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Eq. (35) on page 17 should read: 

'v(o+, 0) = - jkh 
o 

First unnumbered quantity on page 17 should read: 

[ a -2] 
2(1-+ 0-) + Fe 

First quantity on page 52 should read: 

The quantity after Eq. (A5) on page 52 should read: 
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The problem of a super cavitating flat plate at non-zero cavitation 

number oscillating under a free surface is analyzed by a linearized method 

using the acceleration potential. The flow is assumed two-dimensional and 

incompressible. The flow field is made simply connected by using a cut along 

the wake. The flow field is then mapped on to an upper half plane and the 

solution is expressed in an integral form by using Cheng and Rott's method. 

Equations for the cavity length, total force coefficient, moment 

coefficient and the frequency response function are expressed in closed form. 

Numerical results for some special cases are also obtained and presented 

graphically. Whenthe flow is steady, the present theory agrees with experi

mental data and other existing theories. For the special case of infinite 

fluid and infinite cavity the present theory agrees with Parkins' original 

work. For the special case of zero submergence, the present theory indicates 

that the total force coefficient is one half that of the value for fully wet

ted flow in an infinite fluid for both steady and unsteady cases. An alter

nate analysis is also carried out for the infinite fluid case and the result 

shows that the effect of the wake assumption is of order of the square of the 

cavitation number when the cavitation number is small. The effect of the 

gravity field is also discussed qualitatively. 

It is also concluded that the effect of the free-surface is to 

shorten the cavity and to increase the total force coefficient. The steady 

part of the force coefficient at an arbitrary submergence is obtained by 

multiplying the value at infinite submergence by a correction factor, where

as the unsteady part is given by a more complicated function. Even with the 

presence of a free-surface and oscillation of the foil, the total force co

efficient at small cavitation number is approximately equal to the corres

ponding value at zero cavitation number multiplied by a factor (1 + cr)o 

iii 
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TWO.DIMENSIONAL SUPERCAVITATING PLATE 
--- ----------- -~------------- --~--

I. INTRODUCTION 

The problem of unsteady flow with a wake or cavity forming behind 

~ solid body has recently stimulated considerable research interest. The 

problem of accelerated flow of an incompressible infinite fluid with cavity 

formation in which the flow pattern remained similar with respect to time 
~, 

was solved by Von Karman [lJ in 1949. R~cently, Yih [2J extended the theory 

to the case of an accelerated body without changing the other conditions. 

General unsteady flow problems with wake or cavity formation are so compli

cated that their exact solutions seem unlikely to appear in the foreseeable 

future. At present, only an approximate solution based on linearized theory 

can be obtained o 

The problem of unsteady flow with an infinitely long wake WaS solved 

by Woods [J, 4, 5J, applying a small perturbation to the basic Helmholtz

Kirchhoff flow. Inthe United States, the pioneering work in this connection 

was done by Parkin [6] in 19 57 • Parkin's theory is an extension of Tulin' s 

[7J linear theory for steady cavity flow and the linear theory of oscillating 

airfoils [8J using the acceleration potential. Since then a number of papers 

have appeared in the literature concerning the unsteady two-dimensional flow 

of an incompressible fluid. Nevertheless, the problem can hardly be consid

ered completely solved. The main difficulty lies in the unique determination 

of the potential flow problem; thus a satisfactory solution may be obtained 

only when the real fluid effects (such as viscosity, compressibility, etc.) 

are taken into accounto 

The present paper is mainly concerned with the effect of a free 

surface on an oscillating two-dimensional hydrofoil with a cavityo The effect 

of the gravity force is also discussed briefly. The cavity is assumed to be 

long and thin so that linear theory based on the acceleration potential may 

be applied. 

* Numbers in brackets refer to the List of References on page 35. 
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II. STATEMENT OF THE PROBLEM 

Consider a thin hydrofoil with sharp leading edge moving under a 

,~ee surface-with basic speed U parallel to the free surface and undergoing 

- heaving and/or pitching oscillations of small amplitude. A long cavity is as

sumed to form behind the foil and the separation is assumed to occur at the 

leading and the trailing edges. The resulting flow pattern is depicted in 

Fig 0 1. Here all linear dimensions are normalized with the chord length. 

The amplitude of the oscillation is assumed to be so small that 

separation points are fixed and there is no reattachment of the flow after 

separation. Furthermore, the resulting flow is assumed to be only slightly 

different from the uniform flow so that the linear theory may be applied. 

The pressure on the free surface, Po' and the cavity pressure, Pc' are as

sumed to be constants. Finally, the flow is assumed to be incompressible and 

irrotational outside the body-cavity-wake region. 

