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Two-dimensional tunable photonic crystals
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We call a photonic crystal tunable if its spectrum can be altered by an external electric or magnetic field.
One of the two constitutive components of the proposed periodic composite structure has either electric
permittivity or magnetic permeability dependent on the external electric or magnetic field. Consequently, the
electromagnetic spectrum of the photonic crystal can be altered over a wide range by the external quasista-
tionary uniform field. The tunable photonic crystal exhibits some useful features reminiscent of those accom-
panying the well-known electronic topological phase transitions in metals. Thorough theoretical analysis of a
two-dimensional tetragonal periodical structure is undertaken. This specific periodic structure exhibits the most
important features of a tunable photonic crystal.@S0163-1829~98!06305-X#
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I. INTRODUCTION

The propagation of electromagnetic waves in periodic a
disordered dielectrics has attracted much attention in re
years.1–7 One of the remarkable features of periodic diele
tric structures, often referred to as photonic crystals, is
they can have gaps~stop bands! in the frequency spectrum
That phenomenon is of great theoretical and practical imp
tance and it can be employed in a variety of new opti
devices~see, for instance, Refs. 1, 5, and 7!. Until recently,
the overwhelming majority of experimental and theoreti
investigations on the electromagnetic properties of photo
crystals have dealt primarily with geometric aspects of
problem. More precisely, photonic crystals have been c
sidered as composite structures made up of two lossless
tropic media with different refractive indicesn1 andn2 . Fur-
ther specificity has been of purely geometrical natu
different shapes and dimensions of different fragments of
entire structure, different space symmetry, different kinds
local defects or partial disorder, etc. We demonstrate in
paper that dielectric materials with somewhat more com
cated physical properties than simply losslessness can
more flexibility in the design of photonic crystals. Our foc
will be on those photonic crystals whose characteristics
be controlled by a moderate external magnetic or elec
field.

Let us consider a spatially periodic composite struct
with at least one component displaying a nonlinearity in
electric or the magnetic susceptibility. If the amplitudesE(t)
andH(t) of the electric and magnetic fields of the propag
ing electromagnetic~EM! wave are sufficiently small then
the wave can be treated within linear approximation. In
dition to that, if external uniform fieldH0 or E0 is strong
enough, it may substantially alter the material tensors

«5«~E0 ,H0! or m5m~E0 ,H0! ~1!

and thereby alter the entire spectrum of the medium. We
use the subscript ‘‘0’’ to refer to external~controlling! field
570163-1829/98/57~5!/2841~8!/$15.00
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which is assumed to be strong enough to cause a nonli
response according to Eq.~1!.

With few exceptions, the magnitude of an applied ext
nal field must be much greater compared to the amplitud
the corresponding components of the propagating elec
magnetic wave, i.e.,

E0@E~ t ! or H0@H~ t !. ~2!

In most cases the condition~2! must be imposed for EM
wave propagation to be a linear problem whereas the m
rial tensors« and/orm vary with the external field. In some
cases though, the condition~2! is not required. For instance
for nearly static external field may cause substantial non
ear response. At the same time the propagating EM w
with sufficiently high frequency can be treated within line
approximation even if its amplitude is comparable with t
amplitude of the external field. This is especially likely if th
main effect caused by an external quasistationary fieldE0 ~or
H0! reduces to a rearrangement of the domain structure
thermodynamic equilibrium state. A similar effect may occ
if the external fieldE0 ~or H0! alternates thereby causing
resonant response of the medium. Indeed, in the reso
case there can be a pronounced nonlinear behavior even
relatively small amplitude of the controlling field. If the fre
quency of the propagating wave is not resonant, it still can
treated within the linear theory.

