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The Jordan curve theorem is one of those frustrating results in topology: it is intuitively clear but quite hard to 

prove. In this note we will look at two discrete analogs of the Jordan curve theorem that are easy to prove by an 
induction argument coupled with some geometric intuition. One of the surprises is that when we discretize the 
plane we get two Jordan curve theorems rather than one, a consequence of the interplay between two natural 
products in the category of graphs. Topology in this context has been studied by Farmer in [2]. 

To state the discrete versions, we need to know what the discrete analog of the plane is and what plays the 
role of a simple closed curve. Since the plane is the topological product of two lines, we take as our discrete 
analog the product of two discrete lines. We will use undirected graphs for our analogs of spaces, with vertices 
for points and edges connecting points which are to be thought of as touching. 

DEFINITION 1. A discrete n point line [1, n] is a graph with vertices {1, 2, ... , n } and edges connecting each 
vertex to itself and to its successor. The discrete line L is a similar graph based on all of the integers. 

DEFINITION 2. A discrete n point circle is a discrete n point line with n and 1 connected by an edge. 

There are two important products in the category of graphs: the categorical product and the tight product. The 
tight product is used in building graphs using a sort of prime factorization in Behzad and Chartrand [1]. 

DEFINITION 3. The product of two graphs (V1, E1)fl(V2, E2) has the set Vl X V2 as vertices and has (v1, v2) connected 
to (vi, v2) by the edge (e1, e2) if e1 connects vi and vi and e2 connects v2 and v2. 

DEFINITION 4. The tight product of two graphs has Vl X VZ as its set of vertices and has an edge connecting 
(vl, v2) and (vi, v2) if and only if U1 = vi and there is an edge connecting v2 and v2, or UZ = v2 and there is an edge 
connecting U1 and v. We denote this as (V1, El) 0 (VZ, E2). 

If we take the product of two lines we get a patch of the plane with points connected which are nearest 
neighbors vertically, horizontally, or diagonally. If we take the tight product we leave out the diagonal 
connections. 

The analog of continuous functions will be mappings of graphs: vertices are taken to vertices and edges to 
edges. A closed curve is the image of a circle under a graph map. It is simple if the map also reflects adjacency; 
that is, if c(v) has an edge connecting it with c(v') then U and v' had an edge connecting them too. 
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Simple curves then are forbidden to touch themselves, not just forbidden to cross 
themselves. This puts us in a position to state the two forms of the Jordan curve 
theorem. 

THEOREM (Jordan curve theorem for tight closed curves). If s is a simple closed 
curve with domain having at least 8 points in L a L, then L X L \ im(s) has exactly 
two product path components. 

THEOREM (Jordan curve theorem for product closed curves). If s is a simple 
closed curve with domain having at least 4 points in LHL, then L x L \ im(s) has 
exactly two tight path components. 
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FIG. 1. FIG. 2. 

Notice that in Figure 1 the interior of the tight product closed curve is not 
connected in the tight product space. The interior is, however, connected in the 
product space, which allows diagonal connections. In the second illustration we 
have a simple closed curve in the product sense which fails to disconnect the 
categorical product space. If we use the tight product instead, then the interior is 
not connected to the exterior and each forms a connected set. The minimum size 
restriction eliminates the trivial cases in the next illustration. 
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FIG. 3. 

Proof (for product closed curves). Since a simple closed curve involves only a 
finite number of points we can move it into the first quadrant and guarantee that 
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the coordinates of points are bigger than 0 and less than m for sufficiently large m. 
We define the rank of s as the triple (N, X, Y) where N is the number of distinct 
points in the closed curve and (X, Y) is the point in the closed curve with largest 
first coordinate X and largest second coordinate Y of the points of im(s) with that 
first coordinate. Ranks are ordered lexicographically. This is a well-ordering, so 
strong induction on rank is a valid proof technique. 

