heat input, fv, is larger, the
thermal effect becomes more significant. Figure 11
shows that when fv = 0.5 m/s, f = 0.2, and p̄ is larger
than 0.1, the real area of contact is significantly smaller
than that due to smaller frictional heat input under
the same contact pressure. In contrast, Fig. 12 shows
that when fv = 0.5 m/s, f = 0.2, and h̄ is smaller than
2.0, the average gap becomes larger when compared

with that under smaller fv but the same contact pres-
sure. These results indicate that elasto-plastic models

Table 4 Maximum subsurface von Mises
stress of the thermal elasto-plastic
contact between a rough surface
and a rigid plane when ET = 0.1E

Frictional heat input, Thermal elasto-plastic,
fv (m/s) σvm (MPa)

f = 0.0
0.0 850.26

f = 0.2 f = 0.5
0.1 870.85 1628.86
0.2 880.70 1726.47
0.5 1064.62 2257.42
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Fig. 11 Relationship between the non-dimensional
contact pressure and the non-dimensional con-
tact area under different frictional heat inputs
and frictional coefficients when ET = 0.1E

Fig. 12 Relationship between the non-dimensional
average gap and the non-dimensional contact
pressure under different frictional heat inputs
and frictional coefficients when ET = 0.1E

without considering the thermal effect overestimate
the real area of contacts, but underestimate the aver-
age gap for the contacts between rough surfaces when
frictional heating is involved.

6 CONCLUSIONS

A two-dimensional thermal elasto-plastic contact
model is developed for analysing of the coupled

influence of steady-state frictional heating and elasto-
plastic behaviours of the material.

The model is validated by solving a thermal elasto-
plastic contact problem between a rigid, isothermal
cylinder and a thermal elasto-plastic plane. The ther-
mal elastic, elasto-plastic contact pressure distribu-
tions and von Mises stress fields subjected to different
frictional heat inputs and frictional coefficients are
studied. The results indicate that contact pressures
increase with the frictional heat input. The yielding
behaviour causes the asymmetry of contact pressure
when the effect of the frictional shear is taken into
account.

The study of the thermal elasto-plastic contact
between a conductive rough surface and a flat, rigid
plane shows that when the frictional heat input
increases, the maximum contact pressures associated
with larger contact areas increase, which indicates
that the contacts are more concentrated at larger con-
tact spots. The results suggest that the elasto-plastic
models without considering the thermal effect overes-
timate the real area of contacts, but underestimate the
average gap for the contacts between rough surfaces
when frictional heating exists.
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APPENDIX

Notation

A real area of the contact (mm2)
Anom nominal contact area (mm2)
Am mechanical influence function matrix
At thermal influence function matrix
�A differential area (mm2)
B strain matrix
De elastic matrix
Dp plastic matrix
Dep elasto-plastic matrix
e unit vector
E Young’s modulus (GPa)
ET elasto-plastic tangential modulus (GPa)
f frictional coefficient
H ′ strain-hardening function (GPa)

H function that relates equivalent thermal
and surface nodal forces

I identity matrix
J ′

2 second deviatoric stress invariant (MPa2)
k thermal conductivity (W/m K)
Ke elastic stiffness matrix
Kp plastic stiffness matrix
Kep elasto-plastic stiffness matrix
n surface normal
N number of nodes in the possible region of

the surface in contact
p(xi) contact pressure (MPa)
pT sum of the pressures of each contact pair

on the surface (MPa)
�Pj applied load incremental (N/mm)
q(xi) frictional heat flux (W/m2)
�Rm mechanical load increment vector
�Rt thermal load increment vector
�Rσ initial force vector or unbalanced force

vector
�Rm

j nodal contact force vector of the jth
incremental loading

Ri surface nodal force (N)
Rti shear loads (N)
Rni normal loads (N)
T temperature rise relative to the ambient

reference temperature (◦C)
T0 a prescribed ambient reference

temperature (◦C)
T e

α element average temperature (◦C)
�u displacement vector
�uI plastic deformation vector
�um

e elastic mechanical deformation vector
�ut

e thermoelastic deformation vector
v sliding speed (m/s)
xi surface nodal coordinates along x-axis

(mm)
y0 surface original separation vector
y j surface separation vector or slack vector at

the jth incremental loading

�αj rigid-body displacement increment at the
jth incremental loading (mm)

β heat partition coefficient
ε strain vector
ε0 free thermal strain vector
�ε incremental strain vector
�ε0 incremental free thermal strain vector
θ thermal expansion coefficient (μm/mK)
ν Poisson’s ratio
�σ stress increment vector
�σ0 incremental initial stress vector
σe equivalent von Mises stress (MPa)
σvm maximum von Mises stress (MPa)
σY yield strength of the material (MPa)
σ̄ average stress (MPa)
� solid domain
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