It seems unlikely that one of the material tensors can
altered by an external field while the material remains ess
tially isotropic. Hence, the material tensors can be subs
tially anisotropic. In general, the controlling field may b
time- and space-dependent and must be treated as an in
rable part of the electrodynamic problem. In view of th
previous discussion on the relationships between the exte
fields and the propagating EM wave, one may consider
much simpler problem whereE0 ~or H0! is just a stationary
or quasistationary parameter that alters the material tens
2841 © 1998 The American Physical Society



ro

re
w
th
ti

f
d
r
e
nd
io
h

u
te

e
th
th

io
ic
s
t
ca

e

v
on

f
co

ex
he
s
h
w

ed
u
n
ls
n

,
ld

et
y,
Fo
en
ll

’’
-
e
d

te-
r a
ble

o
ust
he

re-
ec-
en
tly
e
or
to
c-
ive
ed

on-
ted.

he
se
tric
es
si-
cts

sir-
and

nd

s-
le-
oft

me-
n
e-
g-

d
The

-
of

ic
the
ible
te

, the
ices
that

his
of

d

e-
the

2842 57ALEX FIGOTIN, YURI A. GODIN, AND ILIA VITEBSKY
In the latter case evidently the physical nature of the cont
ling parameter does not play any significant role.

A controllable alteration of the photonic band structu
may have numerous physical and practical aspects. We
focus primarily on a single and basic question: how does
external field affect the propagation of electromagne
waves for a given fixed frequencyV? At first glance, the
only remarkable effect of tunability is the possibility o
switching between transparent and opaque states, depen
on whether the frequencyV falls in a transmittance band o
a photonic band gap. This appears to be true for the cas
one-dimensional periodical structures. But for two- a
three-dimensional periodicity more careful considerat
shows that in addition to that there are other interesting p
nomena. For instance, if the fixed frequencyV was origi-
nally situated within a photonic band gap, then the grad
alteration of the photonic band structure caused by the ex
nal controlling field will result in at least two distinctiv
transitions accompanied by a dramatic modification of
character of electromagnetic wave propagation through
medium. To a certain degree, the corresponding transit
are similar to those well known in the theory of electron
topological phase transitions~see Ref. 8 and reference
therein!. Since there are only few qualitatively differen
anomaly types in electromagnetic wave propagation, we
find a practical example that enables us to demonstrate
these interesting features altogether. In Sec. III such an
ample will be studied in great detail.

If the amplitude of the propagating electromagnetic wa
is also too strong to be treated within linear approximati
some qualitatively new interesting effects can occur even
the case of one-dimensional periodical structures, see,
example, Refs. 9–12. Those questions are beyond the s
of our consideration.

The rest of the paper is organized as follows. The n
section is devoted to a brief illustrative discussion of t
materials that can can be used as constitutive component
tunable photonic crystals and their expected properties. T
we undertake an extensive theoretical analysis of the t
dimensional~2D! tetragonal structure.

II. MATERIALS FOR TUNABLE PHOTONIC CRYSTALS

There exist many dielectric materials with pronounc
nonlinearity in the electric or magnetic properties. In partic
lar, most of ferroelectrics display a substantial depende
«5«(E0). On the other hand, magnetically ordered crysta
especially ferromagnets and ferrimagnets, are likely to ma
fest a magnetic nonlinearitym5m(H0) even in a relatively
low external magnetic fieldH0 . Unless otherwise specified
we restrict ourselves to the case of the electric-fie
dependent tensor«5«(E0), having in mind that the entire
consideration holds for the case of the controlling magn
field as well. In spite of the formal mathematical similarit
the electric and magnetic cases may differ significantly.
the known lossless dielectric materials with strong dep
dence«(E0), the electromagnetic properties are substantia
different from those of the media with ‘‘magnetic-type
nonlinearity likem(H0), especially so if the appropriate fre
quency range is concerned. We study here primarily the g
eral features of the tunable photonic crystals as describe
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the Introduction. Thus we do not focus on a particular ma
rial since there is a variety of different situations, and fo
concrete problem with specified frequency range suita
materials can be selected to meet the requirements.

