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Visual Abstract

A number of regions in the human brain are known to be

involved in processing natural scenes, but the field has

lacked a unifying framework for understanding how these

different regions are organized and interact. We provide

evidence from functional connectivity and meta-analyses

for a new organizational principle, in which scene pro-

cessing relies upon two distinct networks that split the

classically defined parahippocampal place area (PPA).

The first network of strongly connected regions consists

of the occipital place area/transverse occipital sulcus and

posterior PPA, which contain retinotopic maps and are not

strongly coupled to the hippocampus at rest. The second

network consists of the caudal inferior parietal lobule,

retrosplenial complex, and anterior PPA, which connect to

the hippocampus (especially anterior hippocampus), and

are implicated in both visual and nonvisual tasks, includ-

ing episodic memory and navigation. We propose that

these two distinct networks capture the primary functional division among scene-processing regions, between

those that process visual features from the current view of a scene and those that connect information from a

current scene view with a much broader temporal and spatial context. This new framework for understanding the

neural substrates of scene-processing bridges results from many lines of research, and makes specific functional

predictions.

Key words: memory; networks; scene; vision

Significance Statement

There are a number of brain regions that only show high levels of activity for full photographic scenes, not

individual objects. By examining their relationships to each other and the rest of the brain, we argue that

there are two types of scene-processing regions that belong to two separate networks. One network, which

overlaps most of the visual system, processes visual features of the current view of the world, such as

spatial layout. Another network, which is connected to long-term memory, puts this moment-by-moment

information in context, allowing us to navigate through environments and remember past events in familiar

locations. These two groups of brain regions cooperate to help us understand the world and our place in it.
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Introduction
Natural scene perception has been shown to rely upon

a distributed set of cortical regions, including the parahip-

pocampal place area (PPA; Epstein and Kanwisher, 1998),

retrosplenial complex (RSC; O’Craven and Kanwisher,

2000), and the occipital place area [OPA; also called the

transverse occipital sulcus (TOS); Nakamura et al., 2000;

Hasson et al., 2003]. More recent work has suggested

that the picture is even more complicated, with multiple

subdivisions within PPA and the possible involvement of

the parietal lobe (Baldassano et al., 2013). Although there

has been substantial progress in understanding the func-

tional properties of each of these regions and the differ-

ences between them, the field has lacked a coherent

framework for summarizing the overall architecture of the

human scene-processing system.

There is a long history of proposals for partitioning the

visual system into separable components with different

functions, such as spatial frequency channels (Campbell

and Robson, 1968); what versus where/how pathways

(Mishkin et al., 1983; Kravitz et al., 2011); or magnocellu-

lar, parvocellular, and koniocellular streams (Kaplan, 2004).

With respect to natural scene perception, one can imag-

ine at least two separable functions: processing the spe-

cific visual features present in the current glance of a

scene, and connecting that to the stable, high-level

knowledge of where the place exists in the world, what

has happened here in the past, and what possible actions

we could take here in the future. For most cognitive and

physical tasks we undertake in real-world places, the

specific visual attributes we perceive are just a means to

this end, of recalling and updating information about the

physical environment; “the essential feature of a landmark

is not its design, but the place it holds in a city’s memory”

(Muschamp, 2006). The connection between place and

memory has been recognized for thousands of years,
reflected in the ancient Greek “method of loci” that
strengthens a memory sequence by associating it with
physical locations (Yates, 1966).

To determine whether moment-by-moment visual pro-
cessing versus dependence on past experience is a major
organizing principle of the brain, we take a data-driven
approach to identifying scene-sensitive regions and clus-
tering cortical connectivity. We first aggregate local high-
resolution resting-state connectivity information into
spatially coherent parcels, in order to increase signal to
noise and obtain more interpretable units than individual
voxels. We then apply hierarchical clustering to show that
there exists a natural division in posterior human cortex
that splits scene-related regions into two separate, bilat-
erally symmetric networks. The posterior network in-
cludes OPA and the posterior portion of PPA (retinotopic
maps PHC1 and PHC2), while the anterior network is
composed of the RSC, anterior PPA (aPPA), and the
caudal inferior parietal lobule (cIPL). We then show that
these two networks differ in their connectivity to the hip-
pocampus, with the anterior network exhibiting much
higher resting-state hippocampal coupling (especially to
anterior hippocampus), suggesting that memory- and
navigation-related functions are primarily restricted to the
anterior network. We provide supporting evidence for this
functional division from a reverse-inference meta-analysis
of previous results from visual, memory, and navigation
studies, and an atlas of retinotopic maps.

Based on these results, as well as a review of previous
work, we propose that scene processing is fundamentally
divided into two collaborating but distinct networks, with
one focused on the visual features of a scene image and
the other related to contextual retrieval and navigation.
Under this framework, scene perception is less the func-
tion of a unified set of distributed neural machinery and
more of “an ongoing dialogue between the material and
symbolic aspects of the past and the continuously unfold-
ing present” (Baker, 2012).

Materials and Methods

Imaging data
The majority of the data used in this study were obtained

from the Human Connectome Project (HCP), which provides
detailed documentation on the experimental and acquisition
parameters for these datasets (Van Essen et al., 2013). We
provide an overview of these datasets below.

