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Two-dimensional Stiefel-Whitney insulators in liganded Xenes
Mingxiang Pan 1, Dexin Li1, Jiahao Fan1 and Huaqing Huang 1,2,3✉

Two-dimensional (2D) Stiefel-Whitney insulator (SWI), which is characterized by the second Stiefel-Whitney class, is a class of
topological phases with zero Berry curvature. As an intriguing topological state, it has been well studied in theory but seldom
realized in realistic materials. Here we propose that a large class of liganded Xenes, i.e., hydrogenated and halogenated 2D group-IV
honeycomb lattices, are 2D SWIs. The nontrivial topology of liganded Xenes is identified by the bulk topological invariant and the
existence of protected corner states. Moreover, the large and tunable bandgap (up to 3.5 eV) of liganded Xenes will facilitate the
experimental characterization of the 2D SWI phase. Our findings not only provide abundant realistic material candidates that are
experimentally feasible but also draw more fundamental research interest towards the topological physics associated with Stiefel-
Whitney class in the absence of Berry curvature.
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INTRODUCTION
With the rapid progress of topological states, the concept of Berry
curvature and associated topological invariants, such as Chern
numbers1,2, mirror or spin Chern numbers3–7, and Fu-Kane
invariants8,9, have been widely applied to condensed matter
physics. Recently, a class of topological state with zero Berry
curvature, which is characterized by the Stiefel-Whitney (SW) class,
was proposed in spinless systems with space-time inversion
symmetry IST= PT or C2zT, where P, T, and C2z are spatial inversion,
time-reversal, and two-fold rotation symmetry, respectively10–15.
This is the so-called SW insulator (SWI), which is topologically
distinguished by a different topological invariant, i.e., the second
SW number w2

16. Different from topological states associated with
Chern class which possess topological boundary states due to the
bulk-boundary correspondence, a 2D SWI features topologically
protected corner states in the presence of additional chiral
symmetry, indicating it is also a special class of 2D second-order
topological insulators (SOTIs)17–21. So far, SOTIs have been
proposed in various systems, including crystalline solids and
artificial structures22–31. In the pioneering work of Lee et al.32, the
bulk topology of monolayer graphdiyne, which is a candidate for
2D SOTI, was characterized by a nontrivial second SW number
w2= 1, indicating that it is also a candidate material for 2D SWI.
However, the recently proposed 2D SWI was mainly studied in
theory but seldom in realistic materials, which greatly hinders the
experimental study of SWIs. It is thus emergent to search for 2D
SWIs in realistic materials.
Meanwhile, in the field of 2D materials, a monoelemental class

of 2D honeycomb crystals termed Xenes (X refers to C, Si, Ge, Sn,
and so on)33–35 have attracted tremendous attention as they
provide an ideal platform to explore various topological physics.
More than a dozen different topological phases, including the
quantum spin Hall (QSH)36–39, quantum anomalous Hall40,
quantum valley Hall states41–43, and topological superconduc-
tors44–47, are predicted to emerge in Xenes, and these topological
states are easily tuned, for example, by chemical functionalization
with ligands. In particular, depending on the type of ligands,
hydrogenated, or halogenated derivatives of Xene can be large-
gap QSH or trivial insulators with tunable gaps36,37.

In this work, we extend the theoretical prediction and
experimental applicability of the topological physics associated
with SW class by recognizing that the liganded Xene family XL
(X=C, Si, Ge, Sn, L=H, F, Cl, Br, I), a large, well studied, and readily
synthesizable class of materials48–51, are 2D SWIs. Based on first-
principles calculation and theoretical analysis, the chemical
bonding configuration, bulk topological invariant, and in-gap
topological corner states are calculated to identify the SW
topology. Moreover, the large and tunable bandgaps of liganded
Xenes will largely facilitate experimentally observing in-gap corner
states. Since some liganded Xenes have been experimentally
synthesized, we believe our proposal has strong feasibility to be
detected by transport and STM measurements, which may draw
immediate experimental attention.

