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We call a photonic crystal tunable if its spectrum can be altered by an external electric or magnetic field.
One of the two constitutive components of the proposed periodic composite structure has either electric
permittivity or magnetic permeability dependent on the external electric or magnetic field. Consequently, the
electromagnetic spectrum of the photonic crystal can be altered over a wide range by the external quasista-
tionary uniform field. The tunable photonic crystal exhibits some useful features reminiscent of those accom-
panying the well-known electronic topological phase transitions in metals. Thorough theoretical analysis of a
two-dimensional tetragonal periodical structure is undertaken. This specific periodic structure exhibits the most
important features of a tunable photonic crysf&0163-18208)06305-X]

[. INTRODUCTION which is assumed to be strong enough to cause a nonlinear
response according to E€).

The propagation of electromagnetic waves in periodic and With few exceptions, the magnitude of an applied exter-
disordered dielectrics has attracted much attention in recem@l field must be much greater compared to the amplitude of
years'~’ One of the remarkable features of periodic dielec-the corresponding components of the propagating electro-
tric structures, often referred to as photonic crystals, is thamagnetic wave, i.e.,
they can have gapstop bandsin the frequency spectrum.

That phenomenon is of great theoretical and practical impor-
tance and it can be employed in a variety of new optical Eo>E(t) or Ho>H(t). 2
devices(see, for instance, Refs. 1, 5, and @ntil recently,