According to Bernoulli t s equation the speed on the cavity surface 

for the steady flow conditions, qc' is given by 

(1) 

where a is the cavitation number defined as 

a ;::: 
P + 'Vb - P 

o c 

1 U2 
2 p 

(2) 



:3 

where V is the specific weight, p is the density, and b is the submer

gence. If q is used as the reference speed and the velocity, q, at a 
c 

point is expressed in terms of the perturbation velocity as 

q/q= (1 + u,v) 
c 

the Euler. equations of motion may be linearized and written 

-1 au au ..£!L 
qc -at + a x = - ax 

(4) 

Here ¢ is an acceleration potential defined as 

(p + Vb) - (p + Vy) 
¢( x, y, t) = -....;0"---2""..------ (5) 

pqc 

Gravity is assumed to act along the negative direction of the y-axis. 

It has been shown elsewhere [6, 8J thatEq. (4) and the equation of 

continuity implied that the acceleration potential is a harmonic function and, 

hence, the complex acceleration potential. 

F(z, t) = ¢ + i'lt 
( 6) 

is an analytic function of 

z = x + iy 
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Here ¢ and ~ are related by the Cauchy-Riemann equations, 

J!L-ax -
0'1" 
ay , 

8¢ 
ay = 

Since the acceleration potential defined by Eq. (5) is continuous 

everywhere within the flow region, the complex acceleration potential is a 

regular function everywhere except, possibly, on a finite number of boundary 

points where weak singularities may have to be admitted. 

It is now necessary to define the boundary and determine the boun. 

~~dary 'condit-4on. Riabouchinsky's model [9J, Wagner's reentrant jet model [lOJ 

'and Roshko' s dissipation model [llJ are familiar in connection with steady 

cavity flow problems. Furthermore, in the linear theory, it is customarily 

assumed that the body-cavity-wake is thin and the boundary condition is ap

plied on a slot. The linearized reentra.nt jet model was discussed in detail 

by Geurst [12J. The relationship between various linearized steady cavity 

flow models was discussed by the author [13J. It was pointed out in Ref. [13J 

that Tulin's linearized closed cavity model [7J and the linearized energy dis

sipation model are two special cases of the generalized Riabouchinsky model. 

Since the best potential flow model could be obtained only when 

the role of viscosity is fully taken into considerati6n it is difficult to 

compare the accuracies of the existing models. The energy dissipation model 

is adopted in the present paper mainly because, unlike other models, it re

duces the flow region into a simply connected region. The linearized bound

ary shape is shown in Fig. 2. 

The boundary conditions are listed below: 

(1) Since the pressure, Po' on the free surface is a constant 

and equal to the atmospheric pressure, it follows that 

¢ = ° on y = b 



(2) If the cavity is defined to be a space wherein the pres

sure, P, is essentially a constant then the boundary 
c 

condition on the cavity surface is 

on y = 0+, 

r/, - (J 
'f _t'iE t"' 2( 1 + (J) on y = 0-, 

where 

F 
qc 

Froude number = = c yg6 

6 = half cavity thickness 

2., = cavity length 

(3) Adopting the energy dissipation model or a special case of 

the generalized Riabouchinsky model wherein the tail-body 

is a pair of parallel flat plates, the vertical velocity 

component, v, on the wake boundary is identical to zero. 

Then, according to Eqs. (4) and (7), 'It can be a function 

of timeonlyo Since the acceleration potential can be de

termined uniquely only up to an arbitrary function of time, 

we may set 

'It = 0 on 
+ 

y = 0-, 

It may also be argued that the pressure distribution far 

downstream is essentially hydrostatic and, hence, ¢ = 0 

on the wake boundary. Therefore, an alternate boundary 

condition on the wake boundary is 

¢ = 0 on + 
y = 0-, 

5 
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(4) 

As a partial justification of the assumption, the pressure 

distribution in the wake behind a steady super cavitating 

flat plate in the free-jet tunnel at the St. Anthony Falls 

Hydraulic Laboratory was measured and the result is plot

ted in Fig. 3. The data show that the pressure recovery 

at the tail of the cavity is about 30 per cent of the 

stagnation head and the pressure in the wake is, indeed, 

almost constant and equal to p • 
o 

The normal component of the relative velocity on the wet

ted part of the foil surface is equal to zero. If the 

equation of the foil surface is given by 

Y = Y(x, t) 

then the condition is 

'l -2 f -1 ) - r=qc Yttdx+ 2qc Yt +Yx + 'iF' (t = '!r l 

. 

on y = 0-, 0< x < 1 

(5) To relate the acceleration field and the velocity field, , 
the function 'l' ( t) should be determined by the general 

integral of Eq. (4). That is 

vex, y, t) '!reT, y, t - x/q + T/q ) 
C C 

where T is a variable of integration. The detailed der

ivation of this condition may be found in Ref. [6J. 
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\ 

(6) Finally, to make the solution unique, we require that 

\ 

'1'=0 at x = -(]I), Y = b 

It will be seen later that this condition is also equiva

lent to 

¢ = 0 at x = +(]I) , y = 0 

which implies that the pressure distribution near the wake 

at x = + 00 is hydrostatic. 

