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1. INTRODUCTION 

Our s tar t ing point  is an algorithm, published b y  Dekker  [-3], for finding a zero of 
a real funct ion defined on a given interval.  

Section 2 contains a detailed discussion of this algori thm, which we call a lgor i thm 
A. The  method '  used in a lgor i thm A is a mixtuze of linear interpolat ion and bi- 
section. For  this algorithm, convergence is guaranteed  and  the  asympto t i c  behavior  
is completely  satisfactory.  However ,  the  number  of funct ion evaluat ions required 
by  this a lgor i thm m a y  be prohibi t ively large, in particular,  when the zero appears  
to  be multiple. Therefore,  Brent  [-2] proposed a modified a lgor i thm (called 
a lgor i thm B in Section 5). For  this a lgor i thm the upper  bound  of the  number  of 
funct ion evaluat ions needed equals (t q- 1) ~ - 2, where t is the number  of funct ion 
evaluat ions needed b y  bisection. 
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Two Efficient Algorithms with Guaranteed Convergence 331 

In Section 3 we present a modified algorithm (algorithm M) having the same 
asymptotic order of convergence as algorithm A, but  requiring at most 4t function 
evaluations. This is achieved by  inserting steps in which rational interpolation (see 
Jarra t t  and Nudds [51) or bisection is performed. Anderson and Bj6rck ['1] present 
an algorithm (called algorithm C in Section 5) which uses also linear interpolation 
and rational interpolation. This algorithm, however, may require as many function 
evaluations as algorithm A. 

In Section 4 we present another algorithm (algorithm R) having a higher asymp- 
totic order of convergence and requiring at  most 5t function evaluations. This 
algorithm has a similar strategy but  uses rational interpolation instead of linear 
interpolation. 

In Section 5 we compare some numerical results of the algorithms mentioned, 
and in Section 6 we give some conclusions. 

A description of our algorithms in the form of Algol 60 procedures is given in 
the Appendix. 

2. ALGORITHM A 

For a detailed description of algorithm A, together with a discussion on its properties 
and an Algol 60 procedure, see [-31. 

2.1 Data 

Given a real continuous function f of one real variable, two distinct argument 
values x0 and 11 satisfying f(xo) X f(xl) <_ O, and a positive tolerance function 
of one real variable satisfying 0 < r < 5 (x), where r is a given positive constant 
(for instance, ~(x) = T defines an absolute tolerance r and ~(x) = a I x I -t- r 
defines a relative tolerance a when J x [ is large). 

2.2 Results 

The purpose of algorithm A (and of algorithms M and R presented in Sections 3 
and 4) is to find two (distinct) real numbers x and y satisfying 

f(x) X f ( y )  <_0, [f(x) l ~ l f ( y ) l  , [ x - y J < _ 2 ~ ( x ) .  (2.2.1) 

Since f is continuous, the first condition ensures that  there exists a zero, z, of f in 
the closed interval with endpoints x and y; the second condition yields tha t  x is 
the "best"  approximation of z; the third condition states that  the required tolerance 
has been reached. 

2.3 Definition of Algorithm A 

From the data mentioned in Section 2.1, algorithm A produces two argument 
values x and y satisfying (2.2.1). This is achieved by calculating in succession the 
argument values x, (for i = 2 , . . . ,  n),  and a , ,  b,,  and c, (for i --- 1 , . . . ,  n) as 
defined in A1 and A2 below, where n and the results delivered are defined in A3. 

A1 (initialization, i = 1). If If(x1) I <- I f(xo) I, then bl = 11 and al = Cl = x0; 
otherwise bl = x0 and ax = c~ = 11. 
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A2 (iteration step, i = 2 , . . . ,  n).  Let  the linear interpolation formula be defined, 
for a ~ b, by  

l = l (b ,a )  = b - f ( b ) ( b  - a ) / ( f ( b )  - / ( a ) )  i f f (b )  ~ f ( a ) ,  

-- ~ i f f (b )  = f (a )  ~ 0, 

= b i f f (b)  = f (a )  ffi O. (2.3.1) 

