

TWO-DIMENSIONAL SUBSONIC WIND TUNNEL EVALUATION OF TWO RELATED CAMBERED 15-PERCENT-THICK CIRCULATION CONTROL AIRFOILS
by

Jane Abramson

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED
AVIATION AND SURFACE EFFECTS DEPARTMENT

DTNSRDC ASED-373
2
September 1977

UNCLASSIFIED
SECURITY CLASSIFIGATION of timis page (mbon Data Entored)

1 c Jane/Abramson

UNCLASSIFIED
;HITY CLASSIFICAYION OF Thispagerthen nale Entered)
(Block 20 continued)
NCCR 1510-7567S at $C_{\mu}=0.145$. Model NCCR $1510-7067 \mathrm{~N}$ was 11 mited in performance by a relatively sharp leading edge that resulted in leading edge separation. Coanda fet-tunnel floor interference, presumably due to effective Coanda tarning occurs with model NCCR 1510-7067S at relatively low values of momentum coefficient thereby restricting the test range. lift-to-equivalent drag ratios in excess of 40 are produced by both configurations at $C_{\ell}=1.0$. The ability to produce relatively high lift coefficients essentially independent of angle of attack is indicated by the results of this investigation.

TABLE OF CONTENTS

Page
ABSTRACT 1
INTRODUCTION 2
MODELS AND TEST APPARATUS 2
RESULTS AND DISCUSSION 5
MODEL SCR 1510-7067N 5
LIFT 5
DRAG 7
PITCHING MOMENT 8
EQUIVALENT LIFT-TO-DRAG RATIO 8
MODEL SCR 1510-7567S 9
LIFT 9
DRAG 11
PITCHING MOMENT 12
EQUIVALENT LIFT-TO-DRAG RATIO 12
CONCLUSIONS 13
LIST OF FIGURES
1 - Two-Dimensional Model Geometry 15
2 - Model NCCR 1510-7067N Lift Variation with Dynamic Pressure 16
3 - Model NCCR 1510-7567S Lift Variation with Dynamic Pressure 17
4 - Variation of Momentum Coefficient with Duct Pressure and Slot Height 18
5 - Variation of Slot Height with Duct Pressure 19
6 - Model NCCR 1510-7067N Lift Variation with Momentum Coefficient, $h / c=0.0015$ 20
7 - Model NCCR 1510-7067N Lift Variation with Momentum Coefficient, $h / c=0.0022$ 21
8 - Model NCCR 1510-7067N Lift Variation with Momentum Coefficient, $h / c=0.003$ 22
9 - Model NCCR 1510-7067N Lift Variation with Momentum Coefficient, h/c=0.0015 (Expanded scale) 23
10 - Model NCCR $1510-7067 \mathrm{~N}$ Lift Variation with the Square Root of Momentum Coefficient, hoc $=0.0015$ 24
Page
11 - Model NCCR 1510-7067N Experimental Pressure Distribution at Zero Geometric Incidence ($\alpha=0^{\circ}$) 25
12 - Model NCCR 1510-7067N Lift Augmentation, $h / c=0.0015$ 26
13 - Model NCCR 1510-7067N Lift Variation with Geometric Angle of Attack, $\mathrm{h} / \mathrm{c}=0.0015$ 27
14 - Model NCCR 1510-7067N Minimum Pressure Coefficient, $\mathrm{h} / \mathrm{c}=0.0015$ 28
15 - Model NCCR 1510-7067N Induced Angle Corrections to Geometric Incidence 29
16 - Model NCCR 1510-7067N Drag Coefficient Variation with Momentum Coefficient, $h / c=0.0015$ 30
17 - Model NCCR 1510-7067N Drag Coefficient Variation with Momentum Coefficient, h/c $=0.0022$ 31
18 - Model NCCR 1510-7067N Drag Coefficient Variation with Momentum Coefficient, $h / c=0.003$ 32
19 - Model NCCR 1510~7067N Drag Coefficient Variation with Momentum Coefficient, $h / c=0.0015$ (Expanded Scale) 33
20 - Model NCCR 1510-7067N Variation in Half-Chord Pitching Moment Coefficient, h/c = 0.0015 34
21 - Model NCCR 1510-7067N Equivalent Ifift-to-Drag Ratio, $h / c=0.0015$ 35
22 - Model NCCR 1510-7067N Equivalent Lift-to-Drag Ratio, $\mathrm{h} / \mathrm{c}=0.0022$ 36
23 - Model NCCR 1510-7067N Equivalent Lift-to-Drag Ratio, $\mathrm{h} / \mathrm{c}=0.003$ 37
24 - Model NCCR 1510-7567S Variation of Slot Height with Duct Pressure 38
25 - Variation of Momentum Coefficient with Duct Pressure and Slot Height 39
26 - Model NCCR 1510-7567S Lift Variation with Momentum Coefficient, $h / c=0.0015$ 40
27 - Model NCCR 1510-7567S Lift Variation with Momentum Coefficient, $h / e=0.001$ 41
28 - Mndel NCCR 1510~7567S Lift Variation with Momentum Coefficient, $h / c=0.00226$ 42
23 - Model NCCR $1510-7567 \mathrm{~S}$ lift Variation with Momentum Coefficient, h/c. $=0.0015$ (Expanded Scale) 43
30 - Model NCCR 15.10-7567S Lift Varfation with the Square Root of Momentum Coefficient, h/c $=0.0015$ 44
Page
31 - Model NCCR 1510-7567S Lift Variation with Momentum Coefficient, $h / c=0.0015$ (Model Raised) 45
32 - Model NCCR 1510-7567S Lift Augmentation, $h / c=0.0015$ 46
33 - Mode1 NCCR 1510-7567S Lift Variation with Geometric Angle of Attack, $h / c=0.0015$ 47
34 - Model NCCR 1510-7567S Induced Angle Corrections to Geometric Incidence 48
35 - Model NCCR 1510-7567S Minimum Pressure Coefficient, $\mathrm{h} / \mathrm{c}=0.0015$ 49
36 - Model NCCR 1510-7567S Drag Coefficient Variation with Momentum Coefficient, $h / c=0.0015$ 50
37 - Model NCCR 1510-7567S Drag Coefficient Variation with Momentum Coefficient, $h / c=0.0015$ (Expanded Scale 51
38 - Model NCCR 1510-7567S Drag Coefficient Variation with Momentum Coefficient, h/c = 0.001 52
39 - Model NCCR 1510-7567S Drag Coefficient Variation with Momentum Coefiticient, $h / c=0.00226$ 53
40 - Model NCCR $1510-7567 \mathrm{~S}$ Variation in Half-Chord Pitching Moment Coefficient, $h / c=0.0015$ 54
41 - Model NCCR 1510-7567S Equivalent Lift-to-Drag Ratio, $\mathrm{h} / \mathrm{c}=0.0015$ 55
42 - Model NCCR 1510-7567S Equivalent Lift-to-Drag Ratio, $\mathrm{h} / \mathrm{c}=0.001$ 56
43 - Model NCCR 15ió-7567S Equivalent Lift-to-Drag Ratio, $h / c=0.00226$ 57
LIST OF TABLES
1 - Designation for Circulation Control Airfoils 58
2 - Mode1 NCCR 1510-7067N Two-Dimensional Coordinates for Upper and Lower Surfaces 59
3 - Model NCCR 1510-7567S Two-Dimensional Coordinates for the Trailing Edge 60

