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Abstract. In order to improve the direction-of-arrival 

(DOA) estimation performance of quasi-stationary signals 

(QSS) using a uniform circular array (UCA), this paper 

addresses novel method in the context of sparse represen-

tation framework. Based on the Khatri-Rao transform, 

UCA can achieve a higher number of degrees of freedom 

to resolve more signals than the number of sensors. Then, 

by exploiting the two-dimensional (2-D) joint grid of UCA, 

the estimations of elevation and azimuth angles can be 

obtained from the sparse representation perspective. Final-

ly, an expectation-maximization iteration method is devel-

oped to estimate DOAs of QSS from a Bayesian perspective. 

Since SBL makes full use of the sparse structure of QSS, 

thus the proposed algorithm possesses higher angular 

resolution and better DOA estimation precision compared 

with existing methods. Numerical simulations demonstrate 

the validity of the proposed method. 
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1. Introduction 

Direction of arrival (DOA) estimation is an important 

problem in array signal processing, which is widely used in 

radar, sonar, wireless communication and seismic sensing. 

Classic subspace-based algorithms, which include multiple 

signal classification (MUSIC) [1] and estimation of signal 

parameters via rotational invariance techniques (ESPRIT) 

[2], have been verified as efficient estimation techniques. 

However, previous studies mainly focused on the Gaussian 

signals. In this paper, we address the DOA estimation prob-

lem in which the signals are assumed to be quasi-station-

ary. Quasi-stationary signals (QSS) are a class of nonsta-

tionary signals in which the statistics are locally static over 

a short period of time, but exhibit differences from one 

local time frame to another. Speech and audio signals are 

often recognized as QSS [3]. DOA estimation of such 

signals plays an important role, for example, in microphone 

array processing of speech signals [4] and birds monitoring 

systems of the airport [5]. However, it is a big challenge in 

some scenarios where the number of signals is more than 

that of sensors, which turns out to be the so-called under-

determined DOA estimation problem.  

As is well known, an array with M sensors only can 

resolve up to M – 1 QSS. In order to achieve underdeter-

mined DOA estimation, a Khatri-Rao (KR) subspace 

method is recently proposed in [6] to tackle the underdeter-

mined DOA estimation of QSS. In particular, by vectoriz-

ing the covariance matrix of array output vector, the physi-

cally underdetermined DOA estimation problem can be 

transformed as virtually overdetermined case. The idea 

behind KR transform lies in achieving the higher number 

of degrees of freedom (DOFs) by exploiting the difference 

co-array, whose virtual sensor positions are determined by 

the lag differences between physical sensors [7], [8]. 

However, previous works seldom address DOA esti-

mation from the two-dimensional (2-D) perspective. To the 

best of our knowledge, [9] proposed a 2-D DOA estimator 

of QSS with the configuration of the L-shape array. Never-

theless, the estimation performance of L-shape array is 

vulnerable to angle pairing error, which may lead to DOA 

estimation failure. Since uniform circular array (UCA) is 

capable of providing 360° azimuthal coverage and identify-

ing both azimuth and elevation angles simultaneously, it is 

widely employed in the 2-D DOA estimation. Though [8] 

has proposed DOA estimation of QSS based on the UCA, 

it assumes that each signal is located at a fixed and known 

elevation angle. Hence, it is the one-dimensional (1-D) 

DOA estimation in essence. In addition, the truncated error 

inherent in the involved manifold separation technique will 

degrade the estimation performance. 

Although subspace-based methods proposed in [6] 

can be directly utilized to estimate the 2-D DOAs of QSS, 

its estimation performance may deteriorate significantly in 

low SNR or small snapshots. In order to circumvent this 

issue, the emerging sparse representation (SR) methods 

[10–12], which exhibit superiority in estimation precision, 

robustness to noise and correlation of signals, are tailored 

to determine the DOAs of QSS. The idea of utilizing SR, 
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which is intrinsically different from subspace-based 

methods, provides a new perspective for DOA estimation. 

Sparse Bayesian learning (SBL) is a kind of efficient 

methods [13–15] for the sparse signal recovery in SR, 

which uses the expectation-maximization (EM) iteration 

method to estimate DOAs of QSS from a Bayesian per-

spective [16]. The work in [17] has demonstrated that 

SBL-based methods can achieve better estimation perfor-

mance over conventional regularized optimization methods. 

