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ABSTRACT 

Two-dimensional windows find applications in many diverse fields, 

such as the spectral estimation of random fields, the design of two- 

dimensional digital filters, optical apodization, and antenna array 

design.   Many good one-dimensional windows have been devised, but 

relatively few two-dimensional windows have been investigated.    In this 

paper we show that good two-dimensional windows can be obtained by 

rotating good one-dimensional windows.   That is, if w(x) is a good 

o/^2 
symmetrical one-dimensional window, then w2(x,y) = w(\ x   + y ) 

is a good circularly symmetrical two-dimensional window. 
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TWO-DIMENSIONAL WINDOWS 

I. Introduction 

Two-dimensional windows find applications in many diverse fields, such as 

the spectral estimation of random fields, the design of two-dimensional digital filters,* 

optical apodization, and antenna array design. 

1-4 
Many good one-dimensional windows have been devised,       however, rela- 

tively few two-dimensional windows have been investigated.   '   In this paper, we 

establish a result which enables us to get good two-dimensional windows from good 

one-dimensional windows. 

II. The Problem 

We first review briefly the one-dimensional problem.   Let the Fourier trans- 

form of a function f(x) be F(u).   For some reason, we want to truncate f(x): 

g(x) = f(x) w(x) (1) 

w(x) = 0, for |x| > A (2) 

where A is a constant. 

The Fourier transform of g(x) is 

G(u) = F(u)<S> W(u) (3) 

where W(u)  is the Fourier transform of w(x), and <8> denotes convolution. 

Our problem is to choose an appropriate shape for the window function w(x) such 

that G(u) is close to F(u) and in any region surrounding a discontinuity of F(u), 

G(u) will not contain excessive ripples.   It is well known that the Fourier trans- 

form W(u) of a good window w(x) should have a big central peak and small sidelobes. 



In two dimensions, the problem is entirely similar.   Let the two-dimensional 

Fourier transform of a function f2(x,y) be F2(u,v), and let 

g2(x,y) = f2(x,y) w2(x,y) (4) 

2       2 2 
where w2(x,y) = 0for |x   + y  | >A (5) 

The Fourier transform of g2(x,y) is 

G2(u,v) = F2(u,v)®W2(u,v) (6) 

where W2(u,v) is the Fourier transform of w2(x,y).   The problem is to 

choose an appropriate shape for the two-dimensional window function w2(x,y) such 

that G2(u,v) is close to F2(u,v) and in the neighborhood of a discontinuity of F2(u,v), 

G2(u,v) does not contain excessive ripples. 

III.     The Result 

Intuitively,  we feel that if w (x) is a good symmetrical one-dimensional 

window, then .  
/2       2 

w2vx,y) = w (Vx   +y ) (7) 

will be a good two-dimensional window. 

This is indeed partially verified by the following two examples. 

The first example is 

w(x) =   (l, for |x| <;  1 (8) 

(0, for |x| >  1 

Then the Fourier transform is 

W<u)=^P- (9) 
whose first side-lobe peak is about 20$ of the peak at u =0.   The corresponding 

two-dimensional window 



S2       2 
1, for I x   +y   |^1 

2       2 
0, for | x   + y  | > 1 

has the two-dimensional Fourier transform 

w
2(u,v) = 

^(xA^+v2) 

/T~    2 
v/u   +v 

whose first side-lobe peak is only about 12<# of the peak at u = 0 = v. 

The second example is 

w (x)=    I 1 - x, for | x| ^ 1 

0, for | x| > 1 

The Fourier transform is 

x       / Sin 1 \ 
W(u) = 

(10) 

(ID 

(12) 

(13) 

whose side-lobe peak is about 44 of the peak at u = 0.   The corresponding 

two-dimensional window 

w2(x,y) = (1 -Vx2 + y2 , for |x2 -h y2|< 1 

0, for | x2+y2|> 1 

has a two-dimensional Fourier transform 

P 

W2(u,v) = 2n 
-3 s, o(t)dt -p"2Jo(p) 

(14) 

(15) 

/ 2       2 
where p =y/\i   + v , whose first side-lobe peak is only about 2#of the peak 

at u = 0 = v. 