NOTATION

a_{j}	Sonic velocity in the jet, $\mathrm{ft} / \mathrm{sec}$
C_{d}	Sectional profile drag coefficient from momentum loss in wake, corrected for additional mass efflux of the jet
${ }^{C_{d}}{ }_{\text {rake }}$	Section profile drag coefficient as measured by rake, uncorrected
C_{d}	Equivalent dras coefficient, $C_{d}+C_{\mu}\left(V_{j} / 2 J_{\infty}\right)$
C_{ℓ}	Sectional lift coefficient
$\mathrm{C}_{\ell_{\max }}$	Maximum sectional lift coefficient obtainabie within test C_{μ} limitations
$\mathrm{C}_{\mathrm{m}_{50}}$	Pitching moment coefficient about the half-chord
C_{p}	Pressure coefficient, ($\left.\mathrm{P}_{\hat{\lambda}}-\mathrm{P}_{\infty}\right) / \mathrm{q}_{\infty}$
C_{μ}	Momentum coefficient, $\mathrm{mV}_{j} /\left(\mathrm{q}_{\infty} \mathrm{S}\right)$
c	Chord length, ft
d	Profile drag corrected for jet mass efflux, ib
d_{e}	Equivalent drag, $\mathrm{lb}, \mathrm{d}+\dot{\mathrm{m}} \mathrm{V}_{\mathrm{j}}{ }^{2} /\left(2 \mathrm{~V}_{\infty}\right)$
h	Slot height, in
λ	Sectional lift, Ib
$\ell / \mathrm{d}_{\mathrm{e}}$	Equivalent section lift-to-drag ratio
M_{j}	Mach number in the jet
$\dot{\mathrm{m}}$	Mass efflux, slug/sec
P_{χ}	Local static pressure on the model, $1 \mathrm{~b} / \mathrm{ft}^{2}$
P_{t}	Duct (plenum) total pressure, $\mathrm{lb} / \mathrm{ft}$
P_{∞}	Free-stream static pressure, $1 \mathrm{~b} / \mathrm{ft}^{2}$
q_{∞}	$1715 \mathrm{ft}^{2} / \mathrm{sec}^{2}{ }^{\circ} \mathrm{R}$
R	Universal gas constant,
R	Reynolds number based on chord

```
Model planform area, ft'
Tj Jet static temperature, ' }\textrm{R
Tt Duct (plenum) total temperature, ' }\mp@subsup{}{}{\circ
t Mach thickness, ft
j Jet velocity,ft/sec
V. free stream velocity, ft/sec
x Chordwise distance from leading edge, ft
xs Slor position from leading edge, ft
x/c Dinensionless chordwise position
\square
r
Geometric angle of attack, deg
Ratio of specific heats
```


Abstract

Two circulation control cambered elliptic airfoil sections with a thickness-to-chord ratio of 0.15 - and 1.0 -percent circular arc camber were evaluated subsonically to determine their aerodynamic characteristics. The two models, designated NCCR 1510-7067N and NCCR 1510-7567S, have a common leading edge but different Coanda surfaces. Model NCCR 1510-7067N produced lift coefficients up to 4.65 at $C_{\mu}=0.234 ; C_{\ell}=4.03$ was attained by NCCR $1510-7567 \mathrm{~S}$ at $C_{\mu}=0.145$. Model NCCR 1510-7067N was limited in performance by a relatively sharp leading edge that resulted in leading edge separatior. Coanda jet-tunnel floor interference, presumably due to effective Coanda turning occurs with model NCCR 1510-70675 at relatively low values of momentum coefficient thereby restricting the test range. Lift-toequivalent drag ratios in excess of 40 are produced by both configurations at $C_{\hat{\chi}}=1.0$. The ability to produce relatively high lift coefficients essentialiy independent of angle of attack is indicated by the iusults of this investigation.