Let, moreover, 

h = h(b, c) = b + sign(c - b) X ~(b), (2.3.2) 

m = m(b, c) = ½(b -b c), and (2.3.3) 

v = v(l, b, c) = l if 1 is between h(b, c) and re(b, c), 

= h(b ,c )  i f [ l  - b[  ~_$(b),  

= re(b, c) otherwise. (2.3.4) 

Then the new iterate x, is calculated according to the formula 

x, = v(M,  b,_l, e,_l), (2.3.5) 

where ~, = l (b ,_l ,  a,_~). Furthermore,  let k be  the largest (nonnegative) 
integer satisfying k < i and f(x~) × f ( x , )  
by 

b, = x l ,  c i - -  xk, a, = b,_l 

b, = xk, a , - -  c, = x, 

_~ 0. Then b, ,  c , ,  and a, are defined 

if [ f (x , )  l <_ I f (xk)  I; (2.3.6) 

otherwise. (2.3.7) 

A3 (termination).  Let  n be the smallest positive integer satisfying 

]bn - c~ ] < 2~(b~). (2.3.8) 

Then the algorithm terminates for i = n and delivers as results 

x = b , ,  y -- c , .  (2.3.9) 

2.4 Additional Definitions and Remarks 

2.4.1 Let  J , ,  for i = 1, 2 , . . . ,  n, denote the closed interval whose endpoints 
are b, and c, .  Then, from the invariant relations f (b , )  X f (c , )  <_ 0 and I f (b , )  1 
I f (c i )  I, it follows tha t  J ,  contains a zero z o f f  and tha t  bi is the best approximation 
of z obtained up to and including step i. 

2.4.2 The iterates x, (i  = 1, 2 , . . . ,  n) are all distinct and their mutual  distances 
are a t  least r. Hence [ b, - a, I ~ r for i = 1, 2 , . . . ,  n, so tha t  M and x, in (2.3.5) 
are well defined for i = 1, 2 . . . .  , n. 

2.4.3 I f  a,-1 = c,-1, for certain i, then the argument  values a,-1 and b,-1, used to 
calculate M in (2.3.5), are on different sides of z and we call the i th step a (linear) 
intrapolation step; otherwise a,_1 and b,_l are on the same side of z and we call the 
i th step a (linear) extrapolation step. 

2.4.4 Obviously, algorithm A uses the function values f (x , ) ,  for i = 0, 1 , . . . ,  n. 
So, the number  of function evaluations needed equals n -b 1. 
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2 . 5  P r o p e r t i e s  

Algorithm A has the following properties ['31. 
2.5.1 If the given function f has a continuous second derivative in J1 and a 

unique simple zero in this interval, then the asymptotic order of convergence of 
algorithm A equals the largest root, Pl ,  of the equation x 2 - x - 1 = 0; thus 
pl = ½(1 -~ %/5) --~ 1.618. 

2.5.2 The number of function evaluations needed is bounded above by T, where 
T = 1 xl - Xo I/~. As Brent [-2J shows, this upper bound may indeed be attained. 

2.6 Discussion 

If f (x,) × f (b , -1)  <_ 0 for certain i, then 

] b , -  c,I = I x , -  b , _ l [  < ½ ]  b , _ l  - c , -1  I; 

otherwise 

½l b,_l - c,-1 [ <_ I b, - c ,  I = Ix,  - C,_l  I < I b , _ l  - c ,_11  - ~. 

So, we may have (very) slow convergence only if the latter case occurs frequently. 
If f has a continuous second derivative, z is a simple zero of f (i.e., f ' ( z )  ~ 0) ,  

and a and b are sufficiently close to z to ensure tha t  f '  (v) ~ 0 for v in the smMlest 
interval containing a, b, and z, then l = l(b, a) ,  obtained by the linear interpolation 
formula (2.3.1), satisfies [3] 

l - z = (b - z) (a - z ) K ( ~ ,  ~),  (2.6.1) 

where K ( $ ,  7) = ~- f " (~) / f ' (7 ) ,  and E and ~ lie in the smallest interval containing 
a, b, and z. Hence if I b,0 - c,0 [ is sufficiently small for certain z0, then the iterates 
x, converge to z and the values [ f(x,)  ] decrease monotonically for i >_ i0 as long as 