III e SOLUTION OF TEE PROBLEM 

A. The General Solution 

7 

In seeking the general solution it is more convenient to transform 

the flow region onto the upper half planeo This is accomplished by using the 

following mapping function: 

z = ~a [-C + a ~n (a a C)] 

where ,= ~ + i~ and a is the solution of 

b = _______ TI~a~ ____ _ 

1 _ a ~n (a + 1) 
a 

The ,-plane is depicted in Fig. 2b. 

/ 

(8) 

It is readily seen that the points band b' corresponding to 

the end of the cavity are mapped on (-~l' 0) and (~2' 0) respectively. 

Here -~l and ~2 are the pair of solutions of the following equation: 

(10) 
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To solve the mixed boundary value problem the method of Cheng and 

Rott [14J will be used. It was shown by the author. [lSJ that the general 

solution satisfying the Holder condition and the first four boundary condi

tions may be written as 

H(C) I LO 

'l'l('f) dT 

FCc) := 
C'f - c)H('f) + TT 

+t 
0 

0 

where 

and A are real constants. 
n 

1-1 
[ 0 _2J _ 2~1 + G 2 + F c_ d 'f 

i('f - c)H('f) 
-'£'1 

(11) 
CD 

+ L: A Cn 
n:::O n 

(12) 

Note that the first alternative of the third boundary condition, 

'It ::: 0 o.n the wake, is chosen. 

It should be noted that HCC) is one of the many possible homogen

eous solutions satisfying the H8lder condition. The H81der condition is re

quired to limit the order of singularities so that the function is integrable 

and the resulting force will be finite. The leading edge singularity is ex

plicitly indicated in Eq. (12) because, as usual, the stagnation point is as

sumed to be at the leading edgeo 

B. Cavity Length 

To complete the formal solution it i~ necessary to determine the , 
remaining unknowns such as 'It (t), .£,( t), and A. To satisfy the require

n 
ments imposed by the last boundary condition ('It == 0 at C = + CD) it is 
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obvious that all coefficients, A, must vanish. 
n 

Furthermore, it may be 

observed that, for a very large C, H(C)/(T - C) is of order of 

sequently, the last boundary condition may be satisfied only if 

+ [
J-2 [~...;..O"~ _ F-c2] d T 

2(1 + 0") 
~~-~--~----~~- = 0 

iH(T) 
o 

..,[C. Con-

(13) 

Equa tion (13) and the equation which may be derived by using the fifth bound

ary condition constitute a pair of simultaneous equations by which two un

t 

known functions, 'It (t) and J-( t) , may be determined. 

In principle the solution is now complete. 

C. The Alternate Solution 

The solution given by Eqs. (11), (12) and (13) involves hyperel

liptic integrals whose values are not yet tabulated. Therefore, to obtain 

numerical results it is desirable to simplify the solution somewhat. This 

can be done if the alternate condition is used for the third boundary condi

tion. There are only two branch points in this case, and the homogeneous 

solution will be 

H (C) = ~ 
1 ~-C 

(12a) 

instead of HCC) given by Eq. (12). 

It will now be demonstrated that the two solutions are almost iden

tical when the cavity is very long (.R, »1); hence, the simpler solution may 

be usable in the evaluation of the force and moment. 
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B,y using the identity 

a - T 1 1 
+ =---

a - , T - , 

Eq. (11) may be written as 

H(,) 
F(,) = --

TT(a - ,) It -1 

(a - T)'I'l(T)dT 

(T - OH( T) 

- + 1-1 _( __ ~r~_cr __ · "-----_F....;;.-2 ...... 1 d_ a - T L2(1 + cr) + c J T 

itT - ,)H(T) -.e1 

(a - T) [ 2(1 +cr cr) 

i( T - OH(T) 

-2] - F dT 
C + r 

-1 

[cr -2 ] I~ [cr -2] I 2(1 + cr) I Fc dT + 2 2(1 + cr) - FC dT 

iH(T) 0 . iH(T) 

The sum of the last three terms in this equation is, according to Eq. (13), 

equal to zero. Furthermore, when .R,»1, it can be shown that .R,1»1 and 

.R,2 ~ a. Consequently, when the cavity is very long, we have, approximately 

(14) 

where F1CC) is the alternate solution. 
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IV. FLAT PLATE WITH HEAVE OSCILLATION 

When a flat plate is performing a simple harmonic heave motion, the 

equation of the wetted surface may be written as 

jwt 
y == _ ex x-h e 

o 
(15) 

where j is the unit imaginary number and only the real part of Eq. (15) ex

presses the physical motion. It is now possible to write 

, 
wet) == 

and the boundary condition on the wetted surface is 

where 

a = angle of attack 

h = amplitude of heaving oscillation 
o 

k == w/q = reduced frequency 
c 

wo = a frequency response function to be determined later 

(16) 

(17) 