ADMINISTRATIVE INFORMATION

The work presented inerein was conducted at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) for the Naval Air Systems Command (ALR 320D) under Project Element 63203 N and Task Area W0578.

All data recorded during this expeitiment were either measured in or converted directly to U.S. customary units. Hence, U.S. customary units are the primary units in this report. Metric units are given adjacent to the U.S. units in parentheses. Angular measurement is the only exception; the unit of degrees is not converted to radians.

introduction

Tangential blowing over the bluff trailing edge of two 15 -percent cambered elliptic airfoll sections was investigated experimentally. These aitfoils are two of a serles of five in the circulation control airfoil development program at DTNSRDC 1 that are being used to ascertain the effects of leading and trailing edge geometry on performance. The models have a common leading edge and an interchangeable Coanda surface. All the models employ the Coanda effect to obtain high-lift augmentation by tangentlally ejecting a sheet of air near the trailing edge on the upper surface. Because of the Coanda effect, the jet sheet remains attached to the bluff trailing edge and provides a mechanism for boundary layer control. The blowing can be thought of as a movement of the stagnation point thereby producing an increase in circulation.

MODEL AND TEST APPARATUS
The models were constructed with a common leading edge and an interchangeable Coanda surface. boti mociels are based on an analytically defined ellipse of 15 -percent thickness-to-chord ratio and are defined by the following geometric farameters:

NCCR 1510-7067N
NCCR 1510-7567S
$\left.\begin{array}{lrl}\text { chord } & c & =8.01^{\prime \prime}(20.34 \mathrm{~cm}) \\ \text { circular arc camber } & \delta / c & =0.01\end{array}\right)=7.955^{\prime \prime}(20.3 \mathrm{~cm})$

A mathematical equation was used to define the rounding of the trailing edge of the pure ellipse for Model NCCR 1510-7057N (see Table l). The coordinates for this model are listed in Table 2.

[^0]The interchangeable Coanda surface that forms Model NCCR 1510-7067S hereafter referred to as Mode. 67 S , is a soiral. This spiral has its smallest radius of curvature at the slo exit; this is in contrast to Model 67 N and other models investigat ${ }^{\text {d }}$ at DTNSRDC. ${ }^{2-5}$ Coordinates for the trailing edge are listed in Table 3.

The outer shell of the model was constructed of wood with an internal steel plenum chamber through which the air for the Coanda jet was introduced. The slot exit is the throat of a converging nozzle furmed by the internal geometry of the Coanda surface and the underside of a knife-edged aluminum blad:. The slot height was adjusted through the use of pitch screws. An undercut was made in the blade to ensure that the flow would exit tangentially to the model surface (see figure 1).

The two-dimensional tests were conducted in the 15-x 20-inch subsonie cunnel with a vented test section and plexiglass walls. The models were pressure tapped at center span. Lift and pitching moment coefficicnts wcre cbtained by numerical intesration of pressure lap readings as recurded on a multiple-port scanivalve readout system. These coefficients were corrected by the addition of jet reaction components. Standard solid blockage corrections ${ }^{6}$ wert applied to the meacured frow-strcail dynamic pressure; no wake blockage factor was used because of the uncertain effects of the jet.

[^1]Drag measurements were made by using a drag rake placed approximately 1.5 chord lengths downstram of the model inclined at 10 degrees to the free stream. The rake employs 54 total and 8 static tubes, with the heaviest concentration of tubes near the center height. The momentum deficit methods of Betz and Jones ${ }^{7}$ were then used to determine the drag coefficient. To account for the additional momentum from the Coanda jet, an addition of $\dot{m} v_{\infty} / q_{\infty} S$ was made to the drag coefficient.

To insure that test conditions were as close to two-dimensional flow as possible, especially at high ${ }^{-1}$ ift conditions, wall blowing was employed. Two sets of plenums were embedded in each of the tunnel walls: one ahead of the leading edge, the other at approximately the 70 -percent chord position. The blowing rates of the two sets of wall jets were adjusted independently and in accordance with the modei blowing rate. They were used to energize the wall boundary laver to prevent separation and to reduce the induced effects. Spanwise pressure taps were employed to record the lateral pressure distribution as an indication of the twodimensionality.

Mass flow rate (\dot{m}) was measured by a calibrated orifice plate inserted in the supply line. The jet velocity was calculated by assuming isentropic expansion from dt:et stagnation pressure to the free-stream static pressure as follows:

$$
Y_{j}=a_{j} M_{j}=\left(\gamma R T_{j}\right)^{1 / 2} M_{j}=\left[2 R T_{t}\left(\frac{Y-1}{\gamma}\right) \quad\left(1-\left(\frac{P_{\infty}}{P_{t}}\right)^{\gamma-1 / \gamma_{y}}\right]_{i}^{\top}\right.
$$

The momentum coefficient was then defined as $C_{\mu}=\left(\dot{m} v_{j} / q_{\infty} S\right)$.
A series of runs weremade at free-stream dynamic pressures from 10 to $40 \mathrm{psf}\left(478.8\right.$ to $1915.2 \mathrm{~N} / \mathrm{m}^{2}$) corresponding to a model Reynolds number range from 0.375×10^{6} to 0.52×10^{6} for each model (Figures 2 and 3). No significant effect on the data over this Reynolds number range was noted, and $q_{\infty}=20 \mathrm{psf}\left(957.60 \mathrm{~N} / \mathrm{m}^{2}\right)$ was chosen to allow for a wider range of C_{μ}, due to limits on the allowable internal duct pressure.