~(x , )  < I Z(x,, x,_l )  - z ,  I. (2.6.2) 

Condition (2.6.2) ensures that,  for i _> i0, the tolerance function does not 
influence the i th iteration step. Henceforth in this section (where we consider the 
asymptotic behavior of algorithm A) we take i _> i0 and assume that  condition 
(2.6.2) holds for all i _> i0. (In fact we consider the process that  is obtained if the 
tolerance function ~ tends uniformly to zero on the interval J1 ; see also the proof of 
Theorem 3.3.2). Then, by A2, we have b, = x , ,  a, = x,-1, and c, = xk. Let 
~, = b, - z ( = x ,  - z) denote the error of the i th iterate. Then (2.3.5) and (2.6.1) 
yield 

e,+l = e,~,_lg(~,, V,), (2.6.3) 

where ~, and 7, lie in the smallest interval containing b,, b,-1, and z. Consequently, 
i f f " (z )  ~ 0, we have K ( z ,  z) ~ O. Hence, for sufficiently large i, K($1,7,) has the 
same sign as K ( z ,  z) .  Therefore the sign of K ( z ,  z) and of two successive errors e, 
and e,_~ completely determine the signs of the subsequent errors. Then simple 
checking yields that,  when f "  (z) ~ 0, there are only the following two (essentially 
different) possibilities for the asymptotic behavior: 
(1) the iteration consists of consecutive cycles of the form IIE,  i.e. two intrapola- 

tion steps followed by one extrapolation step; 
(2) the iteration consists of consecutive extrapolation steps. 
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In the first case, the length of J~ is smaller than 0.25 times the length of J~-s. 
So, in this case, we find a small upper bound (viz. ~t) for the number, N, of function 
evaluations needed. In the second case, convergence may be very slow (N may 
attain the upper bound T). Therefore, we modify algorithm A such that  more than 
two consecutive extrapolation steps can no longer occur in an iteration, while an 
iteration consisting of consecutive cycles of the form I IE  remains undisturbed. 

3. ALGORITHM M 

3.1 Definition 

From the data mentioned in Section 2.1, algorithm M pioduces two argument 
values x and y satisfying (2.2.1). This is achieved by calculating in succession the 
argument values x , ,  d~ (for i = 2 , . . . ,  n), and a~, b,, c, (for i = 1 , . . . ,  n) as 
defined in A1 (see Section 2.3) and M2 (below), where n and the results delivered 
are defined in A3 (see Section 2.3). 

M2 (iteration step, i = 2 , . . . ,  n). Let j = j ,  be the largest positive integer 
satisfying j = i or, if i < j < i, then 

I bi - c¢1 < ½ [ by-1 - c¢-i  l- ( 3 . 1 . 1 )  

Then the new iterate x, is calculated as follows (for the definitions of h, m, 
and M, see A2). Let 

w = w(l,  b, c) = l 

= h ( b ,  c) 

-= m(b,  c) 

Then 

if l is between h(b, c) and m(b,  c), 

if I l - b I < ~ (b) and l lies not outside the 
interval bounded by b and m(b,  c), 

otherwise. 

x, = w(M, b~-l, c,_,) 

= w ( p , ,  b ~ - l ,  c i - , )  

= m ( b , _ 1 ,  c~-1) 

where p, is defined as follows: for a ~ b, let 

if j ,  >_ i - -  2, 

if j ,  = i - 3, 

otherwise, 

(3.1.2) 

(3.1.3) 

p,  = r(b~_l  , a~_i , d~_, ) .  ( 3 . 1 . 6 )  

Furthermore, let k be the largest (nonnegative) integer satisfying k < i and 
A C M  Transac t ions  on Mathemat ica l  Software,  Vol 1, No 4, December  1975. 

then 

f[a,  b] = ( f ( a )  - f ( b ) ) / ( a  - b) (3.1.4) 