the overwhelming majority of experimental and theoreticalin most cases the conditiof2) must be imposed for EM
investigations on the electromagnetic properties of photonigvave propagation to be a linear problem whereas the mate-
crystals have dealt primarily with geometric aspects of th&ial tensorse and/or . vary with the external field. In some
problem. More precisely, photonic crystals have been concases though, the conditi@B) is not required. For instance,
sidered as composite structures made up of two lossless isgyr nearly static external field may cause substantial nonlin-
tropic media with different refractive indiceg andn,. Fur-  ear response. At the same time the propagating EM wave
ther specificity has been of purely geometrical natureiith sufficiently high frequency can be treated within linear
different shapes and dimensions of different fragments of th@pproximation even if its amplitude is comparable with the
entire structure, different space symmetry, different kinds olamplitude of the external field. This is especially likely if the
local defects or partial disorder, etc. We demonstrate in thignain effect caused by an external quasistationary figl¢or
paper that dielectric materials with somewhat more compliH) reduces to a rearrangement of the domain structure in a
cated physical properties than simply losslessness can givRermodynamic equilibrium state. A similar effect may occur
more flexibility in the design of photonic crystals. Our focus if the external fieldE, (or H,) alternates thereby causing a
will be on those photonic crystals whose characteristics cafesonant response of the medium. Indeed, in the resonant
be controlled by a moderate external magnetic or electrigase there can be a pronounced nonlinear behavior even for a
field. relatively small amplitude of the controlling field. If the fre-
Let us consider a spatially periodic composite structureyuency of the propagating wave is not resonant, it still can be
with at least one component displaying a nonlinearity in thereated within the linear theory.
electric or the magnetic susceptibility. If the amplitud&s) It seems unlikely that one of the material tensors can be
andH(t) of the electric and magnetic fields of the propagat-altered by an external field while the material remains essen-
ing electromagneti¢EM) wave are sufficiently small then tjally isotropic. Hence, the material tensors can be substan-
the wave can be treated within linear approximation. In adtjally anisotropic. In general, the controlling field may be
dition to that, if external uniform fieldH, or Eq is strong  time- and space-dependent and must be treated as an insepa-
enough, it may substantially alter the material tensors rable part of the electrodynamic problem. In view of the
revious discussion on the relationships between the external
e=2(Eo,Ho) 0r u=pu(Eo,Ho) @ 1Ei)elds and the propagating EM Wave,pone may consider the
and thereby alter the entire spectrum of the medium. We wilmuch simpler problem wherg, (or Hy) is just a stationary
use the subscript “0” to refer to externétontrolling field  or quasistationary parameter that alters the material tensors.
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In the latter case evidently the physical nature of the controlthe Introduction. Thus we do not focus on a particular mate-
ling parameter does not play any significant role. rial since there is a variety of different situations, and for a
A controllable alteration of the photonic band structureconcrete problem with specified frequency range suitable
may have numerous physical and practical aspects. We withaterials can be selected to meet the requirements.
focus primarily on a single and basic question: how does the As we pointed out in the Introduction, one of the two
external field affect the propagation of electromagneticconstitutive components of the tunable photonic crystal must
waves for a given fixed frequend2? At first glance, the be made of a material with substantial nonlinearity of the
only remarkable effect of tunability is the possibility of electric permittivitye =¢(Ey). Note that the overwhelming
switching between transparent and opaque states, dependingjority of ferroelectric materials also do meet this require-
on whether the frequend falls in a transmittance band or ment. Hence, the main problem is how to find those dielec-
a photonic band gap. This appears to be true for the case tics which, first, would be practically lossless in the given
one-dimensional periodical structures. But for two- andfrequency range and, second, would manifest sufficiently
three-dimensional periodicity more careful considerationhigh electric permittivity at that frequency range. For some
shows that in addition to that there are other interesting phematerials the above restrictions may be critical for infrared or
nomena. For instance, if the fixed frequen@ywas origi- optical frequencies, but in the microwave range up to
nally situated within a photonic band gap, then the gradual 0! sec! there exist hundreds of dielectrics with satisfac-
alteration of the photonic band structure caused by the extetery physical characteristics. Particularly, the most attractive
nal controlling field will result in at least two distinctive would be a situation when a small shift in the impressed
transitions accompanied by a dramatic modification of thecontrolling field would lead to a significant alteration ©fn
character of electromagnetic wave propagation through thene of the two constitutive components. There are two con-
medium. To a certain degree, the corresponding transitionspicuous situations where such behavior should be expected.
are similar to those well known in the theory of electronic First, when the frequency of the propagating EM wave lies
topological phase transitionésee Ref. 8 and references in a vicinity of a resonance frequency of the medium. The
therein. Since there are only few qualitatively different second situation occurs in a vicinity of a ferroelectric phase
anomaly types in electromagnetic wave propagation, we catransition accompanied by a strong anomaly in the electric
find a practical example that enables us to demonstrate adlusceptibility (see, for example, Ref. 13 and references
these interesting features altogether. In Sec. Il such an exherein). On the other hand, in the vicinity of a phase transi-
ample will be studied in great detail. tion or an electro-dipole resonance, the absorption effects
If the amplitude of the propagating electromagnetic wavemay increase dramatically and this would be highly undesir-
is also too strong to be treated within linear approximationable. In a sense, the above two situations are extreme and
some qualitatively new interesting effects can occur even imay not be of interest if only a relatively moderate band
the case of one-dimensional periodical structures, see, fatructure rearrangement is required.
example, Refs. 9—12. Those questions are beyond the scope Before we proceed further, let us briefly touch upon pos-
of our consideration. sible applications of magnetic materials as the active ele-
The rest of the paper is organized as follows. The neximents of tunable photonic devices. Most of the so-called soft
section is devoted to a brief illustrative discussion of theferromagnets and ferrimagnets display high magnetic perme-
materials that can can be used as constitutive components fability with tensoru= u(Hy) being strongly dependent on
tunable photonic crystals and their expected properties. The,, and from this point of view they would be ideal mate-
we undertake an extensive theoretical analysis of the tworals for tunable photonic crystals. The problem is that mag-
dimensional(2D) tetragonal structure. netic susceptibilityy(w) of the common ferromagnets and
ferrimagnets at high frequencies becomes very small. The
frequency at whichu(w) drops significantly is usually much
Il. MATERIALS FOR TUNABLE PHOTONIC CRYSTALS lower than that o&(w) and lies somewhere within the radio-