[^2]
RESULTS AND DISCUSSION

MODEL NCCR 1510-7067N
The characteristics of a l5-percent cambered ellipse, Model NCCR-7067N, was evaluated for three slot height-to-chord ratios, $h / c=0.0015,0.0022$, and $0.003(h=0.012,0.018$, and 0.024 inches, $0.3048,0.457$, and $0.014(\mathrm{~mm})$ momentum coefficient C_{μ} ranging from 0 to 0.24 , and angles of attack α ranging from -20 to 6 degrees. Figure 4 depicts the variation of momentum coefficient with duct pressure for the thre 2 siot height-to-chord ratios and a dynamic pressure of 20 psf ($957.60 \mathrm{~N} / \mathrm{m}^{2}$). The expansion of the slot caused by the pressurization of the duct at a slot height-to-chord of 0.0013 is shown in figure 5 . These data were obtained by pressurizing the duct and measuring the resulting slot height witt a thickness gage under quiescent tunnel conditions.

Ldft
Figures 6 through δ show rive sectional lift coefficient as a function of momentum coefficient for $h / c=0.0015,0.0022$, and 0.003 , respectively. For h/c - 0.0015 , the coefficient of lift is presented on an expanded scale and as a function of the square root of momentum coefficient in Figures 9 and 10 , respectively. In Figure $5, C_{\ell_{\text {max }}}=4.75$ is reached at $\alpha=-4$ degrees at $C_{\mu}=0.227$. Examination of the data in this figure Indicates an almost identical lift coefficient is obtained at $\alpha=-2$ and -4 degrees for $C_{\mu}>0.10$. The experimental data for these two cases indicate an early jet dotachment occurred at $s=-2$ degrees, resulting In sore loss in the trailing edge suction pak and possible loss of circulation. For the negative angles of inciderce, the lift coefficient continues to increase with increasing C_{μ} throughout the test range. A.t positive angles of incidence, however, loss in the leading edge suction peak is noted at some point in the test range, resulting in a "stall" conditiof. (It should be noted that this conditjon is localized and is net accompanfed by separation on the upper surface.) At zern incidence, a decrease in ifft coefficient is observed for $C_{\mu}>0.20$ and, at first, may be incerpreted at indicating a "3tall" condition similar to that occurring at $a=+2$ and +6 degrees. Examination of the pressure plots
(Figure 11) for this case reveals no loss in the leading edge suction peak but does indicate a loss in pressure along the lower surface of the trailing edge. Indications are that this condition is not the result of separation, but rather the influence of the Coanda jet on the lower surface of the model.

Comparisons of lift coefficients for $h /:=0.0015$ and 0.0022 for the same value of momentum coefficient and alpha yield interesting resulis. At $\alpha=0$ degrees the lift coefficients for the two slot heights are virtually identical until $C_{\mu}=0.088$; whereupon a higher C_{ℓ} is observed for $\mathrm{a} / \mathrm{c}=0.0022$. For the remaining two angles of incidence, at iow value of C_{μ} the lift coefficient obtained at $h / c=0.0015$ exceeds that produced at the $h \pm g h e r$ slot height. At $\alpha=-8$ degrees for $C_{\mu} \geq 0.12$ and at $\alpha=-4$ degre 3 for $C_{\mu} \geq 0.16$, a reversal in this trend is noted with a nigher C_{ℓ} being produced at $h / c=0.0022$. In comparing the pressure distributions for $a=0$ and -8 degrees for the twe slot height-to-chord ratios, the major difference noted is un the lower surface of the trailing edge. At $h / c=0.0015$ a loss in stagnation pressure on the lower trailing edze is apparent in comparison with the larger slot height-to-chord. This again may be attributed to the influence of the Coanda jet. For a slot height-tn-chord of 0.003 , a significant reduction in lift coefficient for a given value momentum coefficient in relation to both $\mathrm{h} / \mathrm{c}=0.0015$ and 0.0022 is observed.

For $\alpha=-2,-4$, and -8 degrees and $h / c=0.00 J 5$, the pressure distributions do not reveal any evidence of leading edge separation bubbles. At $\alpha=-12$ degrees the flow on the lower surface of the leading edge is initially separated and remains so until $C_{\mu}=0.06$. Initial separation of the entire lower surface occurs at $\alpha=-20$ degrees; no significant attachment begins until $C_{\mu}=0.10$.

Figure 12 presents the augnentation ratio as a function of momentum coefficient for $h / c=0.0015$. The augmentation ratio is defined as $\Delta C_{\ell} / C_{\mu}$, where ΔC_{ℓ} is the increase in lift coefficient above the unblown value for a given C_{μ} and incidence. A significant loss of augmentation is apparent at $x=-20$ degrees and $\alpha=+6$ degrees, with the data for the other angles of incidence falling within a relatively narrow band.

The variation of lift coefficient with geometric angle of attack is shown in Figure 13. The slope of the curves are imilar for unstalled conditions, and good agreement is seen between the unblown case and the theoretical value predicted for conventional airfoils.

The valie of the minimum pressure coefficient on the airfoil as a function of lift coefficient is shown in Figure 14. The rinimum pressure coefficient governs the critical Mach number with its attendant high values of drag.

To complete the discussion of the lift characteristics, the effects of spanwise nonuniformity must be considered. Although wall blowing was used to assure spanwise two-dimensionality, the high lift coefficients still produced induced downwash, and therefore a determination of the effective angle of incidence was made. For tio experimental cases selected, potential flow pressure distributions for several incidences and an adjusted C_{ℓ} were produced. The adjustment to the lift coefficient required that the increment of lift due to the jet suction peak be determined and subtracted from the experimental results. Since this 1. sment could not be theoretically predicted, the resulting di: Ibutions were then compared to the experimental pressure distribution until leading edge characteristics coincided. The effective angle of lucldence for the experimental data is presented in figure 15.