(i.e. the first divided difference of f at a and b) ; for distinct a, b, and d, using 
the abbreviations a = f ib ,  d]  >( f (a )  and/~ = f[a,  d] >( f (b ) ,  define 

r = r ( b , a , d )  = b - ~ ( b - a ) / ( ~ - a )  i f [ 3 ~ a ,  

= ~ i f~  = a # 0 ,  

= 0 i f ~  = a = 0;  ( 3 . 1 . 5 )  
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f ( xk )  X f ( x , )  <_ O, then b, , c, , a, , and d, are defined by 

b, = x , ,  c, -- x , ,  a, -- b,-1 

d, = a,_l 

d~ = b~_l 

if I f (x , ) I  ~ [ f (x~)] ;  (3.1.7) 

otherwise; (3.1.8) 

if b, = x, or bl = b,-x ; 

otherwise. (3.1.9) 

3.2 Additional Definitions and Remarks 

The definitions and remarks given in Section 2.4 are also valid for algorithm M. 
3.2.1 Formula (3.1.5) is obtained by 3-point rational interpolation, where the 

interpolating function is ~(x )  = (x - r ) / ( p x  + q) and the parameters p, q, and 
r are determined such that  4~(x) = f ( x )  for x = a, b, d (see also [5-1). 

3.2.2 In addition to paragraph 2.4.2, it is obvious that  for all i :> 2 the argument 
values b~, a~, and d~ are distinct and have a mutual  distance which is bounded 
below by r. So p, and x, in (3.1.6) and (3.1.3) are well defined. 

3.2.3 In addition to paragraph 2.4.3 we speak about rational interpolation if 
x, = w(p~, b,-1, c,_~). Moreover, if in this case b,_l and a,-1 lie on different sides of 
z, then we cM1 the i th  step a rational intrapolation step; otherwise we eM1 the i th  
step a rational extrapolation step. 

3.2.4 Comparing the definitions of w and v, given in (3.1.2) and (2.3.4), respec- 
tively, we note that  w(1, b, c) ~ v(l, b, c) only if I l -- b 1 -< ~(b) and l lies outside 
the interval bounded by b and m(b,  c). We have replaced v by w in algorithm M 
because we think it is preferable from a theoretical point of view, and it sometimes 
yields better results. 

3.3 Properties 

We state and prove the following two theorems on algorithm M. 
3.3.1 THEOREM. Let data be given as mentioned in Section 2.1. Then the number of 

funct ion evaluations needed by algorithm M to obtain two values x and y satisfying 
(2.2.1) is bounded by 4t, where t = Slog(] Xl - Xo I/r).  

(Note that  t is the number of function evaluations needed by bisection.) 
PROOF. This follows from the definition of the algorithm, in particular from 

formulas (3.1.1) and (3.1.2). A bisection step is performed whenever none of the 
last three steps has reduced the length of the interval by a factor less than or equal 
to 0.5. Hence the length of J ,  is smaller than half the length of J , -4 ,  which proves 
the theorem. [ ]  

3.3.2 THEOREm. Let data be given as mentioned in Section 2.1. Let, moreover, the 
given funct ion f have a continuous fourth derivative and a unique simple zero, z, in  the 
interval J1 .  Then the asymptotic order of convergence of algorithm M ,  f inding an 
approximation of z, equals pl • 

(For definitions of J1 and pl see paragraphs 2.4.1 and 2.5.1.) 
PROOF. Let 

ck = f(~)(z)/tc! k > O. (3.3.1) 

Then c~ ~ 0, because z is a simple zero of f by assumption. We need more terms in 
the error formula (2.6.1). By straightforward calculation, using Newton's inter- 
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polation formula and the assumption that  f has a continuous fourth derivative, 
we find 

l - z = (b --  z)  (a  - z )EKo - K l ( b  --  z -k  a --  z)  -b O(] b - z ] -]- ] a - z ] ) ~ ,  

(3.3.2) 

where /Co = c2/cl and K1 = (c2/cl) 2 - c 3 / c l .  Similarly, for the 3-point rational 
interpolation formula (3.1.5) we find [-51: 

r - - z =  (b --  z ) ( a  --  z ) ( d  --  z ) [ K l  + O(l  b --  z [  T l a  --  z i  + i d - -  z l ) ] .  

(3.3.3) 

From (3.3.3) it follows tha t  the asymptotic order of convergence of the 3-point 
rational interpolation formula equals p2, where p~ is the largest root of the equation 
x ~ -- x ~ -- x -- 1 = 0; hencep2 ~ 1.839 (cf. [51). 