The rigorous evaluation of the gravity effect is extremely compli

cated because F is an unknown function of x. In the following only a 
c 

qualitative estimate of the gravity effect will be made by replacing the' ac-

tual value of F by its average value (a constant). 
c 

A. . Cavity Length 

We shall consider first the infinite fluid case by letting b ap

proach infinity. Thus, the transformation formula Eq. (8) is reduced to: 

2 
z = , (18) 
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and hence: 

,el = ;'2 =~ 

Equation (13) is now reduced to 

T 
2 ciT 

T )(1 + T) 

(19) 

The integrals appearing in Eqo (19) are given in a table of elliptic integ

rals [16J. After performing the'integrations, Eq. (19) is reduced to: 

= (_...;:,.0'_ + 2F -2) 
c 

1 + 0' 

2/1;;" _r: 
- _ r; K (kl ) +-...;;' [1 -A (e,kl )] 
TI ~,e + 1 0 

where: 

K (kl ) . = complete elliptic integral of first kind 

A 0 (e,hl ), Ao (ff kl ) = Heuman's Lambda function 

l,e _ 1 ..,x, JF- -V§-r; + 1 

kl = -{I + 1 ,e = Sln 2 f 

(20) 
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In particular, when gravity is neglected (F --+-00 ), then Eq. (20) is reduced 
c 

to: 

(21) 

where 

rr- K(k) + ~ 
~~ 1 

(22) 

The fact that the var~able, t, is separated from the other variables makes 

Eq. (21) convenient for practical use. It should be noted that when the flow 

is steady 

1 + 0' 
a( ) = 11 (t) 

0' 

" 

(21a) 

The function ~ is plotted on a log-log graph in Fig. 4. The resulting line 

,is almost a straight line with a slope of 0.5 indicating that the cavity 

length is almost proportional to 0,2/0'2" A similar function obtained by using 

a slightly different method (without the wake assumption) which will be dis

cussed in Section VI is also plotted in the same figure for comparison. A 

good agreement between the two methods is indicated. The steady flow cavity 

length given by Eq. (21a) is compared with that calculated by the. quasi-linear 

theory [15] in Fig. 5" Here a good agreement is also noted. 

An indication as to the effect of gravity on the cavity length may 

be obtained if the cavitation number in Eq. (20) is set equal to zero. The 

result is 

(23) 
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where 

12( n) = £ ~f-; . K(k) - f· [A (8 k) A (TT k)] 
~ ~ 1 ~ 0' 1 - 0 4' 1 

TT .,.t+l 

(24) . 

The function· 12(.t) is plotted in Fig. 6. It may be observed that cr = 0 

implies an infinite cavity only when the Froude number is infinite 0 Moreover 

the effect of gravity is to shorten the cavity. 

To study the finite submergence case it should be noted that when 

.t is la-rge .tl is also large and .t2 is approximately equal to a. In fact, 

when the submergence is less than 10 chords, a is less than one and 

(25) 

Under this condition (b<lO,.t >1), Eq. (13) may be approximated by 

r -1 

-T 

1 + T a - T 

dT 

a - T 

(26) 

[ cr F -2]'1.t2 r. T dT = 0 

- 2(1 + cr) - c 0 ~ (1 + T)(T - .t2 )(T - a) 
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After integration, this is reduced to 

+ ( cr _ 2F -2) K(k ) Z (~, k3) 
1 + cr c 3 

where 

I =TI(l-~~ 
o ~ 1 + a l 

(28) 

1 = b_l1 [O_T + a .R, _a J~ T dT 

1 TIa T + a T + a n a + T 1 _ T 

o 

k =JF1_1 ,k = 
2 .R, 3 

1 

.R,2(a + 1) 
, 

a(.R,2 + 1) 

-1 

.~ 13 = Sln 

1 + a 

The integral 11 is evaluated in the appendix. 

In particular, when the flow is steady and when gravity is neglected, 

Eq. (27) is simplified to 

TI(l + cr) ~ 1 = K(k2)/(1 + a) 
cr '0 (30) 

(1 + a)(~l + a) 
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The steady flow cavity length given by this equation is computed 

for several angles of attack at b = 1 and b = 2.52. The result is shown 

in Fig. 7. Some unpublished experimental data obtained at the st. Anthony 

Falls Hydraulic Laboratory for an aspect ratio of 4 are compared with the 

present two-dimensional theory, in Fig. 8. A slight difference between the 

theory and data may be due to the effect of finite span. It should be noted 

that the measured cavity length was divided by a factor 2 on the assumption 

that the cavity length defined in the present theory is about ~ of the cav

ity length by the usual definition. This is done because the tail of the 

cavity by the present definition corresponds to the point of maximum thick

ness whereas, by the usual definition, it corresponds to the point of mini

mum thickness. Eq. (30) also indicates that when b = 0 the cavitation num

ber must be also zeroo This result is to be expected since when submergence 

is zero the cavity is open to the atmosphere and P = P • 
c 0 

B. The Frequency Response Function, 'lto 

For harmonic oscillations, it is possible to write 

) -( ) ~( ) jwt v(x,y,t = v x,y + v x,y e (31) 

w(x,y,t) = .~(x,y) + ~(x,y) e jwt (32) 

and the 4th boundary condition is reduced to [6J 

x 

_() -J"kX! jkT v x,y = -e e 

- (l) 