Drag
The variation of a modified drag coefficient with momentum coefficient for $h / c=0.0015,0.0022$, ant 0.003 is piesented in Figures 16, 17 , and 18 . Figure 19 presents the drag variation with momentum coefficient on an expanded scale for $h / c=0.0015$. These data result from an integration of the wake deficit using the method of Betz. ${ }^{7}$ which was then modified to account for the additional momentum of the jet, thereby becoming $C_{d}=C_{d_{\text {rake }}}-\left(\dot{m} V_{\infty} / q S\right)$. The initial unblown drag levels are high due to the nature of bluff trailing edge afrfolls. Negarive drag levels are achieved at relatively low values of momentum coefficient, with the exepption of $\alpha=-20$ degrees. Figure 15 indicates that not only the highest initial value of drag occurs at this incidence,
but also an unusually high level 0 : drag persists throughout the entire C_{μ} range. This is attributed to the extensive fiow separation that occurs on the lower surface of the model.

The secondary drag rise, which occurs at $\alpha=+2$ and +6 degrees, coincides with the degradation in lift coefficient observed in Figure 6. At $\alpha=0$ degrees the drag rise coincides with the loss in stagnation pressure on the lower surface of the trailing edge observed in the coefficient of pressure plots, but precedes any degradation in the coefficient of lift. If the loss in stagnation pressure is due to Influence of the Coanda jet, then the late detachment would result in mixing losses and a higher drag level. The drag rise observed at $\alpha=0$ degrees and $h / c=0.0022$ also coincides with the loss in performance observed in Figure 7.

Pitching Moment

The pitching moment about the midchord $\left(C_{m_{50}}\right)$ is depicted in Figure 20 as a function of monentum coefficient. The ingh trailing edge suction peak produces the negative pitching moment, which has been indicative of previous circulation control airfoils.

Equivalent Lift-to-Drag Ratio
The relative performance of a circulation control airfoil section with an unblown airfoil can best be tuade when the energy expended to produce blowing is accounted for. The equivalent lift-to-drag ratio is presented in Figures 21, 22, and 23 for $h / c=0.0015,0.00226$, and 0.003 , respectively, as a function of lif: coefficient. The equivalent drag is defined as:

$$
d_{e}=d+\frac{P_{\text {cump }}}{V_{\infty}}+\dot{m} v_{\infty}
$$

The first term d is the momentum deficit as measured by the drag rake (corrected for jet efflux); the second term is the compressor power and the third term is an intake momenturn flux.

The compressor power required may be expressed as:

$$
P_{\text {comp }}=\frac{\dot{\mathrm{m}}}{2}\left(\frac{2 \gamma}{\gamma-1}\right) R T_{d} 1-\left(\frac{P_{t_{\infty}}}{P_{t}}\right) \gamma-1 / \gamma
$$

Por subsonic flows with $M_{\infty} \leq 0.2, P_{t_{\infty}}=P_{\infty}$ and the above becomes:

$$
p_{\text {comp }}=\frac{1}{2} \quad \dot{m} V_{j}^{2}
$$

Substituting for $P_{\text {comp }}$, the coefficient form becomes:

$$
\frac{\ell}{d_{e}}=\frac{c_{\ell}}{c_{d}+c_{\mu} \frac{v_{j}}{2 v_{\infty}}+c_{\mu} \frac{v_{\infty}}{v_{j}}}
$$

The maximum ℓ / d_{e} generated was approximately 45 at $C_{\ell}=0.75$, despite the relatively high value of maximum lift coefficients. Maximum efficiency is generated at positive angles of incidence and low blowing. It is also f and that the maximum ℓ / d_{e} for negative angles of incidence occurs at low values of momentum coefficient. These results emphasize the need to produce high values of lift coefficient at low values of momentum coefficient in order to maintain high efficiency due to the prominence of the kinetic energy term $\left(C_{\mu} V_{f} / 2 V_{\infty}\right)$.

When comparing the results for the various slot heights, it should be noted that the ℓ / d_{e} is lowest at $h / c=0.0030$, The efficiency of the model at $h / c=0.0022$ is slightly greater than at $h / c=0.0015$.

MODEL NCCR 1510-7567S

Lift

The characteristics of the spical trailing edge configuration (designated NCCR 1510-7567S) were Investigated experimentally for three slot height-to-chord ratios of $0.0012,0.0015$, and 0.00226 (h $=0.008$, 0.012 , and 0.018 1nch; $0.203,0.3048,0.457 \mathrm{~mm}$) over an angle-of-attack range -20 degrees $\leq \alpha \leq+10$ degrees for $0 \leq C_{\mu} \leq 0.18$. The range of
momentum coefficients was limited because of the early impingement of the jet on the tunnel floor, presmably due to effective Coanda turning. The expansion of the slot height caused by the pressurization of the duct for $h / c=0.0015$ is presented in Figure 24. Figure 25 indicates the variation of momentum coefficient with duct pressure for the three slot height-to-chord ratios.

Figures 26, 27, and 28 present the sectional lift coefficients as a function of momentum coefficient for the three slot height-to-chord ratios. For $h / c=0.0015$ the lift coefficient is presented on an expanded scale and as a function of the square root of momentum coefficient in Figures 29 and 30, respectively. Although all data recorded are included for completeness, a hatch mark appears in hose figures to indicate the point at which disturbance of a set of floor tufts placed behind the model was visually noted. Since verification was visual, there is the possibility of interference effects occurring before the hatch mark.