In addition, the SBL-based methods do not need estimate 

parameters in performing the algorithms. Therefore, this 

paper mainly studies the 2-D DOA estimation of QSS via 

SBL. 

The remainder of this paper is organized as follows. 

Based on the data model of QSS for UCA, a virtual array 

with larger aperture is derived by vectorizing the covari-

ance matrix of UCA output vector in Sec. 2. Then, Sec-

tion 3 proposes novel 2-D underdetermined DOA estima-

tion method based on the SBL. The simulations are carried 

in Sec. 4. Section 5 concludes the paper. 

Throughout this paper, we use boldface lowercase and 

capital letters to denote vectors and matrices, respectively. 

The operators ()T, ()*, ()H,   and   represent the trans-

pose, conjugate, conjugate transpose, Khatri-Rao product 

and Kronecker product, respectively. The symbol E() and 

vec() stand for the mathematical expectation and vectori-

zation operators, respectively. In addition, IM denotes the 

M  M identity matrix and diag() is a diagonal matrix 

composed of the elements of a column vector. 

2. UCA Data Model from Sparse 

Representation Perspective 

2.1 DOA Estimation Model of UCA 

In this paper, the topological structure of UCA is 

shown in Fig. 1. We consider a UCA with M sensors and N 

far-field narrowband QSS impinge on the UCA. The obser-

vation vector of the kth frame is modeled as 

 ( ) ( ) ( ), 1,2,k k kt t t k K  x As n  ,  (1) 

where n(t)  M  1 is the zero-mean white Gaussian vector 

with covariance 2
kIM. sk(t) = [s1(t), s2(t), …, sN(t)]T and  

sn(t) is assumed to be a quasi-stationary process with K 

non-overlapped frames and the length of each frame is L, 

i.e., E{sn(t)2} = p2
nk for [( 1) , 1]t k L KL    , which means 

the second-order statistics of QSS are static within one 

frame, but exhibit differences from one local time frame to 

another. In addition, 
2

nkp  represents the signal power of the 

nth signal in the kth frame. A = [a(1,1), a(2,2),…, a(N,N)] 

 M  N is the steering matrix of UCA and a(n,n)] is the 

M  1 steering vector 

 

Fig. 1. Topological structure of UCA. 
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where j2 r    , 2m m M   for m = 1,…,M. r is 

the radius of UCA and  is the wavelength. In this paper, 

(0 ,360 )n     is the azimuth angle and (0 ,90 )n     is 

the elevation angle. 

The corresponding exact local covariance in the kth 

frame can be written as 

  H H 2( ) ( )k k k k k Mt t    R x x AD A I   (3) 

where 2 2 2

1 2diag(p ,p , p )k k k NkD  . 

2.2 Khatri-Rao Transform 

In this subsection, by applying KR transform to the 

covariance matrix kR , we can obtain 
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The vectorized yk behaves like a new signal model. 
2 2 2 1

1 2[ , , , ]T N

k k k Nkp p p  q    is the new signal vector. 

2

k I  stands for the noise and 
2

T T T T 1

1 2[ , , , ] M

M

 I e e e  , 

where ei is a 1M   vector with one at the ith position and 

zero otherwise. 
2

1 1[ ( , ), , ( , )] M N

N N     B b b   is the 

virtual array steering matrix and ( , )n n b  is expressed as 
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where the subscripts p, q for p, q =1,2,…,M in (5) are the 

corresponding element position in a*(n, n) and a(n, n), 

respectively. The bpq can be obtained through the pth 

element in a
*(n, n) multiplying by the qth element in 

a(n, n). Consequently, we can give a general expression 

of bpq(n, n)  

( , ) exp (cos( ) cos( ))cos( )

exp 2 sin(( ) 2)sin(( ) 2 )cos( ) .

pq n n p n q n n

p q p q n n

b        

      

     
     

 (6) 
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According to (6), we know that virtual sensors lo-

cated on positions having different radius from the origin, 

which implies that we synthesize the virtual elements onto 

a non-uniform concentric circular array by using KR trans-

form with a UCA. In addition, the number of virtual ele-

ments is far more than the physical sensors and is less than 

the M2 distinct elements, this is because that there exist 

redundant elements in bpq. It is illustrated in [18] that the 

virtual elements of UCA with odd number of sensors is 

M(M – 1) + 1 while for the UCA with even number of 

sensors is M2/2 + 1. Therefore, the DOFs of UCA is greatly 

increased based on the KR transform, and we can apply (4) 

instead of (1) to achieve underdetermined DOA estimation. 