Here the condition v':::: 'lt = 0 at x = - ro is incorporated in the above equa

tion. Equation (33) is applicable to any point on the foil and independent 

of the path of integration. 
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Integrating Eq. (33) by parts and s~tting the end point at the 

origin, it follows that 

where 

- + v(O , 0) = 

"" 

- jkh o 

(34) 

(36) 

To obtain the function \ft, ;Lt is necessary to separate the steady and the 

unsteady parts of the complex acceleration potential. This is a difficult 

task because the cavity length appears in a non-lin~ar way in Eq. (11). How

ever, for a long cavity and a small amplitude oscillation, the contribution 

'" of the last two integrals, in Eq. (11) to \ft is very small. In fact, their 

order of magnitude may be estimated. If t is the average cavity length and 

At is the amplitude of the cavity length' change, then the contribution of 

the last two terms to \ft is of order of 

[ (1 + F -2J Ii t 

2(1 + (1) c t 

Since t is of order of 1/ (12, if .A t is of order of one, then the contri

bution is of order of 

[_--=-(1 __ + F -2 J (12 

2(1 + (1) c 

which is very small for long cavities. When there is ,no gravity this is, only 

of order of cr3 and, certainly, the last two terms are negligibly small. 

Taking the first term only, it follows that 

d'f I 
'f - C 



18 

Substituting Eqs. (35), (36) and (37) into Eq. (34) and solving for 'l', the 
o 

following is obtained: 

where 

J - ..l.. 
1 - - TT [ 

d, = J'kh W(k, b) 
'fo 0 

W(k, b) = 

e- jkx Im\ J 1 + ,~rO~ r:- dT I dx 
~ - , J.~ T - , 

-1 

~~ 

"l+T 

(38) 

(40) 

dx (41) 

To compute J 1 and J 2 ' it is convenient to consider the cases for b = 0 

and b > 0 separately. 

1. Zero Submergence 

When b = 0 the transfor.m.ation formula degenerates to 

z = - , .(42) 

If the negative x-axis (positive s-axis)~ is chosen as the path of the in

tegration, Eqso (40) and (41) may readily be integrated to yield 

1 + x 
.. x (43) 
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and 

(44) 

where ~(~jk) and Ko(~jk) are modified Bessel functions [17J. Finally, 

Eq. (39) and Eq. (38) are reduced to 

W(k,O) = - ~jk + C (~) (4-5) 

and 

(4-6) 

where C(~) is the well-known Theodorsen's function [8J. 

2. Non-Zero Submergence 

In this case, it seems most convenient to choose a curved path on 

the z-plane so that it corresponds to the positive I]-axis on the C-plane. 

When C is replaced by iI], Eq. (4-0) may be integrated once and yields 

(4-0a) 

where 

r = ~l +I]~ 
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Equation (41) may also be integrated once and yields 

_ ~~r/ 1 + 2a~r ; 1 tn~a + 1 
(41a) 

+a,en[1+r+..J2(1+r)J~1+a2(r2-1) a (1+ B2) 
[a + 1 +..J2a(a + l)(r + 1) + ar}~r2 _ 1 - 2" ,en a 

dx 

For the infinite submergence case we have a~ 00 and Eq. (39) is reduced to 

(47) 

where WI ( k) is the frequency response function obtained by Parkin [6]. The 

numerical value of WI (k) was computed by Parkin by means of a series expan

sion. The frequency response function, W(k, b), is plotted in Fig. 9 for 

special cases of b = 0 and b = CXl • 

C. Force and Moment 

The force on the plate per unit span is 

1 

F ~ I (p - Pc) dx 

o 

The total force coefficient defined as 

C = _..:::...F __ = 2(1 + 0) 1~ 
F 1 U2 -p 

2. 0 

p - P 
_~--=c_ dx 

2 
pq c 

(48) 

may be written in terms of the acceleration potential in the following form: 

C = 0 + ~ - 2(1 +0) 
F U2 

1 1 ¢dx 
o 

(49) 
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where 

is the area between the plate and the x-axis. For a small angle of attack 

S is very small and the second term in Eq. (49) may be neglected. 

In a similar manner, the moment coefficient with respect to the 

leading edge (nose down moment as positive) may be written as 

c = 2. + _2;;;;.!g~S;;=.:x:... 
M 2 U2 

2(1 + 0) )(1 x¢dx 

o 

where x is the moment arm of S with respect to the leading edge. 