We consider the asymptotic order of convergence of the iteration process that  is 
obtained if we let the tolerance function 8 tend uniformly to zero on the interval J~. 
(We assume, of course, that  exact arithmetic is used.) This limit process is a well 
defined iteration process which does, however, not terminate. (Here we use the 
fact that  the divided difference fEa,  bJ converges to f ' ( a )  when b converges to a). 
The intervals J ,  (i = 1, 2 , . . . )  are monotonically nonincreasing (i.e. J,+l C J , ,  
for all i) and the length of the interval J ,  converges to zero for i tending to infinity. 
(Indeed the length decreases by a factor less than or equal to 0.5 in every four 
steps; cf. the proof of Theorem 3.3.1). We choose ~ such t h a t f ' ( x )  ~ 0 for x C J,o.  

From the definition of the algorithm, in particular (3.1.1) and (3.1.3), and from 
the error formulas (3.3.2) and (3.3.3), we know tha t  an integer i~ >_/o exists, 
such that  
(a) for all i > / 2  satisfying j ,  > i - 3, a bisection step is performed to obtain the 

ith iterate x, (i.e. x, = m(b,_l, c,_1)); so, If(x,) I > I f (b , -1 )  I and f ( x , )  X 
f ( b , _ l )  ~ 0; in this case a , ,  b, ,  and c, are chosen according to (3.1.8), and the 
(i -~ 1)-th step will be an intrapolation step; 

(b) for all i > i l  satisfying j , ~ i - 3 ,  we have If(x,) I ~ I f ( b , -~ )  I and 
[ x ,  - z [ _< I X,_l - z 1; now b,, a , ,  and c, are obtained by (3.1.7) ; substituting 
~k = b~ - z for arbitrary k in (3.3.2) and (3.3.3), we obtain 

M - z = ~,-le,-~[-K0 - Kl(e,-1 T ~,-2) -{- O(I e,-~ ] ~- I e,-~ I)~], (3.3.4) 

p ,  - z = e,-le,-~e,-3[K~ + O( I ~,-, I -t- 1~,-2 I + 1~,-3 [)]. (3.3.5) 

We distinguish two cases. 
(A) There exists an /2 _> il such that  j~ >_ i - 3 for all i >_/2. Then, for all 

i >_/2, the iterate x, is obtained by linear interpolation (with asymptotic order of 
convergence equal to p~) or by 3-point rational interpolation (with asymptotic 
order of convergence equal to P2 > P~). This leads immediately to the required 
result. 

(B) For each/2 >_/2, there exists an i >_/2 such tha t  j~ < i - 3. 
We distinguish two subcases. 
(B.1) c2 ~ 0. So K0 ~ 0. Hence an integer ~ >_/2 exists such that  j ,  < u - 3 

and K0 in formula (3.3.4) dominates. Consequently, using (a), the (u + 1)-th step 
is an intrapolation step and the sign of e,(i > p) is determined by the sign of e,, 
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ev-1, and K0. Then it is easily checked that,  from the (~ -b 1)-th step, the iteration 
consists of consecutive cycles of the form IIE,  i.e. two linear intrapolation steps 
followed by one linear extrapolation step. This contradicts our assumption (B). 

(B.2) c2 = 0. Then also K0 = 0. 
We again distinguish two subcases. 
(B.2.1) c3 ~ 0. So K1 ~a 0. Hence, as in (B.1), an integer p _~/~ exists such that  

the (~ -k 1)-th step is a linear intrapolation step and the term K~(e,-1 -b e,-2) in 
formula (3.3.4) and the term K1 in (3.3.5) dominate. Consequently, the sign of 
e , ( i  > ~) is completely determined by  the sign of e,, ev-1, and K1. (Note that  
e , ( i  > ~) equals either X, - z or p, - z and that  a rational extrapolation step 
always yields an iterate on the other side of z. So this step is always followed by a 
linear intrapolation step.) I t  can be shown that  from the (~ -b 1)-th step the 
iteration consists of either only linear intrapolation steps (viz. when K1 > 0) or 
cycles of the form IEE' ,  i.e. a linear intrapolation step, a linear extrapolation step, 
and a rational extrapolation step. This also contradicts our assumption (B). 