The above comparisons are, however, unfair.   Because when we convolve 

a window with a discontinuity, what count in the one-dimensional case are the 

areas under the side-lobes, while in the two-dimensional case what count are the 

volumes under the side-lobes.   A fair comparison would be to look at the result 

of the convolution.   One thing we can say along this line is contained in the following 

theorem which is the main result of this paper. 

Theorem.    If a symmetrical one-dimensional window w (x) and a two-dimensional 

window w (x,y) are related by 

w2(x,y)=w  (X2 + y2) (16) 

then their Fourier transforms W(u) and W2(u, v) satisfy the relation 

^  W2(u,v)® H2(u,v) =W(u)®H(u) (17) 

where H(u) = jl, for u * 0 (18) 

(0, for u <0 

H2(u,v)=   jl, for ustOand all v (19) 

(0, for u <0 and all v 

and® denotes convolution. 

Proof.    We first show that 
00 

W(u) = i    j    dvW2(u,v) (20) 

By definition, 
-00 

oo 

w2(x,y) = —2~    /    dudv W2(u,v) e j(xu+yv) 



Whence 

w2(x •°) = i/ du e 
jxu i/dvW2(u,v) (21) 

But from Eq.  (16), 

w2(x,0) = w(x)   ^ 

Therefore from Eq.  (21),   ^    f dv W2(u,v) 

is the Fourier transform of w(x).   This established Eq. (20). 

Now, °° 

W(u) ® H(u) =  f dt W(t) H (u -t) 

and 
■/ 

dt W(t) 

W2(u,v)® H2(u,v) =   f /* dtds W(t,s) H2(u-t,v-s) 

u » 

=      f   dt f ds W(t,s) 
"00 00 

From Eqs.  (22) and (20), we have 

U oo 

W(u) <8> H(u) = ^   f dt   f ds W(t, s) 

"00 "00 

1 
^  W2(u,v)®H2(u,v) 

by virtue of Eq. (23). 

(22) 

(23) 



IV.     The Design of Two-Dimensional Non-recursive Ideal Low-Pass Filters 

One way of designing one-dimensional non-recursive digital filters is the 

so-called window method . To fix ideas, let us consider the design of an ideal 

low-pass filter.   The ideal frequency response is 

F(u) = \ 1,   for |u| £B (24) 

JO, for |u|>B 

where B is a constant.   (This frequency response is actually repeated 

periodically because the impulse response is sampled).   The inverse Fourier 

transform f(x) of F(u), which is the impulse response, has infinite duration, but 

in reality we have to use a finite-duration impulse response. So we truncate f(x) 

by using a window: 

g(x)=f(x) w(x) (25) 

w(x) = 0, for |x|> A (26) 

where A is a constant.   The actual frequency response we are getting is 

then 

G(u) = F(u)®W(u) (27) 

Suppose now we wish to design a two-dimensional ideal low-pass filter with 

an ideal Frequency response 

F9(u,v) =F(v/u2 + v2) =(1, for |u2 + v2| £ B2 (28) 
\ 2        2 2 
JO, for |u   +v   | >B 

And we truncate the two-dimensional impulse response f2(x,y) by a two- 

isional window w (x,y).   Then the actual frequency response we are getting 

G2(u,v) = F2(u,v)®W2(u,v) (29) 



Let us assume that the widths of W(u) and W2(u,v) are much smaller than 

B, then near the discontinuities of F (u), viz.,  u = ± B, G(u) is essentially equal to 

the convolution of W(u) and a one-dimensional step function, and similarly, near 
2       2       2 

the discontinuities of F2(u,v), viz. , u   + v   = B , G2(u,v) is essentially equal to 

the convolution of W2(u,v) and a two-dimensional step function.   It therefore follows 

from our theorem that: 

if 

w2(x,y) = w (Vx2+y2) (30) 

then 

^  G2(u,v)«G(\Ai" + 0 (31) 

This means that we can design a good two-dimensional low-pass filter by 

using the window w (x,y) as given by Eq. (30), if w(x) is a good window to use 

in designing a good one-dimensional low-pass filter. 

V.       Summary 

We have shown that if w(x) is a good symmetrical one-dimensional window, 
/ 2       2 

then w (x,y) = w (\/x   +y ) is a good circularly symmetrical two-dimensional 

window. 
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