(50) 

After performing the necessary substitutions and integrations, the 

following formula for the force coefficient is obtained: 

where 

B -__ 4b .[ 1 

- -2 + a F lTa 

= ...lI- a 
2 

(52) 

(54) 

(55) 
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,en 4a + a2 ,en ___ 4.:..l>(..::::a_+~1=)===-
2a+1+2~a(a+1) 2 2a+1+2~a(a+1) 

~(a + 1) +~a(,e2 + 1) 

~a - ,e2 

(56) 

(57) 

(58) 
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It should be noted that the last two terms in Eq. (51) are the 

gravity force correction terms which are negligible at normal operating con

ditions of a supercavitating hydrofoil. The second term is a correction term 

due to finite cavity length. When b --+-00, it may be shown easily that the 

second term is of order of (i. When b::: 0, then, CJ::: 0 and the second 

term is identical to zero. The following additional comments with regard to 

Eq. (51) may facilitate further understanding: 

(1) The force coefficient at zero cavitation number is the sum 

of the steady term, BFCF(s) and the unsteady term. The 

steady term is obtained by multiplying the infinite fluid 

term by the submergence correction factor BF• The sub

mergence correction factor is plotted in Fig. 10. It is 

seen that the limiting values of BF for the infinite 

fluid case and the zero submergence case are 1 and 2, 

respectively. 

(2) The force coefficient at small cavitation numbers are ap

proximately equal to the force coefficient at zero cavit

ation number multiplied by the factor (1 + CJ). This is 

a familiar steady flow result from linearized theories. 

(3) For the infinite fluid, gravity-free and zero cavitation 

number case, it may be readily calculated that 

C = II a + 'IT ["kW (k ) lk2 ] jwt 
F 2 '2 J 1 ,CD - 16 ho e 

This formula agrees with Parkin's results [6J. 

(4) For the zero submergence, gravity-free case, we have 

It is noted that Eq. (60) is exactly one half of the lift 

coefficient for the fully wetted plate in an infinite fluid. 

(59) 

(60) 
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The moment coefficient is 

where 

_--32b2 ~1 2a + 1 + 2 a(a + 1) 
BM - 2 2 1+ - a(2a + 1) ,en ~"--"";4r'-a----';';"':"';;;;-~-

5n a 

+ 2a J a(a + l),en . 4(a + 1) ] 

1 2a + 1 + 2"a(a + 1) 

c (s) = .2:!L a 
M 32 

1 - 6a + 8a3 - 4a(2a - 1) ~aCa + 1) 

+ 8aC a + 1) ..en ___ 4,;..;a::---;:::====::., 

2a + 1 + 2 ~ a (a + 1) 

+ 8a 2 (a + 1) [..en _____ 4..;..;:a~====::-

4a + 1 + 2 ~a( a + 1) 

+~ a..en 4(a + 1) J2 

a + 1 2a + 1 + 2 ~ a( a + 1) 

(62) 

(64) 

(65) 

(66) 
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2b2 
Ll 1 2a + 1 + 2~ a(a + 1) 

L5 = 2 2 '8 - a(a + '2).en 
IT a 4a 

(67) 

4(a + 1) +J .en(~ +~.el -1) + 4~ a(a + 1) .en 
2a + 1 + 2~a(a 

(68) 

Here the submergence correction factor, ~, has the limiting values 

of 1 and ~ for the special cases of infinite submergence and zero submer

gence respectively. The submergence correction factor, ~, is plotted to

gether withBF in Fig. 10 0 

V. FLAT PLArE WITH PITCHING OSCILLATION 

'When the hydrofoil is performing a rotational oscillation of amph

itude a about the leading edge, the equation for the wetted surface ~s 
o 

. t 
Y = - a x - a xeJill 

o 

and the boundary condition on the wetted surface is 

/ 

(15a) 

(17a) 

All other boundary conditions remain the same as those for the heaving case 

discussed in the last section. However, the computation is somewhat compli

cated due to the additional term involving x2 in Eq. (17a). The general 

procedure of solving this problem is identical to that used in the last sec

tiono 
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A. Cavity Length 

For the calculation of cavity length it is required to replace the 

left hand side of Eq. (20) with 

The left hand side of Eqo (27) should be replaced by 

~ + (a +'l' )e jwt] I + 2 ok I jwt _ lk2 I jwt 
o 0 0 J ao le 2 an 3e 

where 

£1 M 2 T a . a 2 T 
T + a -- + -- ..en dT ) ( ) [T + a T + a (a + T)] 1 - T 

o 

B. The Frequency Response Function, 'l' 
o 

The constant 'l'o is given by the following expression: 

where 

J =-.i!L 
3 TT [ 

o 

'l' =a 
o 0 

-jkx1 .e 
. ill 

1 + 2jkJ2 _ ~k2Jj 

1 + jkJl 

(70) 

(71) 

, 
(72) 

(73) 
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C. Force and Moment 

The total force coefficient is also given by Eq. (51) and the sub

sequent equations. However, Eq. (55) should be replaced by the following 

expression: 

where 

[" + atn( a )]2Ija(a + 1) _ ~ ~. " d" 
a + T t T + a ~ 1 - T 

(55a) 

(74) 

The moment coefficient is given by Eq. (61) and the subsequent 

equations. Here also Eq. (65) should be replaced by 

where 

)] ':; ~1 - S 
S a + SS 

in the calculation of CM(O) by Eq. (62). 