The group-level functional connectivity data were de-
rived from the 468-subject group–principal component
analysis (PCA) eigenmaps, distributed with the June
2014 “500 Subjects” HCP data release. Resting-state
fMRI data were acquired over four sessions (14 min, 33
s each), while subjects fixated on a bright cross-hair on
a dark background, using a multiband sequence to
achieve a TR of 720 ms at 2.0 mm isotropic resolution
(59,412 surface vertices). These time courses were
cleaned using the Oxford Centre for Functional MRI of
the Brain independent component analysis-based Xnoi-
seifier (FIX; Salimi-Khorshidi et al., 2014), and then the top
4500 eigenvectors for each vertex were estimated across all
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subjects using Group–PCA (Smith et al., 2014). These data

were used to perform the parcellation and network cluster-

ing, and to generate whole-brain maps (Figs. 1, 2a, 3a )

Because using the full dataset in its entirety would be

computationally challenging to assess statistically, we

performed more detailed analyses on a subset of 20

subjects (Figs. 2b,c, 3b–d ). For 20 subjects within the

“500 Subjects” release with complete data (subject iden-

tifications 101006, 101107, 101309, 102008, 102311,

103111, 104820, 105014, 106521, 107321, 107422, 108121,

108323, 108525, 108828, 109123, 109325, 111413, 113922,

and 120515), we created individual subject resting-state

datasets by concatenating their four resting-state ses-

sions (after removing the per-run means).

We identified group-level scene localizers (used only

as functional landmarks) from a separate set of 24

subjects (see below). Subjects viewed blocks of stimuli

from up to six categories: child faces, adult faces,

indoor scenes, outdoor scenes, objects (abstract

sculptures with no semantic meaning), and scrambled

objects. Functional data were acquired on one of two

GE MR 750 3 T scanners, with an in-place resolution of

1.56 mm, a slice thickness of 3 mm (with 1 mm gap),

and a TR of 2 s; a high-resolution (1 mm isotropic)

spoiled gradient-recalled acquisition in a steady state

structural scan was also acquired to allow for transfor-

mation to MNI space.

The cIPL was defined using the Eickhoff–Zilles PGp
probabilistic cytoarchitectonic map (Eickhoff et al., 2005;
Baldassano et al., 2013). The hippocampus was divided
into anterior and posterior subregions at MNI coordinate
y � �21, consistent with previous studies (Poppenk et al.,
2013; Zeidman et al. 2015).

Subjects
Scene-localizer data were collected from 24 subjects (6

females; age range, 22–32, including one of the authors).
Subjects were in good health with no history of psychiatric
or neurological diseases, and with normal or corrected-to-
normal vision. The experimental protocol was approved by
the institutional review board of Stanford University. Sub-
jects were recruited only at Stanford University and gave
their written informed consent.

Resting-state parcellation
The 468-subject eigenmaps distributed by the HCP are

approximately equal to performing a singular value de-
composition on the concatenated time courses of all 468
subjects, and then retaining the right singular values
scaled by their eigenvalues (Smith et al., 2014). This al-
lows us to treat these eigenmaps as pseudo-time
courses, since dot products (and thus Pearson correla-
tions) between eigenmaps approximate the dot products
between the original voxel time courses. We generated a
voxel-level functional connectivity matrix by correlating

Figure 1. Connectivity clustering of cortical parcels. The cortex was first grouped into 172 local parcels (black lines), such that the

surface vertices in each parcel had similar connectivity properties. Performing a second-level hierarchical clustering on these parcels

identified distributed networks of strongly connected parcels (parcel colors denote their network membership). Scene-related regions

of interest (identified using standard scene localizers in a separate group of subjects) are split across two networks, which are largely

symmetric across left (top row) and right (bottom row) hemispheres. OPA and posterior PPA overlap with a posterior network (dark

blue) that covers all of visual cortex outside the foveal confluence, while cIPL, RSC, and aPPA overlap with an anterior network

(magenta) that covers much of the default mode network.
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the group-level eigenmaps for every pair of voxels and
applying the Fisher z-transform (hyperbolic arctangent).
We parcellated this 59,412 � 59,412 matrix into contigu-
ous regions, using a generative probabilistic model (Bal-
dassano et al., 2015). This method finds a parcellation of
the cortex such that the connectivity properties within

each parcel are as uniform as possible, making multiple
passes over the dataset to fine-tune the parcel borders.
We set the scaling hyperparameter �0

2 � 3000 to produce
a manageable number of parcels, but our clustering re-
sults are similar for a wide range of settings for �0

2 (pro-
ducing between 140 and 216 parcels).

Figure 2. Connectivity shifts across the network border. a, Using classic multidimensional scaling (MDS), we can visualize the

connectivity structure among the eight parcels overlapping with scene-related regions (darker/lighter shading denotes left/right

hemisphere). The first MDS dimension shows a parallel transition along both dorsal and ventral paths from parcels overlapping OPA

and pPPA to those overlapping cIPL, RSC, and aPPA. b, Connectivity between dorsal parcels and the medial RSC parcel increases

markedly near the OPA/cIPL border. b, Ventral parcels also show a shift in network connectivity properties, with increasing

connectivity to the most anterior cIPL parcel as we move from pPPA to aPPA. Error bars are 95% confidence intervals across

subjects, �p � 0.05, ��p � 0.01.
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Scene localizers
To identify PPA, RSC, and OPA, we deconvolved the

localizer data from the 24 localizer subjects using the
standard block hemodynamic model in AFNI (Cox, 1996),
with faces, scenes, objects, and scrambled objects as
regressors. The scenes � objects t statistic was used to
define PPA (top 300 voxels near the parahippocampal
gyrus), RSC (top 200 voxels near retrosplenial cortex), and
OPA (top 200 voxels near the transverse occipital sulcus),
with mask sizes chosen conservatively based on typical
ROI volumes (Golarai et al., 2007). The ROI masks were
then transformed to MNI space, summed across all
subjects, and mapped to the closest vertices on the
group cortical surface. The group-level ROI was then
manually annotated as the cluster of highest overlap
between the subject ROI masks. These ROIs are con-
sistent with typical definitions in the literature (Julian
et al., 2012).