We stack yk (k = 1,2,…,K) to form a new matrix Y 

 = +Y BQ Ξ   (7) 

where 
2

1[ , , ] M K

K

 Y y y  , 
1=[ , , ] N K

K

Q q q  , 
2M KΞ   denotes the noise. 

2.3 2-D Sparse Representation 

Following the convention in the context of SR frame-

work, a fixed sampling grid is selected firstly that serves as 

the set of all candidates of DOA estimates. In this paper, in 

order to achieve 2-D DOA estimation of QSS, the azimuth 

and elevation angles are equally sampled into discretized 

grid sets of  = {θ̅1,
 θ̅2,…, θ̅Hθ}(0°, 360°) and  = 

{̅1,  ̅2,…, ̅H}(0°, 90°), respectively, as is shown in 

Figs. 2(a) and 2(b), where Hθ >> K, H >> K. In addition, it 

is assumed that the true DOAs are exactly on the sampling 

grid sets  and . In order to facilitate the writing in sub-

sequent section, we combine θ̅hθ (1  hθ  Hθ) and 

̅h 
(1  h  H) together. Thus, a joint 2-D sampling grid 

is constructed and the number of total grid points is H = 

Hθ  H, as is shown in Figs. 2(c), which satisfies the re-

construction condition H >> K. In Fig. 2(c), {(θn,n)}
N

n=1  

represents incident angles of N signals {sn}
N

n=1 while 

{h}
H

h=1 denotes H grid points after dividing 2-D angular 

space of interest. 

More compactly, {h}
H

h=1 can be expressed as 

 T

1 2[ , , , ]H  Ψ    (8) 

where each grid element h(1 < h < H) of Ψ  corresponds a 

discretized 2-D angle (θ̅hθ , ̅h 
)(1  hθ  Hθ, 1  h  H) 

and there exists correspondence relationship 1= ( ̅θ1,̅1), 

2= ( ̅θ2, ̅2), …, H–1= ( ̅θHθ,̅H–1), H= ( ̅θHθ,̅H). The ad-

vantage of representing the 2-D discretized grid as a single 

vector is that we can handle the 2-D problem in a 1-D 

angular space. Once h is solved, we can obtain the corre-

sponding DOA estimate (θ̅,̅ ) according to the correspond-

ence relationship in Fig. 2(c). 

As a result, equation (7) can be expressed as the 

following sparse representation model 

 

Fig. 2. 2-D sparse representation. 

 = ( ) Y B Ψ Q Ξ .  (9) 

2
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H H     B Ψ b b  is an over-com-

plete dictionary and it is defined as a collection of the 

steering vector over the entire grid set Ψ . In addition, it 

should be noted that 1 2=[q ,q ,q ] H K

K

Q  ， has K  col-

umns, so equation (9) satisfies the multiple measurement 

vector (MMV) model. 

In order to reduce the computation complexity of the 

signal reconstruction process and the sensitivity to the 

measurement noise, we can apply the singular value de-

composition (SVD) to (9) and Y  can be decomposed as 

 HY USV ,   (10) 

where the columns of U and V are the left-singular and 

right-singular vectors, respectively, while S  M2K is 

a diagonal matrix and can be expressed as 

 
2 2

1 ,

, ,

0
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S
S   (11) 

where S1 = diag(1,2,…,N). n denotes the nonzero 

singular value and 1  2 … N. Let V =[V1, V2], where 

V1 and V2 are matrices which consists of the first N and the 
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rest K – N columns of V, respectively. Then, by defining 

1Y YV , 1Q QV  and 1Ξ ΞV , we can obtain 

 = ( ) Y B Ψ Q Ξ    (12) 

where 
2M NY  , H NQ  , 

2M NΞ  . In addition, Y  

contains most signal information of the matrix Y . Based 

on the SVD, the column dimension of Y  is much smaller 

than Y , so the computation complexity is reduced. 