VI. ALTERNATE SOLUTION OF HEAVING MOTION IN INFINITE FLUID 

(65a) 

(75) 

This problem has been c,onsidered by several investigators, each 

using different method and different boundary conditions. One of the diffi

culties was pointed out by WU [18J that if the cavity volume was allowed to 
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change, the pressure at infinity would be unbounded. Recently, Wang and Wu 

[19J investigated the small-time behavior of an accelerating two-dimensional 

cavity in an incompressible infinite fluid. The cavity volume was allowed 

to change by admitting a source and a sink at infinity. In reality, there 

are three physical conditions which permit a variable cavity volume wi thou t 

allowing the pressure at infinity to be unbounded: 1) the existence of a 

free surface, 2) the effect of finite span and 3) the effect of compres

sibility. The first case is the main concern of the present paper and was 

discussed in detail in the previous sections. The second case may become 

important at a deep submergence (when submergence is much larger than the 

span). The effect of compressibility may be important only when both the 

submergence and the span are much larger than the wave length of the pressure 

wave emitted by the hydrofoil. The last two cases are beyond the scope of 

the present paper. 

It is also pertinent to note that in all the above cases the cavity 

volume change is the result, rather than the condition, of the solutions. 

Moreover, the so-called cavity volume is not a real cavity, but rather, a 

space in which both gas and liquid exist. It appears that not only the "cav

ity volume" may change with time, but also the ratio of liquid to gas in the 

cavity may change with time. 

In any event, Wang and Wu [19J have shown that the source and sink 

at infinity have little effect on the force acting on the body when the cav

ity is long. 

The purpose of this section is to gain a better insight into the 

effect of the wake boundary condition imposed in previous sections. Since 

the infinite flow field is simply connected, there is no need to have a cut 

at the wake. The only assumption required· at the wake is that the pressure 

must be continuous across the end of the cavity. The flow is assumed to be 

truly two-dimensional, incompressible, infinite and gravi ta tion-free. The 

pressure at infinity is assumed·to be bounded. 

The following transformation formula transforms the linearized z

plane onto the upper half of the C-plane as shown in Fig. 11: 

(76) 
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This formula transforms the end of the cavity to infinity, the point at in

finity to (0, i~) and the trailing edge of the plate to (-xo ' 0), where 

(77) 

In this case, it is more convenient to redefine the acceleration potential to 

be 

p - p 
¢ = ___ c~_--:-_ 

2 
pqc 

(78) 

The boundary condition on the cavity surface will be ¢ = 0 and the condi

tion at infinity is 

-0' 
F(z) = --~-, at 

2(1+ 0') C = ite (79) 

For a heaving oscillation, the boundary condition on the wetted part of the 

plate is given by Eq. (17). 

The complex acceleration potential satisfying the boundary condi
+ 

tions on the s-axis and continuous at the end of the cavity (C = - OJ) is 

~ +C 
F(C) = 1 0 

IT -C 
dT ] ~+A 

T - C (80) 

where A is a real constant. 

Now the boundary condition at infinity (C = i \Ii) may be used in 

Eq. (80) to obtain the following two equations by which the constant A and 

the cavity length ~ may be determined. 
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f 
-x 

'l',(1") - ~ 
J- ... ~+ 1" 

o 

(81) 

o 

2(1 + cr) 2 
1" + J, 

(82) 

After performing the integration in Eqo (82), it is reduced to 

(83) 

When the flow is steady, Eq. (83) is reduced to the following simple equation: 

a (1 + cr) 
cr 

(84) 

To compare this result with the result obtained in Section IV, Eq. (84) is 

plotted in Fig. 4. Good agreement between the two results is indicated. 

In order ,to compute the constant ~o' the change in cavity length 

is again assumed to be small so that the cavity length J, in Eqs. (80) and 

(81) may be replaced by its average value. With this assumption, it follows 

that 

~= I 
m (85) 
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~ = jkh W'(k,£) 
o 0 

(87) 

, 
W (k,£) = 

1 + jk J 2'(k,£) 
, 

1 + jk J1(k,£) 
(88) 

(90) 

2x +1 ~+xr o 0 x 
4(x + 1) 1 + x 

o 0 

r =~1 : x 
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Comparing Eq. ( 88) with Eq. (39), it may be readily shown that, when t »1, 

(91) 

indicating the effect of the wake condition on is of order of 
2 

cr 0 

The total force coefficient is computed and the result is given by 

the following expression: 

(92) 

It i.s readily seen that the first term ofEq. (92) agrees with the first term 

of Eq. (51) when b ~ 00 and the second term of Eq. (92) is of order of cr2 

for long cavities. It is now clear that the effect of the wake condition on 

the total force coefficient is, at most, of order of cr2• 

Since the present results are applicable for a super-cavity of ar

bitrary length, it may be interesting to consider a limiting case of t = 1. 