Parcel-to-parcel and hippocampal functional
connectivity

Given a parcellation, we computed the group-level
connectivity between a pair of regions by taking the
mean over all eigenmaps in each region, then correlat-
ing these mean eigenmaps (which, as described above,
can be treated as pseudo-time courses) and applying
the Fisher z-transform (hyperbolic arctangent). We com-
puted subject-level connectivity in the same way, using

the resting-state time course for each voxel rather than
the eigenmap.

Connectivity between cortical parcels and the hip-
pocampus was computed similarly, using eigenmaps (for
group data) or time courses (for subject data) extracted
from the hippocampal volume data distributed by the
HCP. In order to focus on hippocampal connectivity
differences among parcels, we used the mean gray time
course regression version of the group data and re-
gressed out the global time course from the subject
data.

Network clustering
The 172 � 172 parcel functional connectivity matrix

was converted into a distance matrix by subtracting every
entry from the maximum entry. Hierarchical ward cluster-
ing (unconstrained by parcel position) was applied to the
distance matrix to compute a hard clustering into 10
networks. After identifying the 16 parcels (8 per hemi-
sphere) overlapping with scene-related regions, we
computed a similar distance matrix for these parcels
(subtracting every entry from the maximum entry) and
applied classical multidimensional scaling to yield a two-
dimensional visualization of its structure.

Meta-analysis and retinotopic field maps
Two reverse-inference meta-analyses were performed

using the NeuroSynth website (Yarkoni et al., 2011). Neu-

Figure 3. Connectivity between network parcels and the hippocampus. a, For each parcel in the anterior and posterior scene

networks, we computed its resting-state connectivity with the hippocampus, showing a striking increase in hippocampal activity for

anterior network parcels overlapping with cIPL, RSC, and aPPA (magenta circles) compared with posterior network parcels (blue

circles). b, Along the dorsal network boundary, hippocampal activity first dips slightly and then increases substantially, becoming

strongest in the most anterior parcel intersecting cIPL (and is also high in RSC). c, Ventrally along parcels overlapping with PPA, we

observe a similar increasing posterior-to-anterior gradient in connectivity. d, Computing the connectivity between each coronal slice

of the hippocampus and the two scene networks shows that this increased coupling to the anterior network is present throughout the

hippocampus, but is especially pronounced in anterior hippocampus (MNI coordinate y � �21 mm). Error bars are 95% confidence

intervals across subjects. �p � 0.05, ��p � 0.01.
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roSynth is a set of open-source python tools for automat-

ically extracting data from fMRI studies and computing

activation likelihood maps, and the website hosts these

tools (and associated datasets) for public use. Supplying

a key word query identifies all studies whose abstract

contains that key word, and then analyzes the activations

reported in these queried studies. In addition to stan-

dard “forward inference” maps giving the probability

p(activation|query) that a voxel will be activated in these

studies, NeuroSynth generates “reverse-inference” maps

giving the probability p(query|activation) that a voxel ac-

tivation came specifically from this query set. Voxels ap-

pearing in the reverse-inference map, therefore, appear

more often in the query set relative to the full set of

(�10,000) fMRI studies in the database. This accounts for

base rate differences in how often activation is observed

in different brain regions.

Our meta-analyses can be viewed on-line at http://

neurosynth.org/analyses/custom/dda0e003-efd0-4cfa/

and http://neurosynth.org/analyses/custom/9e6df59d-

02df-4357/. The first used the query “scene,” and con-

sisted of 47 studies. Manual inspection of all studies

confirmed that they all studied the perception of envi-

ronments, and 45 of 47 studies involved the presenta-

tion of visual scenes. The second meta-analysis used

the query “episodic memory OR navigation OR past

future,” which returned 125 studies that were nonover-

lapping with the first query.

A volumetric group-level probabilistic atlas (Wang et al.,

2014) was used to define retinotopic field maps. We

computed the total probability mass of each map that fell

within one of our two networks or in other regions of the

cortex, and then normalized the sum of the three values to

100%. For visualization, the probability that a voxel be-

longs to any field map was computed as 1 � i
��1 � pi�,

where pi is the probability that the voxel falls within field

map i.

Results
Our primary dataset is a 1.8 billion element resting-state

connectivity matrix distributed by the Human Connec-

tome Project (Van Essen et al., 2013), which estimates the

time course correlation between every pair of locations in

the brain at 2 mm resolution based on a group of 468

subjects. Since we wish to understand the large-scale

structure of visual cortex, it is helpful to abstract away

from individual voxels and study the functional and con-

nectivity properties of larger parcels. Rather than impos-

ing a parcellation based on specific regions of interest, we

used a data-driven approach to produce spatially coher-

ent parcels tiling the cortical surface in a way that retains

as much information as possible from the full connectivity

matrix. This parcellation consists of 172 regions across

both hemispheres, each of which contains surface verti-

ces that all have very similar connectivity patterns with the

rest of the brain. The connectivity matrix among these 172

parcels captures �76% of the variance in the original

connectivity matrix, despite being dramatically smaller (by

five orders of magnitude).