As we pointed out in the Introduction, one of the tw
constitutive components of the tunable photonic crystal m
be made of a material with substantial nonlinearity of t
electric permittivity«5«(E0). Note that the overwhelming
majority of ferroelectric materials also do meet this requi
ment. Hence, the main problem is how to find those diel
trics which, first, would be practically lossless in the giv
frequency range and, second, would manifest sufficien
high electric permittivity at that frequency range. For som
materials the above restrictions may be critical for infrared
optical frequencies, but in the microwave range up
1011 sec21 there exist hundreds of dielectrics with satisfa
tory physical characteristics. Particularly, the most attract
would be a situation when a small shift in the impress
controlling field would lead to a significant alteration of« in
one of the two constitutive components. There are two c
spicuous situations where such behavior should be expec
First, when the frequencyv of the propagating EM wave lies
in a vicinity of a resonance frequency of the medium. T
second situation occurs in a vicinity of a ferroelectric pha
transition accompanied by a strong anomaly in the elec
susceptibility ~see, for example, Ref. 13 and referenc
therein!. On the other hand, in the vicinity of a phase tran
tion or an electro-dipole resonance, the absorption effe
may increase dramatically and this would be highly unde
able. In a sense, the above two situations are extreme
may not be of interest if only a relatively moderate ba
structure rearrangement is required.

Before we proceed further, let us briefly touch upon po
sible applications of magnetic materials as the active e
ments of tunable photonic devices. Most of the so-called s
ferromagnets and ferrimagnets display high magnetic per
ability with tensorm5m(H0) being strongly dependent o
H0 , and from this point of view they would be ideal mat
rials for tunable photonic crystals. The problem is that ma
netic susceptibilityx~v! of the common ferromagnets an
ferrimagnets at high frequencies becomes very small.
frequency at whichm~v! drops significantly is usually much
lower than that of«~v! and lies somewhere within the radio
frequency range. Another problem is that in the presence
the magnetic fieldH0 , the temporal dispersion of magnet
susceptibility tensor may involve a substantial increase of
imaginary antisymmetric components like those respons
for Faraday rotation. This fact may significantly complica
the entire electromagnetic band structure. Nevertheless
possible advantages of creating tunable photonic dev
based on magnetically ordered materials are so attractive
it would certainly make sense to investigate thoroughly t
issue. With these exceptions, most of the principal results
the following sections equally hold for both electric an
magnetic-field controlled photonic crystals.

III. TWO DIMENSIONAL TETRAGONAL
PHOTONIC CRYSTAL

Let us consider a photonic crystal with tetragonal symm
try and 2D periodicity as shown in Fig. 1. Suppose that
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57 2843TWO-DIMENSIONAL TUNABLE PHOTONIC CRYSTALS
magnetic permeabilitym of both constitutive components a
the frequency range of interest is just the identity tensoI ,
i.e.,

m5I .

The electric permittivity tensor«5«(r ) is assumed to be rea
and position-dependent, it takes on two different values«1
and«2 , since there are two constitutive components. In
absence of external fieldE0 , both tensors«1 and «2 are
assumed to be isotropic,

For E050: «15«I , «25I . ~3!

For simplicity, the second constitutive component of the
tragonal structure in Fig. 1 is assumed to be void, there
«25I regardless of the external field. Space symmetry of
2D periodic structure belongs to the tetragonal point gro
4/mmm.

The uniform electric fieldE0 applied along thez direction
affects the tensor«15«1(E0) as follows:

«15F «'

0
0

0
«'

0

0
0
« i

G ; «25I , ~4!

where

«'5«'~E0!, « i5« i~E0!; E0iz. ~5!

Hence,«1(E0) is not isotropic any more. Formally, the ele
tric field E0iz lowers the tetragonal space symmetry of t
system down to 4mm. But the actual effective symmetry o
the macroscopic Maxwell equations remains 4/mmm. The
reason is that the only physical characteristic of the med
entering the macroscopic Maxwell equations is tensor«1
5«1(E0), which is always invariant under the space inve
sion operation—irrespective of the uniform applied field14

Therefore, the external fieldE0iz will not further complicate
the procedure of spectrum calculations. In particular, sinc
the case of the symmetry group 4/mmm~but not 4mm! ! the
xy plane coincides with the mirror plane of the photon
crystal, EM modes with two different polarizations~E mode
andH mode! will be independent and can be analyzed se
rately.