For the cavity length calculation, Eq. (83) is reduced to 

when t = 1, x~oo 
o 

and Eqs. (89) and (90) are reduced to 

(83a) 

(89a) 
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(90a) 

The total force coefficient is 

(92a) 

This means the total force coefficient acting on a plate with ~ = 1 is ap

proximately twice the total force coefficient with infinite cavity. 

VII. CONCLUSIONS 

The effect of the presence of a free surface near the suction side 

of an oscillating and supercavitating flat plate on the force and moment 

characteristics was analyzed in the main part of the paper. To study the 

effect of wake conditions the infinite fluid case was discussed further in 

the last section. In summary, some of the more important results are listed 

below. 

(1) The effect of a free-surface at the suction side of a 

super cavitating hydrofoil is to shorten the cavity and 

to increase the total force coefficient. The force co

efficient at 0 = 0 is increased as the free surface is 

approached in proportion to the factor BF in Fig. 10 

for the steady case. 

(2) In the unsteady oscillatory case, the cavity length var

ies with the oscillation as given by Eqs. (20) and (27). 

The total force coefficient also varies with the oscil

lation as given by Eq. (51). 
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(J) Even with the presence of a free-surface and oscillations, 

the total force coefficient at small cavitation number 

greater than zero is approximately equal to the corres

ponding value at zero cavitation number multiplied by a 

factor (1 + 0"). 

(4) In the limiting case of infinite fluid and infinite cav

i ty, the present theory agrees wi th the existing theory 

of Parkin. 

(5) In the limiting case of zero submergence, the cavitation 

,~ number is identical to zero and the total force coeffici

ent is one half the value for fully wetted flow in an in

finite fluid for both steady and unsteady flow. 

(6) The effect of a gravity field is to shorten the cavity; 

zero cavitation number implies an infinite cavity only 

when there is no gravity. 

(7) For a long cavity, the effect of the wake conditions stud

ied here is of order of 0"2. 

(8) The effect of finite cavity length on the frequency res

ponse functions \Jf (k, J.,) and W(k, J.,) is given by Egs. 
o 

(88), (89) and (90) for the range of cavity length be-

tween one and infinity. Although the equations are not 

much more complicated than those of the infinite cavity 

case, their numerical computations have not been carried 

out. 
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!ff~ligl! 

Evaluation of II and Other Related Integrals 

In evaluating II and several other related integrals, it is neces

sary to calculate the following two integrals: 

1 
(AI) 

and 

(A2) 

Although it is possible to use the method of contour integration, the integ

rals Yo (A) and Yl (A, j3) may be integra ted more easily in the following way: 

First, we differentiate YO(A) with respect to A. and obtain 

since Y (0) = 0 it is clear that 
o 

yeA) = 
o 

After integration, it follows that 

[ 
o 

, 
Y (x)dx 

o 

(AJ) . 

(A4) 
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To evaluate Yl (A., ), we first differentiate it with respect to A., and 

y.' = _d ..... y-=l-.. = 11 
1 dA. 

o 

<'.::J2 Again we-have Yl ( 0, ) = 0 and, hence 

or 

The integral II may be written as 

, 
Y (x, (3)dx 

1 

II = ~a 11 ~-T--';':-a-~-' a ..en(l + T/a) 

o - T ~T(l - T) 

(A5) 

(A6) 
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Using Eqs. (A4) and (A6) and setting A = l/a and ~ = a, it is readily ob

tained that 

II = ~ r~ - a + a - 'ah- + a.e,n ___ ...:.4.;;;.a_-;::::===-
L ~~ 2a + 1 + 2~ a(a + 1) 

2 
+ a .e, 4(a + 1) 1 

2 ~a(a + 1) n 2a + 1 + 2~ a(a + l)J 

(A7) 
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TWO-DIMENSIONAL SUPER CAVITATING PLATE OSCIL
LATING UNDER A FREE-SURFACE, by C. S. Song. Dec
ember 1963.53 pages incl. 11 illus. Contract Nonr 710(51). 

The problem of a siIpercavitating .flat plate at non-zero 
cavitation number oscillating under a free surface is an
alyzed by a linearized method using the acceleration 
potential. The flow is assumed two-dimensional and in
compressible. The .flow field is made sim1Jly connected 
by using a cut along the wake. The flow field is then 
mapped on to an upper half plane and the solution is 
expressed in an integral form by using Cheng and Rottls 
method. Equations for the cavity length, total force co
effiCient, moment coefficient and the frequency response 
function are expressed in closed form. 

Available from St. Anthony Falls Hydraulic Laboratory, 
University of Minnesota, at $1.50 per copy. 
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