Clustering parcels into networks

To determine how these local parcels are organized into
distributed networks, we performed hierarchical cluster-
ing to group together parcels with high functional connec-
tivity (regardless of their spatial position). These networks
are remarkably similar between hemispheres (despite not
being constrained to be symmetric), as shown in the
10-network clustering in Figure 1.

Which of these networks are directly related to scene
perception? We used data from a standard localizer in a
separate group of subjects to define group-level regions
of interest for scene-selective regions OPA, PPA, and
RSC. We also anatomically identified cIPL as was done in
a previous study (Baldassano et al., 2013), since this
region has been shown to have functional connections to
scene regions.

We found that these scene ROIs fell almost entirely onto
two of the connectivity networks. A posterior network
(dark blue), overlapping OPA and posterior PPA (pPPA),
covered all of visual cortex outside of an early foveal
cluster. An anterior network (magenta), overlapping cIPL,
RSC, and anterior PPA, covered a parietal/medial-
temporal network that includes anterior temporal and or-
bitofrontal parcels. This corresponds to a portion of
known default mode regions, with other default mode
regions being grouped into a separate network (green); a
similar fractionation of the default mode has been pro-
posed previously (Andrews-Hanna et al., 2010). Within the
PPA, this anterior/posterior split occurred at approxi-
mately MNI coordinate y � �42 mm, with both segments
of the PPA falling largely in the collateral sulcus and
extending onto the parahippocampal gyrus.

We can visualize the connectivity differences among
the parcels overlapping with scene-related regions using
classic multidimensional scaling (Fig. 2a), which shows
that the network clustering captures the primary dimen-
sion of variance in connectivity properties, separating the
most posterior parcels overlapping OPA and pPPA from
the most anterior parcels overlapping cIPL, RSC, and
aPPA. To evaluate the reliability of this shift in connectivity
properties within individual subjects, we measured the
functional connectivity between these parcels and a ref-
erence parcel in the anterior network. We selected the
reference parcel to be on the opposite side of the cortical
surface (in order to avoid influences from local noise
correlations) and to be as far anterior as possible; for
dorsal parcels on the lateral surface (overlapping OPA and
cIPL), the reference parcel overlapped RSC on the medial
surface; and for ventral parcels on the medial surface
(overlapping PPA), the reference parcel overlapped cIPL
on the lateral surface. In both cases, we observed rapid
increases in connectivity as we moved posterior to ante-
rior across the network boundaries (Fig. 2b,c). Along the
dorsal boundary, we see significant increases in connec-
tivity to the RSC parcel when moving from the first to the
second parcel (left: t(19) � 6.98, p � 0.001; right: t(19) �

6.35, p � 0.001; two-tailed paired t test), from the second
to the third parcel (left: t(19) � 7.72, p � 0.001; right: t(19) �

6.16, p � 0.001), and from the third to the fourth parcel
(right: t(19) � 2.44, p � 0.025). We observe a similar

New Research 6 of 14

September/October 2016, 3(5) e0178-16.2016 eNeuro.org

http://neurosynth.org/analyses/custom/dda0e003-efd0-4cfa/
http://neurosynth.org/analyses/custom/dda0e003-efd0-4cfa/
http://neurosynth.org/analyses/custom/9e6df59d-02df-4357/
http://neurosynth.org/analyses/custom/9e6df59d-02df-4357/


significant (though less dramatic) increase in connectivity
to the cIPL parcel when moving from the first to the
second PPA parcel (left: t(19) � 4.21, p � 0.001; right:
t(19) � 2.68, p � 0.015) and from the second to the third
PPA parcel (right: t(19) � 3.03, p � 0.007).

Connectivity with the hippocampus
Since the anterior scene network overlaps with default

mode regions, while the posterior scene network does
not, we predict that the anterior network should be more
connected to the hippocampus (Buckner et al., 2008). To
test this hypothesis, we measured the functional correla-
tion at rest between mean hippocampal activity and the
mean activity in each parcel within the posterior and
anterior scene networks. As shown in Figure 3, there is a
dramatic difference in hippocampal connectivity for par-
cels in the posterior network (overlapping with OPA and
posterior PPA) compared with the anterior network (over-
lapping with RSC, cIPL, and anterior PPA). Moving pos-
terior to anterior along the dorsal path, hippocampal
connectivity first decreases slightly (first parcel to second
parcel: left: t(19) � �3.04, p � 0.007; right: t(19) � 2.15 p �

0.04; two-tailed paired t test), then increases significantly
when moving to the third parcel (left: t(19) � 5.62, p �

0.001; right: t(19) � 3.79, p � 0.001) and to the fourth
parcel (left: t(19) � 4.17, p � 0.001; right: t(19) � 5.74, p �

0.001). Along the ventral path, hippocampal connectivity
jumps from the first to the second parcel overlapping with
PPA (left: t(19) � 5.27, p � 0.001; right: t(19) � 5.76, p �

0.001) and from the second to the third parcel (right:
t(19) � 5.80, p � 0.001).