There exist many dielectric materials with pronouncedfféduency range. Another problem is that in the presence of
nonlinearity in the electric or magnetic properties. In particu-the magnetic fieldo, the temporal dispersion of magnetic
lar, most of ferroelectrics display a substantial dependencéusc‘?pt'b'“ty tensor may involve asubs_tantlal increase of_the
£=¢(E,). On the other hand, magnetically ordered crystalsimaginary antisymmetric components like those responsible
especially ferromagnets and ferrimagnets, are likely to manifor Faraday rotation. This fact may significantly complicate
fest a magnetic nonlinearity = (Hy) even in a relatively the entire electromagnetic band structure. Nevertheless, the

low external magnetic fieltH,. Unless otherwise specified, POSSible advantages of creating tunable photonic devices
we restrict ourselves to the case of the electric-fielgased on magnetically ordered materials are so attractive t_hat
dependent tensar=¢(E), having in mind that the entire it would pertalnly make sense to investigate thproughly this
consideration holds for the case of the controlling magnetidSSue- With these exceptions, most of the principal results of
field as well. In spite of the formal mathematical similarity, the foII9W|pg sections equally hold for both electric and
the electric and magnetic cases may differ significantly. Fofnagnetic-field controlled photonic crystals.

the known lossless dielectric materials with strong depen-

dences(Eg), the electromagnetic properties are substantially Ill. TWO DIMENSIONAL TETRAGONAL

different from those of the media with “magnetic-type” PHOTONIC CRYSTAL

nonlinearity likeu(Hg), especially so if the appropriate fre-

guency range is concerned. We study here primarily the gen- Let us consider a photonic crystal with tetragonal symme-
eral features of the tunable photonic crystals as described itny and 2D periodicity as shown in Fig. 1. Suppose that the
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FIG. 1. A slab of tetragonal 2D photonic crystal composed of 0 P
lossless dielectric material embedded in air background. Only the fg 20
waves propagating in they plane are considered. 54 6 28 10 2 14 10 05 T2 15 >
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magnetic permeability. of both constitutive components at &l @
the frequency range of interest is just the identity tersor

FIG. 2. Dependence of photonic gaps on the dielectric con-
stant: (a) for H mode, §=0.1; (b) §=0.3; (c) for E mode 6
=0.1; (d) 6=0.3.

i.e.,

n=l.

The electric permittivity tensae = e(r) is assumed to be real electric field. The character of the corresponding dependence
and position-dependent, it takes on two different valses ¢,(E;) may be qualitatively different for different types of
ande,, since there are two constitutive components. In thedielectric media, as ferroelectric crystals vs centrosymmetric
absence of external fiel&,, both tensorss; and e, are  ones. Since the medium depends on the external fgld
assumed to be isotropic, parametrically, for the problems considered there is no need
to present the explicit dependencesf ande; on Ey. In-

For Eo=0: e1=el, ep=I. (3 stead, in further considerations we deal only with the depen-
For simplicity, the second constitutive component of the te-dence of different spectral characteristic on the quantities
tragonal structure in Fig. 1 is assumed to be void, therefor&nde; - i .
e,= regardless of the external field. Space symmetry of this OUr treatment of lossless magnetic media is based on the
2D periodic structure belongs to the tetragonal point grouglassical Maxwell's equations

4/mmm
The uniform electric fielde, applied along the direction VXE=— E ﬁ V.D=0. D=¢E (6)
affects the tensos,;=¢4(Ey) as follows: c dt
g, 0 O 14D _ _
e1=|0 e 0| e,=I, ) VXH_EH' V-B=0, B=H, (7)
0 O
ol whereE, D, H, andB are the electric field and induction and
where the magnetic field and induction, respectively, and the
velocity of light. In the two component 2D periodic medium
e.=¢,(Eop), &=¢(Eo); Eolz (5 we suppose: ande to be dependent only ox andy. The

Hence,e,(E,) is not isotropic any more. Formally, the elec- Periodicity of the medium then is described by

tric field Eyllz lowers the tetragonal space symmetry of the _

system down to thm. But the actual effective symmetry of e(x+Lgy,y+Lgz)=e(xy), (8)
the macroscopic Maxwell equations remainsn#im The  whereg; are integers and is the linear dimension of the
reason is that the only physical characteristic of the mediungquare primitive cell of the tetragonal lattite The axisz we
entering the macroscopic Maxwell equations is tenser  will call the principal axis of the photonic crystal. The im-

=¢£1(Eop), which is always invariant under the space inver-posed external electric fielfl, aligned along the principal
sion operation—irrespective of the uniform applied fifld. axisz of the photonic crystal

Therefore, the external fieBllz will not further complicate

the procedure of spectrum calculations. In particular, since in 0
the case of the symmetry grouphm(but not 4nm') the Eo=|0 9)
xy plane coincides with the mirror plane of the photonic h

crystal, EM modes with two different polarizatiofis mode

andH mode will be independent and can be analyzed sepaalters the tensore=e(x,y;h), i.e., e, =¢,(X,y;h) and

rately. g=¢(x,y;h). In particular, the Maxwell equatior§) and
There exist a variety of dielectric materials in which di- (7) will depend onz componenth of the external electric

electric constant can be altered substantially by an externdield E,.