RESULTS
SW topology in hydrogenated graphene
We begin our discussion by introducing the atomic structure and
associated crystalline symmetry. Since the compounds in the
ligand-terminated Xenes family have similar crystal structures and
electronic structures, we take the single-side and double-side
hydrogenated graphene (also named graphane), denoted as s-CH
and d-CH, as an example hereafter. Figure 1a and b shows crystal
structures for d-CH and s-CH, respectively. The d-CH with H
alternating on both sides of the nanosheet is in a buckled
hexagonal honeycomb structure with space group 164 (D3

3d)
including inversion symmetry P, while the s-CH is in a planar
configuration with space group 183 (C1

6v ), which contains C2z, the
two-fold rotation symmetry about the z-axis. As time-reversal
symmetry T exists in both systems, therefore, the space-time
inversion symmetry required for 2D SWIs are IST= PT and C2zT for
d-CH and s-CH, respectively. The optimal lattice constants are 2.54
and 2.84Å for d-CH and s-CH, respectively, which are consistent
with previous reports52,53. We further confirm the stability of d-
and s-CH by phonon calculations that show no imaginary
frequency (Supplementary Fig. 4).
For the hydrogenated graphene structures, H atoms directly

couple to the half-filled pz orbitals in intrinsic graphene, thereby
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removing π bonding and forming H–C σ covalent states
(Supplementary Fig. 3). The structural buckling in d-CH further
enhances a sp3 hybridization of C atoms. There are in total five
covalent bonds within the unit cell, including three C–C and two
H–C bonds. Since the valence electron configuration of C and H
are 2s22p2 and 1s1, covalent bonding states are fully occupied with
two electrons per bonding state. Therefore, the system tends to be
an insulator with the Fermi level lying in the gap between
bonding and antibonding states. As shown in Fig. 2a and d, d-CH
(s-CH) is indeed an insulator with a direct (indirect) gap.
Interestingly, the bandgap of s-CH (~1.4 eV) is much smaller than
that of d-CH (~3.46 eV). Although the lack of structural corrugation
in s-CH leads to deviations away from the sp3 hybridization, single-
side hydrogenation brings H atoms closer together, which
naturally results in a much larger repulsion among the H–C σ
bonding states. As a consequence, the occupied band derived
from H–C bonds [marked by “-” at Γ in Fig. 2d] shifts upwards in
energy that gives rise to a smaller indirect bandgap of s-CH.
To get a better understanding of the hybridization, covalency,

and ionicity of chemical bonds in d- and s-CH, we construct
maximally localized Wannier functions (MLWFs) from the five
occupied valence bands. As shown in Fig. 2b and e, it is clear that
these MLWFs display the character of σ-bonded combinations of
mixed sp2–sp3 hybrids, providing an intuitive chemical signature
of covalent bonds. Moreover, it can be seen that the MLWFs of
H–C covalent bonds and their Wannier charge centers are shifted
towards H due to the difference of electronegativity between
H and C.
The common covalent σ bonding states have the average

charge center located around the middle of the bond, implying
the unconventional feature of the mismatch between average
electronic centers and atomic positions (also known as obstructed
atomic limits54,55). This is a direct indicator of nontrivial band
topology. We then perform a band representation (BR) analysis
based on the theory of topological quantum chemistry56–59. The
BR of trivial atomic insulators is solved to be a sum of atomic-
orbital-induced BRs (aBRs), while that of unconventional materials,
such as SOTIs, must be a combination of some aBRs and an
essential BR from an empty Wyckoff position where no atom
exists60,61. The BR decomposition of d-CH is A1@2d+ Ag@3e. As
shown in Fig. 2c, the C atoms are located at 2d site of space group
164, while 3e sites of the essential BR are the C–C bond centers,
which correspond to hð3Þ3c primitive generator class of SOTIs in the
Benalcazar et al.’s notation55. This implies that there is no net
dipole in the plane and the corner charge fractionalization will be
e/2 in each π/6 sector. Similarly, we found the BR decomposition
of s-CH is A1@2b+ A1@3c, also indicating its nontrivial bulk
topology (see Supplementary Table I and II).