We also investigated whether this effect was being
driven by a subregion of the hippocampus, by correlating
the mean time course in both scene networks with the
time courses of each posterior-to-anterior coronal slice of
the hippocampus. Our results show that the entire hip-
pocampus is more strongly connected to the anterior
scene–network than the posterior scene–network, but this
difference is especially large in the anterior hippocampus.
To confirm this pattern of results, we divided the hip-
pocampus into posterior and anterior subregions at MNI
coordinate y � �21 (Poppenk et al., 2013; Zeidman et al.,
2015) and correlated their mean time courses with the two
scene–network time courses. This analysis confirmed that
the anterior network is more strongly connected to both
posterior (t(19) � 7.66, p � 0.001; two-tailed paired t test)
and anterior (t(19) � 6.58, p � 0.001) hippocampus than is
the posterior scene network, and that this anterior–net-

work connectivity is larger in anterior hippocampus (t(19) �

3.29, p � 0.004); a repeated-measures ANOVA shows
significant main effects of both hippocampal subregion
(F(1,19) � 11.32, p � 0.003) and scene network (F(1,19) �

59.2, p � 0.001), and an interaction (F(1,19) � 7.03, p �

0.016). Group-level connectivity values are reported in
Table 1. Note that both the anterior and posterior scene
networks are closer to posterior hippocampus, ruling out
a distance-based explanation for this pattern of results.

Comparison to meta-analyses and retinotopic atlas
The connectivity results described thus far suggest a

functional division for scene-related regions, with some
belonging to a posterior network and others belonging to
an anterior network. To assess the functional significance
of these two networks, we ran two reverse-inference
meta-analyses using the NeuroSynth tool (Yarkoni et al.,
2011). This system automatically extracts activation co-
ordinates from many fMRI studies (�10,000 at the time of
writing); given a particular set of studies, it can identify
voxels that are more likely to be activated in this set of
studies relative to the full set of studies. These voxels are
therefore preferentially active in the query set compared
with general fMRI experiments. Based on the areas in-
volved, we hypothesized that the posterior network pro-
cesses the current visual properties of the scene, whereas
the anterior network incorporates episodic memories and
contextual aspects of the scene. Thus, in Figure 4a, we
compare meta-analyses for the query “scene” (47 studies)
with the query “episodic memory, navigation, past future”
(125 studies). Along the parahippocampal gyrus, we find
that the visual scene activations tend to be posterior to
the memory activations, and that the transition point cor-
responds almost exactly to the division between our two
networks. Dorsally, we also observe a separation between
the reverse inference maps, with scene and memory ac-
tivations falling into our two separate networks. Overall,
voxels significant only in the scene meta-analysis were
concentrated in the posterior network (66% in posterior
network, 18% in anterior, 16% in other), while voxels
significant only in the memory/navigation meta-analysis
were spread more widely across the cortex, but were
concentrated more in the anterior than the posterior net-
work (16% posterior, 42% anterior, 42% other). Voxels
significant in both the scene and memory/navigation
meta-analyses tended to fall near the border between the
two networks and divided approximately equally among
them (44% posterior, 53% anterior, 4% other).

Table 1. Anterior and posterior hippocampus connectivity to scene parcels.

Dorsal Ventral

1 (pSN) 2 (pSN) 3 (aSN) 4 (aSN) 5 (aSN) A (pSN) B (pSN) C (aSN)

L R L R L R L R L R L R L R L R

pHipp �0.05 �0.06 �0.06 �0.06 0.02 �0.01 0.08 0.06 0.13 0.12 0 0.01 0.08 0.06 0.08 0.11

aHipp �0.03 �0.03 �0.08 �0.07 0.06 0.02 0.13 0.11 0.22 0.20 0.03 0.07 0.11 0.09 0.12 0.15

For each scene–network parcel (as labeled in Fig. 3), the group-level connectivity (Fisher-transformed Pearson correlation) was calculated separately for pos-
terior and anterior hippocampus. Parcels in the posterior scene network have lower hippocampal connectivity than those in the anterior scene network, espe-
cially for the anterior hippocampus. aHipp, anterior hippocampus; aSN, anterior scene network; L, left; pHipp, posterior hippocampus; pSN, posterior scene
network; R, right.
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Another prediction of our framework is that voxels
whose activity is tied to specific locations in the visual
field (i.e., retinotopic) should, as clearly visual voxels, be
present only in the posterior scene network. In Figure 4b,
we compared our networks to a group-level probabilistic
atlas of retinotopic visual field maps (Wang et al., 2014).
The vast majority of the probability mass in this atlas is
concentrated in the posterior network. In early visual cor-
tex (V1, V2, V3, hV4), all nonfoveal portions of the visual
field maps fall in the posterior network (80% posterior, 0%
anterior, 20% other). Ventrally, the posterior network cov-
ers VO1/2 (100% posterior, 0% anterior, 0% other), PHC1
(98% posterior, 2% anterior, 0% other), and the peak of
the probability distribution for PHC2, which also extends
slightly across the anterior network border (78% poste-
rior, 22% anterior, 0% other). Laterally and dorsally, the
posterior network includes most of the LO1/2 and TO1/2
maps (82% posterior, 0% anterior, 17% other), V3a and
V3b (96% posterior, 0% anterior, 3% other), and IPS0–
IPS5 (68% posterior, 4% anterior, 28% other), with SPL1

being the only map falling substantially outside the net-
works that we consider (18% posterior, 2% anterior, 80%
other).