3. 2-D DOA Estimation Based on SBL 

In this section, we use the SBL method to solve equa-

tion (12). The reason why we choose the SBL is that the 

global minimum points of SBL correspond to the most 

sparse solution and the local minimum points of SBL are 

very few. 

3.1 Noise and Sparse Signal Model 

For a complex Gaussian distributed random variable 

( , )u CN    with mean  and covariance , the probabil-

ity density function (PDF) can be expressed as  

      11
( | , ) exp .

H

N
CN u u u  


     


  (13) 

In the SBL, it is usually assumed that the noise 

satisfies complex Gaussian distribution, thus we can obtain 

    1

1

| | 0,
N

n

n

p CN  



Ξ Ξ I   (14) 

where  denotes the noise precision. 

Further, for ease of inference, we assume that  satis-

fies the Gamma distribution since it is a conjugate prior of 

the Gaussian distribution. 

       1 1; , | , ea a bp a b a b a b   
          (15) 

where a and b are scale parameters. 

In addition, the likelihood function of (12) can be 

written as 

    1

1

| , | ( ) ,
N

n n

n

p CN  



Y Q Y B Ψ Q I   .  (16) 

For the sparse signal matrix Q  of interest, we adopt 

the two-stage hierarchical sparse prior model to describe 

Q , which guarantees that most rows of Q  being zeros. 

    
1

| | 0,
N

n

n

p CN


 Q β Q    (17) 

where 1Hβ   and diag( )Δ β . 

Similarly to (15), by defining the scale parameters c 

and d, the hyperparameter  satisfies 
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According to the above analysis, the joint PDF can be 

expressed as 

             , , , | , |p p p p p  Y Q β Y Q Q β β    . (19) 

3.2 Bayesian Inference 

Since p(Q̃,,Ỹ) cannot be explicitly calculated, we 

are able to use the EM iteration algorithm to perform the 

Bayesian inference. By treating Q̃ as a hidden variable, 

whose posterior distribution is 

    
1

| , , | ,
N

n n

n

p CN


Q Y β Q μ Σ    (20) 

where nμ  stands for mean and Σ  denotes covariance. 

From Bayes’ rule,  | , ,p Q Y β   can be rewritten as 

      
 

| , |
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In (21), p(Ỹ, ) is independent of Q̃ and can be 

calculated according to  and . Therefore, we have 

      | , , | , |p p p QY β Y Q Q β    .  (22) 

By combining (14)–(23), we can obtain 

 ( ) ,h

n nμ ΣB Ψ Y   (23) 

  -1
-1( ) ( )+ .HΣ B Ψ B Ψ Δ    (24) 

In order to calculate n and , we need estimate the 

hyperparameter  and . Based on a maximum a posteriori 

(MAP) optimal estimate, they can be estimated by 

maximizing p(, Ỹ). Due to the fact that p(Ỹ, , ) = 

p(, Ỹ) p(Ỹ), so the maximization of p(, Ỹ) is 

equivalent to maximizing p(Ỹ, , ) since p(Ỹ) is independ-

ent of  and . Then, by treating Q̃ as a hidden variable, 

we can adopt an EM algorithm to solve  and  by 

maximizing In p(Ỹ, Q̃, , )p(Q̃Ỹ,, ) where p(Q̃Ỹ,, ) 

denotes the expectation operator with respect to 

p(Q̃Ỹ, , ) and p(Ỹ, Q̃, , ) has been given in (19). 

Therefore,  and  satisfy 

    
( | , , )

, In , , ,
p

L p


 
Q Y β

β Y Q β
 

 .   (25) 
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By maximizing In (p(ỸQ̃, )p())p(Q̃Ỹ,, ), we can 

obtain the update of  
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By maximizing In p(Q̃) p()p(Q̃Ỹ,, ), the update 

of  can be written as 
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1
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β
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. (27) 

Based on the above analysis, we firstly initialize the 

hyperparameter  and . Then, n and  can be calculated 

according to (23), (24). Finally, we update  and  accord-

ing to (26), (27). This process is repeated until 
1

2 2

i i i   β β β  or the maximum number of iterations is 

reached, where  is a tolerance. We can obtain final n and 

, so the DOAs can be estimated. 