Physically, the nontrivial bulk topology of d- and s-CH can also
be understood from the intuitive picture of double band
inversion13,26,62–64. For d-CH with inversion symmetry P, we
consider N�occðΠÞ, the number of occupied bands with negative
parity at time-reversal invariant momenta (TRIM, Π= Γ and three
M points). It is found that N�occðMÞ � N�occðΓÞ ¼ 2, as shown in
Fig. 2a. This indicates a double band inversion, because the system
cannot be adiabatically connected to the trivial atomic insulator
limit where the parity representations at TRIM must be the same.
Importantly, the second-order band topology of 2D inversion-
symmetric spinless systems can be characterized by the second
SW number w2

13,14,16,29,32, which is determined by

ð�1Þw2 ¼
Y

Π2TRIM
ð�1ÞbN�occðΠÞ=2c; (1)

where ⌊⋅⌋ is the floor function. Therefore, the double band
inversion gives rise to a nontrivial w2= 1, demonstrating that it
belongs to the nontrivial SW class. Alternatively, w2 for s-CH with
C2zT symmetry can be obtained by tracing the Wilson loop spectra
(see Fig. 3a). It is proved that w2 is given by the parity of the
number of spectral crossing at Θ= π, where Θ indicates the phase
eigenvalue of the Wilson loop operator13–15, as detailed in the
“Methods” section and Supplementary Figs. 1 and 2. Due to a
similar double band inversion with respect to C2z in s-CH, as
shown in Fig. 2b, we found a nontrivial w2= 1, confirming it is a
SWI (see Fig. 3b).
To explicitly identify the second-order topology in d- and s-CH,

we calculate the fractional corner charge Qcorner, which is a bulk
topological index for classifying SOTIs55. In 2D insulators with C6
and T symmetries (e.g., s-CH), it can be evaluated as55

Qcorner ¼ e
4
½Mð2Þ1 � þ

e
6
½Kð3Þ1 �mod e; (2)

where ½ΠðnÞp � ¼ #Π
ðnÞ
p �#Γ

ðnÞ
p and #Π

ðnÞ
p are defined as the

number of bands below the bandgap with Cn rotation eigenvalues
Πp ¼ exp½2πiðp�1Þn � for p= 1, 2,⋯ , n. Π stands for high symmetric
point M and K. For d-CH with S6 symmetry, the above formula
should be modified by replacing ½Mð2Þ1 � with ½MðiÞ± �, which is the
difference in the number of bands with inversion eigenvalue
even/odd between M and Γ65. Based on the first-principles

calculations, we have ½Mð2Þ1 � ¼ �2, ½Kð3Þ1 � ¼ 0 for s-CH and

½MðiÞ± � ¼ ± 2, ½Kð3Þ1 � ¼ 0 for d-CH. Therefore, Qcorner= e/2, indicating
both s-CH and d-CH to be 2D SOTIs66.
To further reveal their topological nature, the first-principles

calculations are performed to directly verify the gapped topolo-
gical edge states and in-gap topological corner states in d- and s-
CH, which can be used as a fingerprint to distinguish them from
other topological phases. As shown in Fig. 4a and d, an edge band
appears throughout the gap and detaches from bulk states of a
zigzag nanoribbon. Since the first SW number w1, which is
equivalent to the Zak phase, is turned out to be trivial (w1= 0), the
existence of the 1D edge state is not due to the bulk polarization,
but it is more like a dangling-bond state. In fact, different from the
topologically protected helical edge states of 2D topological
insulators, these edge states are less robust and can be removed
by saturating the dangling bonds at edges with hydrogen atoms
(see Supplementary Fig. 5). Similar flat edge states also occur in
the monolayer β-Sb, which has been proved to be a 2D SOTI65,66.
Due to the modified bulk-boundary correspondence, the most

direct indicator of SOTIs is the corner-localized in-gap states. To
identify the corner topology of d- and s-CH, we calculate the energy
spectrum for hexagonal nanodisks with ~500 atoms. In order to
remove dangling-bond edge states from the bulk gap, we passivate
the edges with hydrogen atoms (Supplementary Fig. 6). The energy
spectrum for the nanodisk of d-CH and s-CH are plotted in Fig. 4b
and e, respectively. Remarkably, there are six states that are
degenerate at the Fermi level inside the bulk gap. Moreover, an

d-Liganded Xenes s-Liganded Xenes

a b

C

H

C

H

Fig. 1 Crystal structure of liganed Xene. a, b Crystal structure for
double-side and single-side liganded Xenes (e.g., d-CH and s-CH)
from the top (side) view [upper (lower)]. The gray and green spheres
represent C and H atoms, respectively.
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emergent chiral (sublattice) symmetry, which derives from the
bipartite honeycomb lattice, pins the corner modes in the mid of
the gap. As shown in Fig. 4c and f, these states are well localized at
six corners of the hexagonal sample, confirming that they are the
topological corner states. At exact half-filling, three of the six states
are occupied, leading to a fraction corner charge of Qcorner= e/2
per corner, which is consistent with the above analysis.