Discussion
By combining a variety of data sources, we have

shown converging evidence for a functional division of
scene-processing regions into two separate networks
(summarized in Fig. 5). The posterior visual network
covers retintopically organized regions, including OPA
and pPPA, while an anterior memory-related network
connects cIPL, RSC, and aPPA. This division emerges
from a purely data-driven network clustering, suggest-
ing that this is a core organizing principle of the visual
system.

Subdivisions of the PPA
The division of the PPA into multiple anterior–posterior

subregions with differing connectivity properties repli-
cates previous work (Baldassano et al., 2013) on an en-

Figure 4. Overlap of posterior and anterior scene networks with previous work. a, Two meta-analyses conducted using NeuroSynth

identified overlapping but distinct reverse-inference maps corresponding to studies of visual scenes and to studies of higher-level

memory and navigation tasks. These maps separate into our two scene networks, with visual scenes activating voxels in the posterior

network and memory/navigation tasks activating voxels in the anterior network, as shown on example axial (z � �8) and sagittal

(x � �30) slices. False discovery rate � 0.01; cluster size, 80 voxels (640 mm3). b, Voxels having a �50% chance of belonging to

a retinotopic map (orange) overlap with much of the posterior scene network, but end near the border of the anterior scene network.

Breaking up the contributions of individual regions, we find that the probability mass of the topographic maps falls primarily within the

posterior network, with only PHC2 showing a small overlap with the anterior network (probabilistically at the group level).
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tirely different large-scale dataset, and shows that there is
a strong connection between connectivity changes in
PPA and the boundaries of retinotopic field maps. There is
now a growing literature on anterior versus posterior PPA,
including not only connectivity differences (Nasr et al.,
2013; Silson et al., 2016a) but also the response to low-
level (Nasr et al., 2014; Silson et al., 2015; Baldassano
et al., 2016a,b; Watson et al., 2016) and high-level (Park
et al., 2014; Aminoff and Tarr, 2015; Linsley and Macevoy,
2015; Marchette et al., 2015) scene features, as well as
stimulation studies (Rafique et al., 2015). Our results place
this division into a larger context, and demonstrate that
the connectivity differences within PPA are not just an
isolated property of this region but a general organizing
principle for scene-processing regions.

The visual network
The visual network shows a close correspondence with

the full set of retinotopic maps identified in previous stud-
ies (Brewer and Barton, 2012; Huang and Sereno, 2013;
Wang et al., 2014). Previous measurements in individual
subjects have also shown strong overlap between OPA
and retinotopic maps, especially V3b and LO2 (Nasr et al.,
2011; Bettencourt and Xu, 2013; Silson et al., 2016a), and
between pPPA and VO2, PHC1, and PHC2 (Arcaro et al.,
2009). The only portion of cortex with known retinotopic
maps that is not clustered in this network is the shared
foveal representation of early visual areas, which segre-
gates into its own cluster, which is consistent with other
work showing a peripheral eccentricity bias in the scene
network (Malach et al., 2002; Goesaert and Op de Beeck,
2010; Huang and Sereno, 2013; Baldassano et al., 2016a).

OPA and posterior PPA have been shown to be closely
related to the visual content of a stimulus. Even low-level

manipulations of spatial frequency (Rajimehr et al., 2011;
Kauffmann et al., 2015; Watson et al., 2016) or rectilinear-
ity (Nasr et al., 2014) can drive responses in these regions.
Higher-level visual features also drive response patterns
in these regions (Bryan et al., 2016), and they are hypoth-
esized to be involved in extracting visual environmental
features that can be used for navigation (Marchette et al.,
2015; Julian et al., 2016; Kamps et al., 2016). However,
neither OPA nor posterior PPA show reliable familiarity
effects (Epstein et al., 2007b; see further discussion be-
low).

The functional distinction between pPPA and OPA is
currently unclear. Previous work has speculated about the
purpose of the apparent ventral and dorsal “duplication”
of regions sensitive to large landmarks, proposing that it
may be related to different output goals (e.g., action
planning in OPA, object recognition in pPPA; Konkle and
Caramazza, 2013), or to different input connections (e.g.,
lower visual field processing in OPA, upper visual field
processing in pPPA; Kravitz et al., 2013; Silson et al.,
2015). OPA and pPPA may also use information from
different visual eccentricities, with OPA processing less
peripheral, relatively high-resolution environmental fea-
tures and pPPA processing more peripheral, large-scale
geometry, and context (Baldassano et al., 2016a).