There exist a variety of dielectric materials in which d
electric constant can be altered substantially by an exte

FIG. 1. A slab of tetragonal 2D photonic crystal composed
lossless dielectric material embedded in air background. Only
waves propagating in thexy plane are considered.
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electric field. The character of the corresponding depende
«1(E0) may be qualitatively different for different types o
dielectric media, as ferroelectric crystals vs centrosymme
ones. Since the medium depends on the external fieldE0
parametrically, for the problems considered there is no n
to present the explicit dependence of«' and « i on E0 . In-
stead, in further considerations we deal only with the dep
dence of different spectral characteristic on the quantities«'

and« i .
Our treatment of lossless magnetic media is based on

classical Maxwell’s equations

¹3E52
1

c

]B

]t
, ¹–D50, D5«E, ~6!

¹3H5
1

c

]D

]t
, ¹–B50, B5H, ~7!

whereE, D, H, andB are the electric field and induction an
the magnetic field and induction, respectively, andc is the
velocity of light. In the two component 2D periodic mediu
we supposem and« to be dependent only onx andy. The
periodicity of the medium then is described by

«~x1Lg1 ,y1Lg2!5«~x,y!, ~8!

wheregj are integers andL is the linear dimension of the
square primitive cell of the tetragonal latticeL. The axisz we
will call the principal axis of the photonic crystal. The im
posed external electric fieldE0 aligned along the principa
axis z of the photonic crystal

E05F 0
0
h
G ~9!

alters the tensor«5«(x,y;h), i.e., «'5«'(x,y;h) and
« i5« i(x,y;h). In particular, the Maxwell equations~6! and
~7! will depend onz componenth of the external electric
field E0 .

f
e

FIG. 2. Dependence of photonic gaps on the dielectric c
stant: ~a! for H mode, d50.1; ~b! d50.3; ~c! for E mode d
50.1; ~d! d50.3.
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We consider only the EM waves propagating perpendi
larly to the principal axisz, which is equivalent to the as
sumption that the EM field depends only onx andy, i.e.,

H5H~x,y!, ¹•H50; E5E~x,y!, ¹•«E50.
~10!

Denoting

~x,y!5r

and proceeding in the standard fashion, we introduce
harmonic in time fields

H~r ,t !5H~x,y!e2 ivt, E~r ,t !5E~x,y!e2 ivt, ~11!

H5FHx

Hy

Hz

G , E5FEx

Ey

Ez

G , ~12!

and arrive at the following eigenvalue problem
-

he

¹3E~r !5
iv

c
H~r !, ¹3H~r !52

iv

c
«~r !E~r !,

~13!

¹•«~r !E~r !50, ¹•H~r !50. ~14!

The above equations are evidently reduced to

¹3¹3E~r !5
v2

c2 «~r !E~r ! ~15!

or

¹3«21~r !¹3H~r !5
v2

c2 H~r !. ~16!

It is sufficient to analyze the spectrum of any one of t
problems~15! or ~16! for eitherE or H and then, the remain-
ing one can be found by means of Eq.~13!. Using standard
symmetry arguments one can verify that the spectral pr
lems~15! or ~16! can be reduced to the analysis of two kin
of modes: ~i! E-polarized fields~or TM modes! when Hz
n
FIG. 3. Successive cross-sections of theH-mode spectrum arranged in ascending order of«: the case~e! corresponds to the gap locatio
of the frequencyV51.41.
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FIG. 4. Three lowest bands of theH-mode spectrum for«516: ~a! n51; ~b! n52; ~c! n53; ~d! all three bands together. In this cas
the frequencyV51.41 falls in the gap between the first and the second bands@see Fig. 3~e!#.
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50 andEx5Ey50 and~ii ! H-polarized fields~or TE modes!
whenEz50 andHx5Hy50. Namely, forE-polarized fields
the following equation holds:

E5F 0
0

Ez~r !
G , H52

ic

v
¹3E52

ic

v F ]yEz~r !

2]xEz~r !

0
G ,

~17!

whereas forH-polarized fields we have

H5F 0
0

Hz~r !
G , E5

ic

v«'

¹3H5
ic

v«'
F ]yHz~r !

2]xHz~r !

0
G .

~18!

Hence, each of the vector problems~15! and~16! is reduced
to the following set of two scalar eigenvalue problems

2DEz~r !5v2c22« i~r !Ez~r !, ~19!

2¹«'
21~r !¹Hz~r !5v2c22Hz~r !. ~20!