2844 ALEX FIGOTIN, YURI A. GODIN, AND ILIA VITEBSKY 57

We consider only the EM waves propagating perpendicu-

i i
larly to the principal axisz, which is equivalent to the as- VXE(N) = H(r), VXH(r)=—-—e(nE(),
sumption that the EM field depends only rrandy, i.e., (13)
H=H(x,y), V-H=0; E=E(x)y), V-sE=0.( 0 V-e(r)E(r)=0, V-H(r)=0. (14
1
The above equations are evidently reduced to
Denoting
w2

(X.y)=r VXVXE(r)z?s(r)E(r) (15
and proceeding in the standard fashion, we introduce th€f
harmonic in time fields 2

. . VXe ) VXH(r)=— H(r). (16)

H(r,t)=H(x,y)e ', E(r,t)=E(x,y)e '*!, (12 c

It is sufficient to analyze the spectrum of any one of the
Hy Ex problems(15) or (16) for eitherE or H and then, the remain-
H=|Hy|, E=|Ey|, (12) ing one can be found by means of Ef3). Using standard
H E, symmetry arguments one can verify that the spectral prob-
lems(15) or (16) can be reduced to the analysis of two kind
and arrive at the following eigenvalue problem of modes: (i) E-polarized fields(or TM mode$ whenH,

z
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FIG. 3. Successive cross-sections of thenode spectrum arranged in ascending order. tfie casede) corresponds to the gap location
of the frequency)=1.41.
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FIG. 4. Three lowest bands of tli&-mode spectrum foe=16: (a) n=1; (b) n=2; (c) n=3; (d) all three bands together. In this case
the frequency) =1.41 falls in the gap between the first and the second bsedsFig. &)].

=0 andE,=E, =0 and(ii) H-polarized fieldgor TE mode$ E ()= E(r), Hr)=e*H(r): k=(Kk, k),
whenE,=0 andH,=H,=0. Namely, forE-polarized fields (21
e folowing equation felds whereE,(r) andH(r) areL-periodic functions. Then plug-
0 . [ ayEAD) ging them in Eqs(19) and(20) we obtain
IC ic
E=| 0 |, H=——VXE=——| —dE;(r)|, —[07)2”( +07§k]Ek(r)zwchzsu(r)Ek(r), 22)

(17) ﬁj,kj:aj_ikj ’ j:X,yi (23)

whereas foH-polarized fields we have . 1
_[ax,kxsl (r)ax,kx—"ay,kysi (r)ay,ky]Hk(r)

0 . T aHL(r)
ic ic yhz = wlc 2
H=| 0 |, E=— VxH= —axHAT) | @ e TH(r), 29
H,(r) wWeL wWEL 0 wherer is in the primitive cell of the two-dimensional lattice

(18 . andk runs the primitive cell of the latticé’ dual tol..
. The mathematical properties of the eigenvalue problems
Hence, each of the vector probleiS) and(16) is reduced (22 and(24) for square periodic geometries were thoroughly

to the following set of two scalar eigenvalue problems analyzed in Refs. 15 and 16 by analytical methods and then
_— in Ref. 17 numerically. Based on those methods we carry out
—AE(r)=wc g (NELr), (19 the computation for photonic crystals in the next section.
— Ve {1 VH,(r)=w’c™2Hy(r). (20) IV. COMPUTATION OF BANDS AND GAPS

Sincee | (r) ande(r) arelL-periodic functions, we seek the In this section we carry out the computation of the spec-

eigenfunctions of the spectral problerti®) and(20) in the tral attributes of a tunable dielectric photonic crystal of
Bloch form square geometry as on Fig. 1. In this case, the laftice
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=172, where7? is the square lattice with the unit square Now in the problems25) and(26) p runs the unit cel[0,1]?