The memory and navigation network
The network of parahippocampal, retrosplenial, and

posterior parietal regions that we identify has been
emerged independently in many different fields of neuro-
imaging, outside of scene perception. Meta-analyses of
internally directed tasks, such as theory of mind, autobi-
ographical memory, and prospection, have identified this
as a core, reoccurring network [Spreng et al., 2009; Kim,

Figure 5. Two-network model of scene perception. Our results provide strong evidence for dividing scene-sensitive regions into two

separate networks. We argue that OPA and posterior PPA (PHC1/2) process the current visual features of a scene [in concert with

other visual areas, such early visual cortex (EVC), and LOC], while cIPL, RSC, and aPPA perform higher-level context and navigation

tasks (drawing on long-term memory structures including the hippocampus).
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2010; Yeo et al., 2015 (component C10 of )]. It comprises
a subset of the broader default mode regions, but func-
tional and anatomical evidence suggests that it is a dis-
tinct, coherent subnetwork (Andrews-Hanna et al., 2010,
2014; Yeo et al., 2011). The broad set of tasks that recruit
this network have been summarized in various ways, such
as “scene construction” (Hassabis and Maguire, 2007),
“mnemonic scene construction” (Andrews-Hanna et al.,
2010), “long-timescale integration” (Hasson et al., 2015),
or “relational processing” (Eichenbaum and Cohen, 2014).
A review of memory studies referred to this network as the
posterior medial memory system, and proposed that it is
involved in any task requiring “situation models” relating
entities, actions, and outcomes (Ranganath and Ritchey,
2012).

The network has strong functional connections to the
hippocampus, which has been implicated in a broad set
of cognitive tasks involving “cognitive maps” for organiz-
ing declarative memories, spatial routes, and even social
dimensions (Eichenbaum and Cohen, 2014; Schiller et al.,
2015). During perception, the hippocampus binds to-
gether visual elements of an image (Olsen et al., 2012;
Warren et al., 2012; Zeidman et al., 2015), which is espe-
cially important for scene stimuli (Lee et al., 2005a,b;
Graham et al., 2006; Hodgetts et al., 2016) and then
stores this representation into long-term memory (Ryan
and Cohen, 2004). As we become familiar with an envi-
ronment, the hippocampus builds a map of the spatial
relationships between visual landmarks, which is critical
for navigation (Morgan et al., 2011). Recalling or even
imagining scenes also engages the hippocampus, espe-
cially anterior hippocampus, which may serve to integrate
memory and spatial information (Zeidman and Maguire,
2016). Our results suggest that only the anterior scene
regions interface directly with the hippocampus, potentially
enabling the construction of hippocampal environmental
representations, and retrieval of relevant memories and nav-
igational information for a presented or imagined scene.

The specific functions of the individual components of
this network have also been studied in a number of con-
texts. RSC appears to be most directly involved in orient-
ing the viewer to the structure of the environment (both
within and beyond the borders of the presented image) for
the purpose of navigational planning; it encodes both
absolute location and facing direction (Vass and Epstein,
2013; Epstein and Vass, 2014; Marchette et al., 2014),
integrates across views presented in a panoramic se-
quence (Park and Chun, 2009), and shows strong famil-
iarity effects (Epstein et al., 2007a,b). This is consistent
with rodent neurophysiological studies, which have iden-
tified head direction cells in this region (Chen et al., 1994).
RSC is not sensitive to low-level rectilinear features in
nonscene images, such as objects or textures (Nasr et al.,
2014), though it does show some preference for rectilin-
ear features in images of 3D scenes (Nasr et al., 2014;
Watson et al., 2016).

The specific properties of anterior PPA have been less
well studied, since it was not recognized as a separate
region within the PPA until recently. It has been shown to
be driven more by high-level category information than by

spatial frequency content (Watson et al., 2016), to repre-
sent real-world locations (even from perceptually distinct
views; Marchette et al., 2015), to encode object co-
occurrences (Aminoff and Tarr, 2015), and to represent
real-world physical scene size (Park et al., 2014). Its rep-
resentation of scene spaciousness draws on prior knowl-
edge about the typical size of different scene categories,
since it is affected by the presence of diagnostic objects
(Linsley and Macevoy, 2015).

The cIPL (also referred to as posterior IPL, PGp, or the
angular gyrus) has been proposed as a “cross-modal
hub” (Andrews-Hanna et al., 2014) that connects visual
information with other sensory modalities as well as
knowledge of the past. It is more intimately associated
with visual cortex than most lateral parietal regions, since
it has strong anatomical connections to higher-level visual
regions in humans and macaques (Caspers et al., 2011),
and has a neurotransmitter receptor distribution similar to
V3v and is distinct from the rest of the IPL (Caspers et al.,
2013). It has been mostly ignored in the scene perception
literature, primarily because it is not strongly responsive to
standard scene localizers that show sequences of unfa-
miliar and unrelated scene images. For example, a study
showing familiarity effects in cIPL described this location
only as “near TOS” (Epstein et al., 2007b). The cIPL
appears commonly, however, in studies involving person-
ally familiar places, which are associated with a wealth of
memory, context, and navigational information. It is in-
volved in memory for visual scene images (Montaldi et al.,
2006; Takashima et al., 2006; Elman et al., 2013; van
Assche et al., 2016), learning navigational routes (Burgess
et al., 2001; Bray et al., 2015), and even imagining past
events or future events in familiar places (Hassabis et al.,
2007; Szpunar et al., 2009). It can integrate information
across space (Livne and Bar, 2016) and time (Lerner et al.,
2011; Vilberg and Rugg, 2012), and has been shown in
lesion studies to be critical for orientation and navigation
(Kravitz et al., 2011). Our connectivity results and meta-
analysis suggest that cIPL may play a prominent role in
connecting visual scenes to the real-world location they
depict.