The smallest simple closed curve for this theorem has N = 4. It forms a diamond 
surrounding a single point which forms the inside component. All other points are 
connected to the point (0, 0) by a tight path. The requirement that a simple curve 
reflect adjacency eliminates other possible curves of length four. Thus the theorem is 
true for closed curves with length 4. 

Now suppose that the theorem has been proved for all closed curves with rank 
less than (N, X, Y) and that s is a simple closed curve with rank (N, X, Y). We will 
reduce the rank by moving the point (X, Y) to (X - 1, Y). The points in the closed 
curve s which were adjacent to (X, Y) could only be among (X, Y - 1), (X - 1, 
Y - 1), and (X - 1, Y + 1). (Two points are adjacent to (X, Y) and they must be 
nonadjacent, hence, (X - 1, Y) is not one of the possible points.) All of these are 
adjacent to (X - 1, Y) so the result is still a closed curve, though it may not be a 
simple closed curve. Observe that moving this point reduces the rank. If the new 
closed curve is a simple closed curve then we are done since the interior of the 
original curve is the interior of the curve of lower rank with the point (X - 1, Y), 
which is tight adjacent to it, added. The exterior of the original curve is the exterior 
of the new curve with the point (X, Y) removed. This is still tight connected since 
any tight path passing through (X, Y) in the exterior of the lower rank curve can 
take a detour through (X, Y + 1), (X + 1, Y + 1) and (X + 1, Y). 

There are two ways for the resulting closed curve to fail to be simple: either the 
point (X - 1, Y) is adjacent to one of the points two steps away from (X, Y) in s, 
or it is adjacent to a point more than two steps away. If (X, Y) was s(h) and 
(X - 1, Y) is adjacent to s(h - 2) then we can remove s(h - 1). If (X, Y) was s(h) 
and (X - 1, Y) is adjacent to s(h + 2) then we can remove s(h + 1). Removing 
these points, if necessary, will further reduce the rank. The interior of the resulting 
curve is tight connected to (X, Y), so the interior of the original curve is tight 
connected. Any tight path passing through one of the points removed has a detour 
which avoids them and stays in the exterior. Figure 4 shows how this works for a 
typical case. 

* S \ *0 *** 

FIG. 4. 

Suppose that (X, Y) is s(h) and (X - 1, Y) is adjacent to s(k) where k is more 
than two away from h. Then by moving to (X - 1, Y) we pinch the closed curve 
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into two closed curves which have a tight path connecting their interiors which 
passes through the point (X - 1, Y) and each of which is strictly shorter than our 
original loop. (See Figure 5.) Since they have smaller ranks they each divide the 
product into exactly two tight pieces. The interior of s is then the union of the 
interiors of these two new closed curves plus the point (X - 1, Y). It remains to 
show that the exterior is tight path connected. 
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FIG. 5. 

The exterior is the intersection of the exteriors of the two new closed curves. Call 
the new closed curves s1 and s2 and renumber so that the intersection points are at 
t = 0 and t = 1, with (X - 1, Y) = s2(1). Let p and q be in ext(s,) n ext(s2). 
Since ext(s1) is t.ight path connected there is a tight path in ext(s1) from p to q. If 
that path is also in ext(s2) then nothing more needs to be done. If not then there are 
points p' and q' such that p' is the last point in the path for which the segment 
from p to p' is in ext(s2) and q' is the first so that the segment from q' to q is in 
ext(s2). It follows that both p' and q' are adjacent to points in S2. Thus to prove 
the theorem it will suffice to show that the set E of all points adjacent to s2 and in 
the exterior of both curves is tight connected. 

Since the original curve was simple we know that s2(0) and s2(1) are the only 
points in s2 that are adjacent to points in s1. We will show that E is tight path 
connected by walking around s2 starting at (X, Y) and observing what happens in 
each nine point patch with an element of s2 at the center. It is not difficult to list all 
of the ways that a product path can pass through a nine-point patch (see Figure 6) 
and in all cases the points on either side of the path form tight path connected sets. 
Since s2 is of finite length we can piece together such patches to see that the set E is 
tight path connected. 
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FIG. 6. 
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