As indicated in Figure 26, at $\alpha=+10,+6$, and +2 degrees, C_{ℓ} occurs at progressively lower values of momentum coefficlent followed by a " C_{μ} stail". At $\alpha=+10$ degrees the pressure plots indicate the existence of a leading edge separation bubble until a blowing level of $C_{\mu}=0.03$ is reached.

A comparison of the results obtained in Figures 27 and 28 for $h / c=0.001$ and 0.00226 indicat as a degradation of performance in relation to those obtained at $h / c=0.0015$. At $h / c=0.001$ the plots of pressure coefficient on the airfoil indicate a lower value of the trailing edge suction peak; and at the higher values of C_{μ}, there is a noticeably lower level of suction on the upper surface, as compared to $\mathrm{h} / \mathrm{c}=0.0015$. To a more limited extent, the same behavior is observed when comparing the results obtained at $h / c=0.0022$ with those at $h / c=0.0015$. At some point in the test range, the differences observed between the two slot heights diminish, and the results at higher values of C_{μ} become approximately the same.

In an attempt to extend the range of momentum coefficient, the model with $h / c=0.0015$ was raised 1.6 inches (40.64 man) towards the tunnel ceiling. Although this resulted in some interference on the model upper
surface, it also eliminated the "stall like" characteristics for a limited increase in C_{μ}, as seen in Figure 31. The C_{ℓ} max increased from 3.85 to 4.24 at $\alpha=0$ degrees and from 4.03 to 4.53 at $\alpha=-2$ degrees. Figure 32 depicts the augmentation ratio for $h / c=0.0015$ as a function of momentum coefficient. A significant ioss of augmentation is seen at $\alpha=-20$ degrees and at $\alpha=+10$ degrees. As with the previous configuration, an examination of the pressure distribution at $\alpha=-20$ degrees indicates that initially the flow along the entire lower surface is separated and complete attachment does not occur until $乞_{\mu}=0.12$. The loss in augmentation at $\alpha=+10$ degrees coincides with the degradation of performance already noted in Figure 26.

The variation of the lift coefficient with angle of attack is presented in Figure 33. At the lower values of momentum coefficient, the results are very similar to those obtained with the previous configuration. The first noticeable difference occurs at $C_{j}=0.050$ and $\alpha=+2$ and +6 degrees where the coefficient of lift for Model 67 S is lower than that produced by Model 67 N . This pattern persists at $C_{u}=0.10$, although a higher C_{ℓ} is produced by l!odel 67 S at $\alpha=-2$ and 0 degrees. This could be attributed to the efferts of jet-tunnel floor interference, the onset of which is alpha dependent to a limited extent. The effective angle of incidence for this configuration was determined as previously discussed, and the results are presented in Figure 34.

Figure 35 presents the value of the minimum pressure coefficient as a function of lift. Comparing these results to those obtained for the previous configuration, it should be noted that a higher C_{ℓ} can be obtained for the same value of $\mathrm{C}_{\mathrm{P}_{\text {min }}}$.

Drag

Figure 36 presents the variation of the modified coefficient of drag with momentum coefficient for $h / c=0.0015$. An expanded scale plot for low values of C_{μ} is presented in Figure 37. As was previously the case, the unblown drag levels are high; however, except for $\alpha=+10$ degrees, an immediate reduction is noted for ail angles of incidence. In this case a
leading edge separation bubble followed by " C_{μ} stall" would tend to prevent drag reduction. The data to the right of the hatch mark again represent data points where jet-tunnel floor interference is known to occur. A drag rise is noted $\}$ yond this point at all angles of attack. A comparison of these results to those presented in Figure 15 shows a lower drag level is achieved by Model 67 N at all angles of incidence except. $\alpha=+6$ degrees for $C_{\mu} \geq .06$. This can be attributed to the more effective Coanda turning (which was probably achieved by Model 67S) that produced greater mixing losses with the free stream and jet-tunnel floor interference.

The variation of drag with momentum coefficient for $h / c=0.001$ and 0.00226 is depicted in Figure 38 and 39.

Pitching Moment

Pitching moment coefficient as a function of momentum coefficient is presented in Figure 40 . The spiral trailing edge produced a lower jet suction peak for a given C_{l} or C_{μ} than the previous configuration, which resulted in a less negative pitching moment. This trend was not expected due to the high radius of curvature at the slot exit which is characteristic of this design. The reflex in the momenc curves observed at the higner values of momencum coefficients and negative angles of incidence is the resuli of the influence of the jet on the lower surface of the crailing edge which produces a lass of stagnation pressure.

Equivalent iift-to-Drag Ratio
The equivalent lift-to-drag ratio as a function of C_{2} is presented in Figures 41, 42 and 43 for $h / c=0.0015,0.001$, and 0.00226 , respectively. In general, both configurations resulted in very similar curves with the maxlmm efficlency achieved at positive angle of incidence. A luss in efficiency is noced in data taken after the onset of jet-tunnel floor interference due mainly to a large increase in the measured drag level.

A comparison of ℓ / d_{e} for $h / c=0.00226$ and 0.0015 indicates a higher maximum efficiency is obtained at the smaller slot height for $\alpha=0$ and -4 degrees while the maximum ℓ / d_{e} at $a=-8$ degrees is approximately the same. The lowest efficiency for this configuration is obtained at $h / c=0.001$.

CONCLUSIONS

An attempt was made to experimentally ascertain the effect of trailing edge geometry on two, otherwise identical, 15-percent cambered ellipses. Due to the early onset of interference between the jet and the tunnel floor for Model NCCR 1510-7567S, the test range was limited. Tinis, in turn, limited the obtainable value of $C_{l_{\max }}$, while producing relatively high values of C_{d}.