Other liganded Xenes
In addition, we also investigated other liganded Xenes. They are
counterparts of hydrogenated graphene, corresponding to the

silicene, germanene, and stanene monolayer saturated by
hydrogen or halogen. Some of these materials, such as hydro-
genated graphene67–69 and germanene70, or fluorinated graphene
(also named fluorographene), have been experimentally synthe-
sized70–73. Their topological properties have been carefully
investigated according to the conventional classification of time-
reversal Z2 topology. Owing to their negligible spin-orbit coupling,
some liganded Xenes are identified as topologically trivial.
However, this argument does not forbid an SW topology with
zero Berry curvature.
Based on systematic calculations, we found that those prior

trivial liganded Xenes are SWIs actually (see Table 1 and
Supplementary Figs. 7–10). Since the π orbitals are saturated by
H or F, these compounds become insulators with bandgaps in a
wide range. Remarkably, the bandgaps of single-side hydroge-
nated germanane (s-GeH) and stanene (s-SnH) are larger than that
of double-side hydrogenated ones, which is different from that of
hydrogenated graphene. This is because the H-X σ level does not
shift to the valence band maximum due to the weaker repulsion
between these states at large distances. Furthermore, among
halogenated Xenes, more electronegative ligands (e.g., from F to I
in halogens) tend to withdraw electron density from the Xene
framework, and lower the energy of the ligand-X s-orbital
antibonding levels at the conduction band minimum33,74. There-
fore, the trend of bandgap reduction and the topological phase
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Fig. 2 Electronic structure analysis of hydrogenated graphene. Band structure of a d-CH and d s-CH. ± marks Bloch states having opposite
parities with respect to inversion or C2z operation at high-symmetry points of the Brillouin zone. Isosurface contours of maximally localized
Wannier functions (MLWFs) constructed from the five valence bands of b d-CH and e s-CH, displaying the character of σ-bonded combinations
of sp3 hybrids (blue for positive value and red for negative). Wyckoff positions for c d-CH with space group 164 and f s-CH with space group
183. The main Wyckoff sites are indicated by a black dot, blue squares (C atoms) and orange triangles (empty sites), respectively.

a b

Fig. 3 The Wilson loop spectrum. The number of crossing points
on Θ= π is 1 for a d-CH and 3 for b s-CH, indicating a nontrivial
second SW number w2= 1 for both systems. The insets show
zoomed-in plots of the spectrum around Θ= π.
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transition from SOTI to QSH are observed from F to I in both single
and double-side halogenated Xenes.
Finally, for experimental detection on 2D SWIs, it is preferred to

have the corner states sitting deep in the bulk gap. First, the
bandgaps of liganded Xenes are large and tunable by the saturation
position (s- or d-), the ligand type (hydrogen or halogens), and
external perturbations such as electric field and strain. Second, the
emergent approximate chiral (sublattice) symmetry of the honey-
comb lattice structure pins the corner states approximately in the
middle of the gap. All these features will facilitate the experimental
characterization of the SWI phase in liganded Xenes. Moreover, given
that some candidate materials have already been synthesized
successfully in experiments48–51, the SWI phase is highly accessible,
and may already be realized in existing materials.

DISCUSSION
In summary, we have demonstrated the 2D SWI phase in a large
class of hydrogenated and halogenated Xenes that are experi-
mentally feasible. The nontrivial topological nature of these
materials is identified through the nontrivial second SW number
w2= 1 and the existence of in-gap topological corner states. The
candidate materials with bandgaps as large as 3.5 eV will facilitate
experimentally detecting in-gap corner states by STM measure-
ments. Our results enrich the topological physics associated with
SW class, and greatly extend the territory of candidate materials
for 2D SWIs. In addition, it is also possible to realize 3D weak and
strong SWIs by stacking these 2D SWI candidate materials. These
discoveries may draw more fundamental research interests of
Xenes, and provide a practical avenue for the realization of SWIs in
real materials that are experimentally feasible.

d e f

a b c

Fig. 4 SWI in d-CH and s-CH honeycomb monolayer. a–c correspond to results for d-CH and d–f correspond to results for s-CH. a, d Band
structure of a nanoribbon of hydrogenated graphene with (gray) and without (blue and red) hydrogen saturation. The flat edge bands are
marked in red. b, e The energy spectrum of a hexagonal-shaped nanodisk with H-saturated edges. c, f Top and side view of the real-space
charge distribution of corner states around the Fermi level.