Contrasting the two networks

Although our work is the first to propose the visual
versus context networks as a general framework for
scene perception, several previous studies have shown
differential effects within these two networks. Contrasting
the functional connectivity patterns of RSC versus OPA or
lateral occipital cortex (LOC; Nasr et al., 2013) or anterior
versus posterior PPA (Baldassano et al., 2013) show a
division between the two networks, consistent with our
results. Contrasting scene-specific activity with general
(image or word) memory retrieval showed an anterior
versus posterior distinction in PPA and cIPL/OPA, with
only more anterior regions (aPPA and cIPL, along with
RSC) responding to content-independent retrieval tasks
(Johnson and Rugg, 2007; Fairhall et al., 2014). Our two-
network division is also consistent with the “dual inter-
twined rings” model, which argues for a high-level division
of cortex into a sensory ring and an association ring, the
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second of which is distributed but connected into a con-
tinuous ring through fiber tracts (Mesmoudi et al., 2013).

Open questions

The anterior/posterior pairing of aPPA/pPPA and cIPL/
OPA raises the question of whether there is a similar
anterior/posterior division in RSC. Evidence for a division
has been mixed: wide-field retinotopic mapping using
natural scenes shows a partial retinotopic organization in
RSC (Huang and Sereno, 2013); the response of RSC to
visual rectilinear features appears to be limited to the
posterior portion (Nasr et al., 2014); but a study of retino-
topic coding in scene-selective regions failed to find any
consistent topographic organization to RSC responses
(Ward et al., 2010), and previous analyses of the func-
tional properties of anterior versus posterior RSC have not
found any significant differences (Park et al., 2014). A very
recent study (Silson et al., 2016b) that carefully compared
scene selectivity, functional connectivity, and retinotopic
mapping has proposed that there are in fact two separa-
ble subregions in medial parietal cortex. The more anterior
region is strongly connected to anterior PPA and is less
retinotopic, likely corresponding to the parcel overlapping
RSC on which we focus in this work. The more posterior
region, which falls in the parieto-occipital sulcus, is more
strongly driven by visual scenes, has a clear contralateral
field bias, and is connected more evenly to the subregions
of PPA (though still more to anterior than posterior PPA).
Future work may confirm that this region should also be
included as a part of the visual scene network, yielding a
third interface between the two networks.

Another interesting question is how spatial reference
frames differ between and within the two networks. Given
its retinotopic fieldmaps, the visual network presumably
represents scene information relative to the current eye
position; previous work has argued that this reference
frame is truly retina centered and not egocentric (Ward
et al., 2010; Golomb and Kanwisher, 2012). The context
network, however, likely transforms information between
multiple reference frames. Models of spatial memory sug-
gest that medial temporal lobe (possibly including
aPPA) uses an allocentric representation, while the
posterior parietal lobe (possibly including cIPL) is based
on an egocentric reference frame, and that the two are
connected via a transformation circuit in RSC that com-
bines allocentric location and head direction (Byrne
et al., 2007; Vann et al., 2009). There is some recent
evidence for this model in human neuroimaging: pos-
terior parietal cortex codes the direction of attention in
an egocentric reference frame (even for positions out-
side the field of view; Schindler and Bartels, 2013), and
RSC contains both position and head direction infor-
mation (anchored to the local environment; Marchette
et al., 2014; Shine et al., 2016). This raises the possi-
bility that another critical role of cIPL could be to
transform retinotopic visual information into a stable
egocentric scene over the course of multiple eye move-
ments. The properties of aPPA, however, are much less
clear; it seems unlikely that it would use an entirely
different coordinate system than neighboring PHC1/2,

and some aspects of the scene encoded in aPPA, such
as object co-occurrence (Aminoff and Tarr, 2015), do
not seem tied to any particular coordinate system.

Finally, we note that a hard division into two networks is
only a first-order description of the structure and function
of scene regions. A number of these regions (e.g., PHC2)
fall on a continuum from visual to contextual, and recent
theories of information processing argue that almost all
cortical regions accumulate information at varying time-
scales (Hasson et al., 2015). Task demands will also shift
the functions of these regions (e.g., during top-down
imagery; Dentico et al., 2014) and can lead to the dynamic
reconfiguration of networks (Bray et al., 2015). Our pro-
posed framework is intended to capture the primary func-
tional dimension that distinguishes between scene-
sensitive regions during natural perception, and to offer a
starting point for future work on the organization of the
human scene-processing system.

Conclusion
Based on data-driven connectivity analyses and analy-

sis of previous literature, we have proposed a unifying
framework for understanding the neural systems involved
in processing both visual and nonvisual properties of
natural scenes. This new two-network classification sys-
tem makes explicit the relationships between known
scene-sensitive regions, re-emphasizes the importance of
the functional subdivision within the PPA, and incorpo-
rates posterior parietal cortex as a primary component of
the scene-understanding system. Our proposal that much
of the scene-processing network relates more to contex-
tual and navigational information than to specific visual
features suggests that experiments with unfamiliar natural
scene images will give only a partial picture of the neural
processes evoked in real-world places. Experiencing our
visual environment requires a dynamic cooperation be-
tween distinct cortical systems to extract information
from the current view of a scene, and then to integrate
it with our understanding of the world and determine
our place in it.

Note added in Proof - Minor revisions were made to the
version that was published on-line October 10, 2016, as
an Early Release, including adjustments to the labeling of
Figures 2 and 3, and small wording changes in the Ab-
stract and Materials and Methods.
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