Since«'(r ) and« i(r ) areL-periodic functions, we seek th
eigenfunctions of the spectral problems~19! and ~20! in the
Bloch form
Ez~r !5eikrEk~r !, Hz~r !5eikrHk~r !; k5~kx ,ky!,
~21!

whereEk(r ) andHk(r ) areL-periodic functions. Then plug-
ging them in Eqs.~19! and ~20! we obtain

2@]x,kx

2 1]y,ky

2 #Ek~r !5v2c22« i~r !Ek~r !, ~22!

] j ,kj
5] j2 ik j , j 5x,y; ~23!

2@]x,kx
«'

21~r !]x,kx
1]y,ky

«'
21~r !]y,ky

#Hk~r !

5v2c22Hk~r !, ~24!

wherer is in the primitive cell of the two-dimensional lattic
L andk runs the primitive cell of the latticeL8 dual toL.

The mathematical properties of the eigenvalue proble
~22! and~24! for square periodic geometries were thorough
analyzed in Refs. 15 and 16 by analytical methods and t
in Ref. 17 numerically. Based on those methods we carry
the computation for photonic crystals in the next section.

IV. COMPUTATION OF BANDS AND GAPS

In this section we carry out the computation of the sp
tral attributes of a tunable dielectric photonic crystal
square geometry as on Fig. 1. In this case, the latticL
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FIG. 5. Successive cross sections of theE-mode spectrum arranged in ascending order of«.
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5LZ2, whereZ2 is the square lattice with the unit squa
primitive cell @0,1#2 and L is the linear dimension of the
square primitive cell@0, L] 2 of the photonic crystal. Then th
problems~22! and ~24! can be rewritten in the form

2~]x8,mx8

2
1]y,my8

2 !Em~r!5Ã2«̄ i~r!Em~r!, ~25!

2F]x8,mx8

1

«̄'~r!
]x8,mx8

1]y8,my8

1

«̄'~r!
]y8,my8

GHm~r!

5Ã2Hm~r!, ~26!

wherer, m, Ã, «̄'(r) and «̄ i(r) are dimensionless quant
ties defined by

Ã25v2
«'~0!L2

c2 , r5~x8,y8!5
r

L
,

m5~mx8 ,my8!5Lk; ~27!

«̄'~r!5
«'~r!

«'~ 0̄!
, «̄ i~r!5

« i~r!

«'~ 0̄!
. ~28!
Now in the problems~25! and~26! r runs the unit cell@0,1#2

andm runs the cell@2p,p#2. Solving the eigenvalue prob
lems~25! and~26! we find the band dispersion relationship
vn(k) where n51,2,... is the band index. Dependence
photonic gaps on the dielectric constant is shown in Fig.

V. GROUP VELOCITY ANOMALIES

Most of the qualitative results concerning different a
pects of tunability equally apply toE and H modes. So,
wherever it is appropriate, we will not specify the EM wav
polarization.

Let us pick the frequencyV so that in the absence o
external field it falls in a gap of the electromagnetic spectr
vn(k). This implies that equationvn(k)5V has no solu-
tions for anyk lying in the xy plane, i.e.,

VÞvn~k! for any n and k. ~29!

The external field can alter the entire electromagnetic sp
trum including the location and the very existence of a p
ticular spectral gap. As a consequence, the fixed frequencV
can find itself within a neighboringtransmittance bandin
which, by definition, the equation
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V5vn~k! ~30!

has a solution. The band numbern may take on one or sev
eral values, depending on whether the equationV5vn(k)
has solutions for a single spectral branch, or for severa
them simultaneously. Equation~30! defines the equifre-
quency curves ink space.

For a particular value ofV and«, the equifrequency curve
represents the plane cross section of the appropriate
v5vn(k). In the case of overlapping bands the equif
quency curve is a superposition of individual contributio
from each separate bandn. This curve may comprise con
nected or disconnected pieces originated from the sam
different bands. In the course of the spectral structure m
fication caused by alteration of the controllable paramete«,
the shape and connectivity of the equifrequency curve
change dramatically. In this section we find out what kind
modifications the equifrequency curve undergoes, and h
these changes affect the conditions of EM wave propagat

The best way to elucidate the whole picture is to start w
a specific example. This example contains the character
features most of which persist in any kind of tunable pho
nic crystals. All those features develop even for the simp
situation, when in a transmittance band the equation~30! has
a solution for a single spectral band. The more complica
cases of overlapping bands will not bring about essenti
new features, rather we will simply have the superposition
the curves associated with different bandsvn(k).