 2= .n n nnP μ Σ    (28) 

For the readers’ convenience, the calculation 

procedure of the proposed method is summarized in Tab. 1. 
 

The proposed algorithm: 2-D DOA estimation based on SBL 

Input: The UCA observation data ( )k tx , 1,2,k K   

Step1: Compute 
2

k k k y Bq I  

Step2: Form = +Y BQ Ξ  by stacking ky  

Step3: Construct SR model = ( ) Y B Ψ Q Ξ   

Step4: Iterative Calculation based on SBL method 

Initialize  , β  and   

While stopping criterion is not met  do 
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                    If 1

2 2
-i i i  β β β  

                         break 

end 

1i i   

end 

Final nμ  and Σ  

Output: Determine the DOA estimates from 2=n n nnP μ Σ  

Tab. 1. The calculation procedure of the proposed method. 

4. Simulation and Results 

In order to verify the performance of the proposed 

algorithm, the following simulations are carried. Unless 

otherwise specified, we set general simulation parameters. 

The UCA has M = 5 sensors and the radius of the UCA is 

r = /2. The incident signals are regarded as QSS. Each 

QSS has K = 30 frames and the length of each frame is 

L = 1024. In the proposed method, we select scale parame-

ters a = 10–4, b = 10–4, c = 1, d = 10–2, and initialize 

 
1

=100 Var
N

nn
N

 Y , 2

1
=

N H

nn
M N

β B Y , where 

Var(Ỹn) denotes the variance of Ỹn. For the stopping crite-

rion, we set  = 10–4 and the maximum number of itera-

tions are 2000. 

4.1 2-D Spatial Spectra Distribution of the 

Proposed Method 

Firstly, we simulate the spatial spectra distribution of 

both overdetermined and underdetermined 2-D DOA 

estimation of the proposed method. For the overdetermined 

case, we consider that four signals from directions  

(100°, 20°), (150°, 30°), (200°, 40°), (250°, 50°) impinge 

on the UCA. For the underdetermined scenario, we 

consider that six signals from direction (50°, 10°), 

(100°, 20°), (150°, 30°), (200°, 40°), (250°, 50°), 

(300°, 60°) impinge on the UCA. Additionally, in the 2-D 

angle range of   (0°, 360°) and   (0°, 90°) with a step 

size of 5°, we select H = 1387 discrete grids. When SNR is 

5 dB, Figs. 3(a) and 3(b) show the 2-D overdetermined and 

underdetermined spatial spectra of the proposed method, 

respectively, where the dashed lines denote the true  

DOAs. It can be seen from Fig. 3 that the proposed method 

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

(100,20)(150,30)(200,40) (250,50)

Discrete 2-D grids

N
o

rm
al

iz
ed

 s
p

at
ia

l 
sp

ec
tr

u
m

 

True DOAs

The proposed method

 
(a) Overdetermined DOA estimation 
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(b) Underdetermined DOA estimation 

Fig. 3. 2-D DOA estimation of the proposed method. 
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can correctly estimate DOAs even though the number of 

signals is larger than the number of sensors, which means 

the proposed method has the ability to achieve 2-D 

underdetermined DOA estimation. 

4.2 DOA Estimation Precision of Different 

Methods 

In this subsection, we compare the DOA estimation 

precision between the proposed method and state-of-the-art 

schemes, such as KR-MUSIC [6], KR-CAPON [6] and 

FO-MUSIC [19] through simulation experiment. The root-

mean-square error (RMSE) is introduced as the evaluation 

standard [20], where P denotes the number of Monte Carlo 

trials and N is the number of signals. ˆ
pn  is the estimated 

value of n in the pth trial, 

 2

1 1

1 ˆ( ) .
P N

pn n

p n

RMSE
PN

  
 

     (30) 

Meanwhile, the Cramer-Rao Lower Bound (CRB) is 

also plotted as a benchmark in following simulations [21]. 