For both configurations at the lower values of momentum coefficients, $C_{\hat{X}}, C_{d}$, and ℓ / d_{e} are very similar. The difference between the config urations noted thus far concerns the pitcining moment and minimum pressure coefficient. Model NCCR 1510-7567S, with its lower trailing edge suction peak, has a less negative pitcining moment and a more positive value of $\mathrm{C}_{\mathrm{P}_{\text {min }}}$ for a given value of C_{ℓ} than does Model NCCR $1510-7067 \mathrm{~N}$. The pitching moment is important from the standpoint of controllability, while C_{P} min governs the critical Mach number.

The following conclusions can be drawn from the experimental data

- For the spiral trailing edge configuration (Model NCCR $i 510-7 j 675$), a $C_{\ell}=4.03$ was generated at $C_{\mu}=0.145$. The experiment indiattes that higher values of $C_{\ell} \quad c \quad \max$ be generated if sufficient clearance between the model and the tunnel floor could be provided. Augmentation ratios in excess of 50 , as well as maximum efficiencies in excess of 40 , were produced. Drag levels were higher at $C_{\mu} \geq 0.06$ than those produced by Model 67 N ; however, this may be due to jet-tunnel floor interference.
- Model NCCR 1510-7067N generated maximum lift coefficients up to 4.65 at $C_{\mu}=0.234$. A maximum lift augmentation of approximately 60 was also produced. The inftially high drag coefficients were reduced at relatively low levels of momentum coefficients.
- The effect of slot height on performance is varied. Neither increasing or decreasing the slot height-to-cnord ratio increases the sectional lift coefficient over that obtained at $h / c=0.0015$ for Model NCCR 1510-7567S. For Model NCCR 1510-7067N increasing the slot height-to-chord ratio from 0.00149 to 0.00224 results in an increase in $C_{\ell_{\text {max }}}$. This is due mainly to a loss in stagnation pressure on the lower surface of the trailing edge at the smaller slot height-to-ciord ratios.

Figure 4 - Variation of Momentum Coefficient with Duct Pressure and Slot Height

Figure 5 - Variation of slut Height with Duct Pressure

Figure 6 - Model NCCR 1510-7067N Lift Variation with Momentum Coefficient, $h / c=0.0015$

Figure 7 - Model NCCR 1510-7067N Lift Variation with Momentum Coefficient, $h / c=0.0022$

Figure 8 - Model NCCR 1510-7067N Lift Variation with Momentum
Coefficient, $h / c=0.003$

Figure 9 - Modei NCCR 15i0-7067N Lift Variation with Momentum Coefficient, $h / c=0.0015$ (Expanded Scale)

Fifure 10 - Model NCCh i510-7067N Lift Variation with the Square Root of Momentur Coeffi=ient, h/e $=0.0015$

Figure 11 - Model NCCR 1510-7067N Experimental Pressure Distribution at Zero Geometric Incidence ($\alpha=0^{\circ}$)

Figure 12 - Model NCCR 1510-7067N Lift Augmentation, $h / c=0.0015$

Figure 13 - Model NCCR 1510-7067N Lift Variation with Geometric Angle of Attack, $h / c=0.0015$

Figure 16 - Model NCCR 1510-7067N Drag Cocfficient Variation with Momentum Coefficieral, $h / c=0.0015$

Figure 17 - Model NCCK 1510-7067N Drag Coefficient Variation with Momentum Coefficient, $\mathrm{h} / \mathrm{c}=0.0022$

Figure 18 - Model NCCR 15l0-7067N Drag Coefficient Variation witl Momentum Coefficient, h/c $=0.003$

Figure 19 - Model NCCR 151.0.7067N Drag Coefficient Variation with Momentun CoefficLent, h/c $=0.0015$ (Expanded Scale)

Figure 20 - Model NCCR 1510-7067N Variation in Half-Chord Pitching Moment Coefficient, $h / c=0.0015$

Figure 21 - Model NCCR 1510~7067N Equivalent Lift-to-Drag Ratio, $\mathrm{h} / \mathrm{c}=0.0015$

Figure 22 - Model NCCR 1510 -7067 N Equivalent Lift-to-Drag Ratio, $\mathrm{h} / \mathrm{c}=0.0022$

Higure 23 - Model NCCK 1510-7067N Equivalent Lift-to-Drag Ratio, $h / c=0.003$

Figure 24 - Model NCCP 1510-7567S Variation of Slot Height with Duct Pressure

Figure 25 - Variation of Momentum Coefficient with Duct Pressure and Slot Height

Figure 25 - Model NCCR 1510-7567S Lift Variation with Momentum Coefficient, $\mathrm{h} / \mathrm{c}=0.0015$

Figure 28 - Model Noc: 1510-7567S lift Variation with Momentum
Cotffictent, $1 / 6=0.00226$

Figure 29 - Model NCCR 1510-7567s l.1ft Variation with Momentum Coefficient, h/c $=0.0015$ (Expanded Scale)

Figure 31 - Model NCCR 1510-7567S Lift Variation with Momentum Coefficient, $h / c=0.0015$ (Model Raised)

Figure 32 - Model NCCR lilo-7557S Lift Augmentation, h/: = 0.0015

Figure 33 - Model NCCR 1510-7567S Lift Variation with Geometric Angle of Attack, $h / c=0.0015$

Figure 38 - Model NCCR 1510-7567S Drag Coefficient Variation with Momentum Coeffictent, $h / c=0.001$

Figure 40 - Model NCCR 1510-7567S Varlation in Half-Chord Pitching Moment Coefficient, h/c $=0.0015$

Figure 41 - Moded NCCR 1510-7567S Equivalent lift-lo-Drag Katio, $\mathrm{h} / \mathrm{e}=0.0015$