In our example we consider the situation when, in t
course of band-structure modification caused by altering
controllable parameter«, the fixed frequencyV finds itself,
first, in the lowest band. Then, the frequencyV falls in the
lowest gap situated between the first and the second ba
Finally, the gap moves down further andV falls in the sec-
ond band.

In Fig. 3 the successive cross sections ofvn(k) are ar-
ranged in ascending order of«. The equifrequency curve
presented in Figs. 3~a!–3~d! are defined by the equationV
5v1(k), and those in Figs. 3~f!–3~h! are defined by the
equationV5v2(k). The further cross sections involve a
ditional bands.

In Fig. 4 we depicted the three lowest bandsvn(k), n
51,2,3 of theH-mode spectrum for«516. In this case the
frequencyV falls in the gap located between the first and t
second bands@see Fig. 3~e!#.

For the case ofE mode the corresponding set of cro
sections of the first and the second bands is presented in
5.

Let start our discussion with the case of theH mode.
To understand the features of the EM wave propaga

under the band-structure modification we study the gro
velocity

vn~k!5¹kvn~k! ~31!

that characterizes speed and direction of wave propagat
Let us start with a gap situation represented in Fig. 4 a

Fig. 3~e!. When controllable parameter« decreases, the fixe
frequencyV finds itself in the first band. Under that trans
tion from the opacity to the transmittance, EM properties
the photonic crystal will experience a dramatic transform
of
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tion that can be traced in Figs. 3~e!–3~d!. Let us consider
those transformation in more detail.

~1! Right after the transition from the opacity@Fig. 3~e!#
to the transmittance@Fig. 3~d!# the group velocityv1(k) is
isotropic in thexy plane and has small magnitude. In ge
eral, a transition between opaque and transparent state
curs whenV coincides with an absolute extreme value of t
corresponding bandvn(k). In our casethe first critical value
of « is defined by the equation maxkv1(k;«)5V.

~2! Further decrease of« leads to the development of
strong anisotropy of the EM wave propagation that culm
nates atthe second critical point@see Fig. 3~b! and Fig. 6#.
This critical point occurs whenV coincides with a saddle
point of the bandv1(k;«). At this point the EM waves can
only propagate within two narrow angles along the directio
@110# and @11̄0#. Indeed, as illustrated in Fig. 6, for allk on
the equifrequency curvev1(k;«)5V the direction of the
group velocityv1(k) takes on only the values close tojust
two directions, namely, the directions of the square diag
nals. An extreme anisotropy in the EM wave propagat
exists not only in a vicinity of the second critical point b
also at some other values of« @see, for example, Fig. 3~g!#.

~3! Further decrease of« makes the condition of the EM
wave propagation nearly isotropic@Fig. 3~a!#.

~4! In addition to the two mentioned critical points ass
ciated with the two topological modifications of the equifr
quency curve, there must exist another distinctive anomal
the light propagation. Indeed, at some point of the spectr
transformation from Figs. 3~d!–3~a! a closed piece of the
equifrequency curve must lose its convexity@as is the case
with Fig. 3~c!# and then must gain it back. As a consequen
for some directions of the EM wave propagation there w
be several waves propagating with different speed. In ot
words, there will be several vectorsv1(k) of the same direc-

FIG. 6. The second critical point corresponding to that of F
3~b!: ~a! the equifrequency curve; the arrows point in the dire
tions of the group velocity;~b! the hatched sectors indicate th
allowed directions of the EM wave propagation.
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tion but different magnitudes. And there will be at least tw
critical points at which this multivalence appears and v
ishes.

Clearly, the total number of critical points associated w
local extremes or saddle points ofvn(k), as well as those
associated with zero curvature points on the equifreque
curve vn(k)5V, may differ for different bands. But the
described above critical points are always present.