primitive cell [0,1]> and L is the linear dimension of the
square primitive cell0, L]? of the photonic crystal. Then the
problems(22) and(24) can be rewritten in the form

2 4B m JEn(p) =5 (P)En(p), (25

’
' my T Oymy

—(d

1
- ax’,mxy S_J_Tp) ax’,m><,+(9y’,myy S_LTP) ay’,myy Hm(p)

=w?Hyu(p), (26)

wherep, m, @, &, (p) ande (p) are dimensionless quanti-
ties defined by

2
w2=w2%, p=(X’,y’)=E,
m=(m, ,m,)=Lk; 27
=t g2 28)

e, (0) e, (0)

andm runs the cel[ — 7, 7]%. Solving the eigenvalue prob-

lems(25) and(26) we find the band dispersion relationships
wy(K) wheren=1,2,... is the band index. Dependence of
photonic gaps on the dielectric constant is shown in Fig. 2.

V. GROUP VELOCITY ANOMALIES

Most of the qualitative results concerning different as-
pects of tunability equally apply t& and H modes. So,
wherever it is appropriate, we will not specify the EM wave
polarization.

Let us pick the frequency) so that in the absence of
external field it falls in a gap of the electromagnetic spectrum
wn(k). This implies that equatiomw,(k) =€ has no solu-
tions for anyk lying in the xy plane, i.e.,

Q+# w,(k) for any n and k. (29

The external field can alter the entire electromagnetic spec-
trum including the location and the very existence of a par-
ticular spectral gap. As a consequence, the fixed frequ@ncy
can find itself within a neighboringransmittance bandn
which, by definition, the equation
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Q=w,(k) (30) B

/
has a solution. The band numhbemay take on one or sev- .
eral values, depending on whether the equafibfn w,(k)

has solutions for a single spectral branch, or for several of
them simultaneously. EquatiofB0) defines the equifre-
guency curves ik space.

For a particular value of) ande, the equifrequency curve
represents the plane cross section of the appropriate band
w=w,(k). In the case of overlapping bands the equifre- (a)
guency curve is a superposition of individual contributions
from each separate bamd This curve may comprise con-
nected or disconnected pieces originated from the same or
different bands. In the course of the spectral structure modi-
fication caused by alteration of the controllable parameter
the shape and connectivity of the equifrequency curve will
change dramatically. In this section we find out what kind of
modifications the equifrequency curve undergoes, and how
these changes affect the conditions of EM wave propagation.

The best way to elucidate the whole picture is to start with
a specific example. This example contains the characteristic ®)
fe_atures most of which persist in any kind of tunable _phOtO- FIG. 6. The second critical point corresponding to that of Fig.
nic crystals. All those features develop even for the simplesgy,). () the equifrequency curve; the arrows point in the direc-
situation, when in a transmittance band the equa@has  ons of the group velocityfb) the hatched sectors indicate the
a solution for a single spectral band. The more complicate@jiowed directions of the EM wave propagation.
cases of overlapping bands will not bring about essentially
new features, rather we will simply have th rposition of. N .
thee cjzgse:ssgci:ted?/vith giffeegnt iaid;k?ljpe POSIHON O%ion that can be traced in Figs(e3—3(d). Let us consider

In our example we consider the situation when, in thetl0S€ transformation in more detail. o
course of band-structure modification caused by altering the (1) Right after the transition from the opacilfig. 3(e)]
controllable parametes, the fixed frequency finds itself, ~to the transmittancéFig. 3(d)] the group velocityvy(k) is
first, in the lowest band. Then, the frequer@yfalls in the  isotropic in thexy plane and has small magnitude. In gen-
lowest gap situated between the first and the second band¥al, a transition between opaque and transparent states oc-
Finally, the gap moves down further afitifalls in the sec- curs whenf) coincides with an absolute extreme value of the
ond band. corresponding banad, (k). In our casehe first critical value

In Fig. 3 the successive cross sectionsapfk) are ar-  of ¢ is defined by the equation max; (k;e)=1.
ranged in ascending order ef The equifrequency curves (2) Further decrease of leads to the development of a
presented in Figs.(®-3(d) are defined by the equatidd  strong anisotropy of the EM wave propagation that culmi-
=w;(k), and those in Figs. (§—3(h) are defined by the nates athe second critical poinfsee Fig. &) and Fig. 4.
equationQ) = w,(k). The further cross sections involve ad- This critical point occurs wheif) coincides with a saddle
ditional bands. point of the bandw(k;e). At this point the EM waves can