Table 1. Topological phases of single-side (s-) or double-side (d-)
liganded Xene.

s- d-

w2/Z2 a (Å) Eg (eV) w2/Z2 a (Å) Eg (eV)

CH SWI 2.84 1.4053 SWI 2.54 3.4752,68

CF SWI 3.51* 0.70 SWI 2.60 3.0972

SiH SWI 4.15 1.86 SWI 3.89 2.19

SiF SWI 4.32 1.30 SWI 3.95 0.68

SiCl QSH 5.00* 0.02 SWI 3.94 1.28

SiBr QSH 5.45* 0.05 SWI 3.97 1.20

SiI QSH 6.15* 0.09 SWI 4.06 0.55

GeH SWI 4.36 1.57 SWI 4.08 0.9870

GeF QSH 4.64 0.11 SWI 4.22 0.1735,37

GeCl QSH 5.29* 0.12 SWI 4.24 0.3735,37

GeBr QSH 5.67* 0.14 SWI 4.25 0.0635,37

GeI QSH 6.28* 0.17 QSH 4.32 0.3035,37

SnH SWI 4.99 1.32 SWI 4.71 0.47

SnF QSH 5.24 0.24 QSH 5.01 0.2936

SnCl QSH 5.58 0.24 QSH 4.93 0.2636

SnBr QSH 5.84* 0.25 QSH 4.91 0.2936

SnI metal 6.06* 0 QSH 4.90 0.3436

The bandgaps (Eg) are obtained from first-principles calculations or refer to
experiments. w2/Z2 denotes the type of topological states (i.e., the SWI or
QSH phase). Star (*) mark energetically unfavorable s-liganded structures,
which have much larger (>15%) lattice constants a than its d-counterpart.
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METHODS
First-principles calculations
We perform the first-principles calculations within the framework of density
functional theory using the Vienna ab initio simulation package75. The
exchange-correlation functional is treated using the Perdew-Burke-Ernzerhof
(PBE) generalized-gradient approximation76. The predicted topology is further
verified by using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional77. The
negligible spin-orbit coupling is ignored in our calculations. We also generate
MLWFs for the analysis of chemical bonding78,79.

Wilson loop method
The first SW number w1 and second SW number w2 can be calculated
using the Wilson loop. The Wilson loop is defined as a path ordered
product of the exponential of Berry connections,

Wðk1þ2π;k2Þ ðk1 ;k2Þ ¼ lim
N!1

FN�1FN�2 � � � F1F0; (3)

where (k1, k2) parametrizes the 2D Brillouin zone, and Fi is the overlap
matrix whose elements of Fi are given by

½Fi �mn ¼ hum 2πði þ 1Þ=N; k2ð Þjun 2πi=N; k2ð Þi: (4)

The spectrum of Wilson loop is gauge invariant. The topological property
of the system is determined by the phase factors θm(k2)∈ (−π, π] of the
eigenvalues λm(k2) of Wilson operator, i.e., θmðk2Þ ¼ Imlog λmðk2Þ. Com-
puted along the k1 direction parallel to the reciprocal lattice vector G1 from
(k1, k2), the set of Wilson loop eigenvalues feiθmðk2Þg indicates the position
of Wannier centers at given k2, and the corresponding total charge
polarization is given by p1 ¼ 1

2π

PNocc
m¼1 θmðk2Þ, which is equivalent to the

first SW number w1 in k1 direction. The Wilson loop spectrum of liganded
Xenes in the SWI phase shows that w1= 0 in both k1 and k2, indicating that
the total polarization is zero.
The second SW number w2 on a torus of the 2D Brillouin zone indicates

whether the Wilson loop operator Θ can be continuously deformed to the
identity operator or not, modulo an even number of winding on non-
contractible cycles. Accordingly, the parity of the number of crossing
points on Θ= π gives the second SW number w2. Specifically, a spectrum
corresponds to w2= 0 (w2= 1) if the parity is even (odd).

Note added to proof
After submission, we become aware of an independent work on arXiv
recently80, where the results of liganded Xenes are consistent with ours.

DATA AVAILABILITY
All data used in this study are available from the corresponding author upon
reasonable request.
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