In order to facilitate the precision analysis, we fix elevation 

angle  at 90°, which means the elevation angle could be 

ignored in following simulations. The azimuth angle set-

ting is the same as in Sec. 4.1. Unless otherwise specified, 

we use the discrete grid in the azimuth angle range of 

  (0°, 360°) with a step size of 1°. By performing 500 

times Monte Carlo trials, the overdetermined DOA estima-

tion RMSE versus SNR and snapshots are plotted in Fig. 4, 

respectively. We record 1024 snapshots and Fig. 4(a) plots 

the RMSE of various algorithms varying with the SNR. 

When SNR is 5 dB, the RMSE versus snapshots of each 

frame is shown in Fig. 4(b). From Fig. 4, we can see that 

the RMSE of four methods decrease rapidly with the in-

crease of SNR or snapshots. In general, the FO-MUSIC 

method has the worst estimation accuracy, because there 

exists error in the estimated four-order cumulants due to 

the finite sampling snapshots, which deteriorates the esti-

mation performance. By using the Khatri-Rao transform, 

the virtual array aperture is extended. Therefore, the KR-

MUSIC and KR-CAPON have improved accuracy in terms 

of RMSE compared with FO-MUSIC, and the estimation 

performance of KR-MUSIC is a little better than KR-

CAPON. The proposed method has the highest DOA esti-

mation precision over all the range of SNR or snapshots 

and the trend of its performance curve is the same as the 

CRB when the SNR is larger than 5 dB and/or when the 

snapshots is larger than 1024. This is because the proposed 

method makes full use of the sparse structure of QSS from 

a Bayesian perspective and the proposed method does not 

require the parameter estimation in the calculation process 

by using the Bayesian inference. 

Similarly, we can also obtain the underdetermined 

DOA estimation RMSE versus SNR and snapshots, as is 

shown in Fig. 5. It is seen from Fig. 5 that the proposed 

method still has the best DOA estimation precision compared 
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(a) RMSE versus SNR 
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(b) RMSE versus number of snapshots 

Fig. 4. Overdetermined DOA estimation RMSE. 
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(a) RMSE versus SNR 
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Fig. 5. Undermined DOA estimation RMSE. 
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with existing three methods and the trend of its per-

formance curve can still reach the CRB at high SNR and/or 

big snapshots. 

4.3 Angular Resolution Comparison 

In order to verify the angular resolution of the 

proposed method, we consider two closely spaced QSS 

from the azimuth angles 1 = 100°– Δ and 2 = 100°+ Δ, 

respectively, where Δ is varied from 0° to 8° with a 0.5° 

step. 

We define that two signals can be correctly resolved 

when there are two peaks in the spatial spectrum and the 

estimated DOAs satisfy 1 1
̂      and 2 2

̂     . 

The SNR is 5 dB and the snapshots is 1024. By conducting 

200 times Monte Carlo trials, the resolution probability 

versus Δ is plotted in Fig. 6. It can be seen from Fig. 6 

that the proposed method has the best angular resolution 

and the resolution probability can reach 1 when Δ = 2°. In 

addition, the angular resolution of KR-MUSIC is a little 

better than FO-MUSIC. 

5. Conclusion 

This paper studies the 2-D DOA estimation of QSS in 

the context of SR framework. Firstly, the Khatri-Rao trans-

form is applied to the UCA data model, which makes that 

the virtual array aperture of UCA is extended, so that the 

proposed method has the ability to estimate more signals 

than number of sensors. Then, by 2-D joint grid discretiza-

tion of UCA, the azimuth angle and elevation angle of QSS 

can be estimated simultaneously from SR perspective. 

Finally, an expectation-maximization iteration method is 

developed to estimate DOAs of QSS based on the SBL 

method. Since this paper makes full use of the sparse struc-

ture of QSS from a Bayesian perspective, thus the pro-

posed method has better estimation precision and angular 

resolution compared with existing methods. In addition, the 

proposed method does not require the parameter estimation 

in the calculation process, which facilitates the engineering 

application. However, the assumption that the true DOAs are 
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Fig. 6. Angular resolution analysis. 

located on the predefined spatial grids is not always valid 

in practical implementations. The DOA estimation perfor-

mance of the proposed method in this paper is limited by 

the off-grid effect of signals and mismatch of the SR model. 

Therefore, future research efforts will aim to solve the 

problem of off-grid and model mismatch. 
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