In Fig. 4 we depicted the three lowest bands(k), N only propagate within two narrow angles along the directions
=1,2,3 of theH-mode spectrum foe = 16. In this case the [110] and[110]. Indeed, as illustrated in Fig. 6, for &lon
frequency(l falls in the gap located between the first and thethe equifrequency curver;(k;e)=€ the direction of the
second bandpsee Fig. &)]. group velocityv, (k) takes on only the values close just

For the case oE mode the corresponding set of crosstwo directions namely, the directions of the square diago-
sections of the first and the second bands is presented in Figals. An extreme anisotropy in the EM wave propagation
5. exists not only in a vicinity of the second critical point but

Let start our discussion with the case of tHemode. also at some other values ef[see, for example, Fig.(8)].

To understand the features of the EM wave propagation (3) Further decrease af makes the condition of the EM
under the band-structure modification we study the groumvave propagation nearly isotropiEig. 3(a)].
velocity (4) In addition to the two mentioned critical points asso-

ciated with the two topological modifications of the equifre-
Vp(K)=Vwn(K) (31  quency curve, there must exist another distinctive anomaly in
the light propagation. Indeed, at some point of the spectrum
that characterizes speed and direction of wave propagatiortransformation from Figs. (8)—3(a) a closed piece of the

Let us start with a gap situation represented in Fig. 4 anegquifrequency curve must lose its convexigs is the case
Fig. 3(e). When controllable parameterdecreases, the fixed with Fig. 3(c)] and then must gain it back. As a consequence,
frequencyQ) finds itself in the first band. Under that transi- for some directions of the EM wave propagation there will
tion from the opacity to the transmittance, EM properties ofbe several waves propagating with different speed. In other
the photonic crystal will experience a dramatic transforma+words, there will be several vectovg(k) of the same direc-
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tion but different magnitudes. And there will be at least twothat the rest of the anomalies in the EM wave propagation
critical points at which this multivalence appears and van+temains in place.
ishes.
Clearly, the total number of critical points associated with VI. CONCLUSIONS
local extremes or saddle points af,(k), as well as those
associated with zero curvature points on the equifrequenc%
curve w,(k)=Q, may differ for different bands. But the
described above critical points are always present.
Consider now the case of increasing parametehich is
presented in Figs.(8—3(l). The most significant difference
compared to the case of decreasings that right after the

We have studied the basic properties of 2D tunable pho-
nic crystals. It has been shown that the transition between
opaque and transparent states of the system inevitably in-
volves some distinctive anomalies, including extreme anisot-
ropy of EM properties. Since the analysis of the tunability
effects has been based on the precise band-structure calcula-

transition point between the gap and the second band, ttons, the predicted anomalies can be unambiguously identi-

EM wave propagation will be essentially anisotropic, and for led e_xpenmentally. Most of the qualltat|ye aspects of the
each directionv,(k)/|v,(k)| of the group velocity there wil t3unatr)1ll|ty e.ffects caln be extended, we believe, to the case of
be two waves propagating with different spges(k)|. D photonic crystals.

In the cases Figs.(B-3(f) we have curves originated
from both the second and the third bands.

Let us turn now to the case of tfiemode. The set of the Effort of A. Figotin, Yu. Godin, and |. Vitebsky is spon-
spectral cross sections presented in Fig. 5 looks very similagored by the Air Force Office of Scientific Research, Air
to that of theH mode in Fig. 3. The only important differ- Force Materials Command, USAF, under Grant Nos.
ence is that for the chosen valuestdtind §, in the course of F49620-94-1-0172 and F49620-97-1-0019. The views and
increasinge the frequency) moves from the first band di- conclusions contained herein are those of the authors and
rectly to the second one without being in the gap. Indeed, ishould not be interpreted as necessarily representing the of-
Fig. 5(e) one can see the instant of a slight overlapping of thdficial policies or endorsements, either expressed or implied,
two adjacent bands. The gap openg atl5 when the fixed of the Air Force Office of Scientific Research or the U.S.
frequency() is already far away in the second band. NoteGovernment.
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