Consider now the case of increasing parameter« which is
presented in Figs. 3~f!–3~l!. The most significant difference
compared to the case of decreasing« is that right after the
transition point between the gap and the second band,
EM wave propagation will be essentially anisotropic, and
each directionv2(k)/uv2(k)u of the group velocity there will
be two waves propagating with different speeduv2(k)u.

In the cases Figs. 3~i!–3~f! we have curves originate
from both the second and the third bands.

Let us turn now to the case of theE mode. The set of the
spectral cross sections presented in Fig. 5 looks very sim
to that of theH mode in Fig. 3. The only important differ
ence is that for the chosen values ofV andd, in the course of
increasing« the frequencyV moves from the first band di
rectly to the second one without being in the gap. Indeed
Fig. 5~e! one can see the instant of a slight overlapping of
two adjacent bands. The gap opens at«.15 when the fixed
frequencyV is already far away in the second band. No
d

,

-

cy

he
r

ar

in
e

that the rest of the anomalies in the EM wave propagat
remains in place.

VI. CONCLUSIONS

We have studied the basic properties of 2D tunable p
tonic crystals. It has been shown that the transition betw
opaque and transparent states of the system inevitably
volves some distinctive anomalies, including extreme anis
ropy of EM properties. Since the analysis of the tunabil
effects has been based on the precise band-structure ca
tions, the predicted anomalies can be unambiguously ide
fied experimentally. Most of the qualitative aspects of t
tunability effects can be extended, we believe, to the cas
3D photonic crystals.

ACKNOWLEDGMENT AND DISCLAIMER

Effort of A. Figotin, Yu. Godin, and I. Vitebsky is spon
sored by the Air Force Office of Scientific Research, A
Force Materials Command, USAF, under Grant No
F49620-94-1-0172 and F49620-97-1-0019. The views
conclusions contained herein are those of the authors
should not be interpreted as necessarily representing the
ficial policies or endorsements, either expressed or impl
of the Air Force Office of Scientific Research or the U.
Government.
J.

r,

ac-
into

it-
1J. Opt. Soc. Am.10 ~2! ~1993!, special issue on photonic ban
gaps.

2S. John, Phys. Today44 ~5!, 32 ~1991!.
3S. John, inPhotonic Band Gaps and Localization, Vol. 308

NATO Advanced Study Institute Series B: Physics, edited by C.
M. Soukoulis~Plenum, New York, 1993!.

4J. D. Joannopoulos, R. D. Meade, and J. N. Winn,Photonic Crys-
tals. Molding the Flow of Light~Princeton University Press
Princeton, NJ, 1995!.

5P. R. Villeneure and M. Piche´, J. Opt. Soc. Am. A8, 1296
~1991!.

6Scattering and Localization of Classical Waves, edited by P.
Sheng~World Scientific, Singapore 1990!.

7P. M. Hui and N. F. Johnson, inSolid State Physics, edited by H.
Ehrenreich and F. Spaepen~Academic, New York, 1995!, Vol.
49, pp. 151–203.

8Ya. Blunteret al., Phys. Rep.245, 159 ~1994!.
9W. Chen and D. L. Mills, Phys. Rev. Lett.58, 160 ~1987!.
10J. He and M. Cada,IEEE J. Quantum Electron.27, 1182~1991!.
11M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer,

Appl. Phys.76, 2023~1994!.
12M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloeme

Phys. Rev. Lett.73, 1368~1994!.
13A. Prokhorov and Yu. Kuz’minov,Ferroelectric Crystals for La-

ser Radiation Control~Hilger, London, 1990!.
14The excessive symmetry of the constitutive relations in the m

roscopic Maxwell equations holds as long as we do not take
account the effect of space dispersion of the dielectric perm
tivity «1 from Eq. ~4!.

15A. Figotin and P. Kuchment, SIAM~Soc. Ind. Appl. Math.! J.
Appl. Math. 58, 68 ~1996!.

16A. Figotin and P. Kuchment, SIAM~Soc. Ind. Appl. Math.! J.
Appl. Math. 56, 1561~1996!.

17A. Figotin and Yu. Godin, J. Comput. Phys.136, 585 ~1997!.