Figurs 4: - Modal NCCR $1510-75676$ Equivalent LIft-to-Dras Ralio. 11/s: - 0, (1)

Figure 43 - Model NCCK 1510-7567S Equivalent Lift-to-Drag Ratio, $\mathrm{h} / \mathrm{c}=0.00226$

TABLE 1 - DESIGNATION FOR CCR AIRFOILS

Airfoil thickness ratio in percent virtual chord (15 percent as shown)

TABLE 2 - TWO-DIMENSIONAL MODEL COORDINATES FOR UPPER AND LOWER SURFACES - MODEL NCCR 1510.7067 N

Upper Surface			Lower Surface		
x	Y		X	Y	
00.0000	00.0000	leading edge	00.0000	00.0000	LEADING EDGE
00.0100	00.0731		00.0100	-00.0514	
00.0300	00.1067		00.0300	- 00.0763	
00.0500	00.1330		00.0500	- 00.1008	
00.0800	00.1596		00.0800	-00.1270	
00.1000	00.1737		00.1000	-00.1415	
00.1200	00.1857		00.1200	-00.1518	
00.1500	00.2034		00.1500	-00.1685	
00.1800	00.2202		00.1800	-00.1810	
00.2100	00.2363		00.2100	-00.1917	
00.2400	00.2507		00.2400	-00.2021	
00.4000	00.3164		00.4000	-00.2479	
01.0000	00.4715		01.0000	-00.3538	
01.6000	00.5719		01.6100	-00.4251	
02.2000	00.6310		02.2000	-00.4841	
02.8000	00.6621		02.8000	- 00.5125	
03.4000	00.6847		03.4000	-00. 5270	
04.0000	00.6971		04.0000	-00.5267	
04.6000	00.6894		04.5000	-00.5150	
05.2000	00.6586		05.2000	-00.5019	
05.6000	00.6354		05.6000	-00.4878	
06.2000	00.5889		05.9700	-00.4719	
06.8000	00.5140		06.0542	00.4618	
07.4000	00.3981		06.2000	- 00.4512	
07.6000	00.3469		06.8000	-00.4054	
07.7500	00.2914		07.4000	-00.3397	
07.7800	00.2582		07.6500	-00.2972	
07.8000	00.2562		07.7500	-00.2731	
07.8300	00.2451		07.8000	-00.2549	
07.8600	00.2310		07.8300	-00.2459	
07.8800	00.2216		07.8600	-00.2298	
07.9000	00.2084		07.8800	-00.2144	
07.9200	00.1927		07.9000	-00.2069	
07.9400	00.1732		07.9200	-00.1933	
07.9600	00.1506		07.9400	-00.1728	
07.9800	00.1221		07.9600	-00.1528	
08.0000	00.0814		77.9800	-00.1200	
08.0100	00.0000	TRAILING EDG:	08.0000	-00.0791	
			C8.0139	00.0000	TRAILING EDGE

TABLE 3
Two-Dimensional Model Coordinates for the Trailing Edge-Model NCCR 15!0-7567S

Lower Surface

X	Y
5.5545	-0.501
5.9167	-0.4838
6.0789	-0.4591
6.6416	-0.4283
7.005	-0.3884
7.14	-0.3698
7.24	-0.3559
7.3692	-0.3354
7.442	-0.323
7.497	-0.3120
7.57	-0.2975
7.607	-0.29
7.643	-0.281
7.69	-0.2670
7.74	-0.25
7.79	-0.225
7.81	-0.211
7.83	-0.198
7.85	-0.18
7.87	-0.16
7.89	-0.138
7.91	-0.107
7.93	-0.07
7.95	-0.01
7.955	-0.04

Upper Surface

	r
7.2271	0.096
7.2271	0.106
7.34	0.123
7.39	0.145
7.44	0.170
7.49	0.200
7.54	0.227
7.59	0.249
7.64	0.265
7.69	0.273
7.715	0.274
7.74	0.273
7.79	0.2650
7.81	0.258
7.83	0.25
7.85	0.2390
7.87	0.2250
7.89	0.183
7.91	0.1510
7.93	0.096
7.94	0.04
7.955	

[^0]: $1_{\text {Wilkerson, J.ll., "An Assessment of Circulation Control Airfoil }}$ Development," Report DTNSRDC 77-0084 (Aug 1977).

[^1]: ${ }^{2}$ Abramson, J., "Two-Dimensional Subsonic Wind Tunnel Evaluation of A 20-Percent-Thick Circulation Control Airfoil," DINSRDC Rfport ASED-331 (Jun 1975).
 ${ }^{3}$ Williams, R.M. and H.J. Howe, "rwo-Dimensional Subsonic Wind Tunnel Tests On A 20-Percent Thick, 5-Purcent Cambered Circulation Contrul Airfoil," NSRDC Report ASED-176 (AD 877~764) (Aug 1970).
 ${ }^{4}$ Englar, R.J., "Two-Dimensional Subsonic Wind Tunnel Tests of Two 15-Percent Thick Circulation Control Airfoils," NSRDC Report ASED-211 (Aug 1971).
 ${ }^{5}$ Enolar, R.J., "Two-Dimensional Subsonic Wind Tunnel Tests oi A Cambered 30-Percent Thick Circulation Control Airfoil," NSRDC Report ASED-201 (May 1972).
 ${ }^{6}$ Pope, A., "Wind-Tunnel Testing," Second Edition, John Wiley and Sons, Inc., New York (1964), pp. 207-311.

[^2]: ${ }^{7}$ Schlichting, Hermann, "Boundary Layer Theory," Sixth Edition, McGraw-Hill Book Company, New York (1968), Pp. 708-713.