(B.2.2) c~ = 0. Then also K1 = 0 and the most unfavorable situation is an 
iteration consisting of consecutive cycles of the form IEE 'B,  i.e. a linear intrapola- 
tion step, a linear extrapolation step, a rational extrapolation step, and a bisection 
step. Let  the ith step be a bisection step yielding argument values a, = c, = x, and 
b, = X,_l. Then a, - z = 0(1)  and, according to (3.3.4) and (3.3.5), the cycle 
IEE 'B  asymptotically yields: 

I :  e , + l  = X ~ - i  - z = O ( e , ( c ,  - z )  8) = O ( e , ) ,  

E :  ~,+~ = X ~  - z = 0(~,+1e2) = 0 ( ~ , ~ ) ,  

E ' :  ~,+~ = p , + ~  - z = O(e,+~,+~, ~) = 0 ( ~ , ~ ) ,  

B: e,+4 = e,+~ = O(e, 7) and a,+4 = c,+4 = x,+4. 

So in this case the effective asymptotic order of convergence equals ~/7 _~-- 1.626, 
which is greater than Pl .  This completes the proof of the theorem. [ ]  

4. ALGORITHM R 

4.1 Definition 

From the data mentioned in Section 2.1, algorithm R produces two argument 
values x and y satisfying (2.2.1), by successively calculating argument values x, 
and d, (for i = 2 , . . . ,  n) and a , ,  b,,  and c, (for i = 1 , . . . ,  n) as defined in A1 
(see Section 2.3) and R2 (below), where n and the results delivered are defined in 
A3 (see Section 2.3). 

R~ (iteration step, i = 2 , . . . ,  n). Let  j ,  be defined as in M2. Then the new iterate 
x, is calculated as follows (for the definitions of X, and m, see A2, and for the 
definitions of w and p , ,  see M2) : 

---- W ( p , ,  b , _ l ,  C,_l) 

= w(2p ,  -- b , -1,  b~-1, c~-1) 

= m ( b , _ l ,  c,-1) 

i f /  = 2, 

if i >_ 3 and j ,  >_ i - 3, 

i f i > _ 3 a n d j , = i - 4 ,  

otherwise. (4.1.1) 
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Furthermore, b~, c~, a~, and d~ are defined as in M2. 

4.2 Additional Definitions and Remarks 

The definitions and remarks in Sections 2.4 and 3.2 are also valid for algorithm R. 
4.2.1 In algorithm M a bisection step is performed (x, = m(b,_l, c,-1)) when 

j ,  = i - 4, but in algorithm R a bisection step is performed when j ,  = i - 5. The 
reason for this difference lies in the different asymptotic behavior of the algorithms 
M and R. Using 3-point rational interpolation, the errors satisfy (3.3.3). Assuming 
K1 # 0, then the iteration may asymptotically consist of consecutive cycles of the 
form IIEE,  i.e. two intrapolation steps followed by two extrapolation steps (see 
also the proof of Theorem 4.3.2). We do not want to disturb such an asymptotic 
behavior. So we have to allow two consecutive extrapolation steps in algorithm R. 
Therefore, in algorithm R, we modify the third of three consecutive extrapolation 
steps ( j ,  -- i - 4) by doubling the step length obtained with rational interpola- 
tion, and a bisection step is inserted if j ,  < i - 4. 

4.2.2 In addition to paragraphs 2.4.3 and 3.2.3, we call an iteration step a modi- 
fied extrapolation step if x, = w(2p, - b~-l , b,-1, c~-1). 

4.3 Properties 

We state and prove the following two theorems on algorithm R. 
4.3.1 THEOREM. Let data be given as mentioned in Section 2.1. Then the number 

of function evaluations needed by algorithm R to produce two argument values x and y 
satisfying (2.2.I) is at most 5t. 

(For the definition of t see Section 3.3.1.) 
PROOF. This follows immediately from the definition of the algorithm. [ ]  
4.3.2 THEOREM. Let data be given as mentioned in Section 2.1. Let, moreover, the 

given function f have a continuous fifth derivative and a unique simple zero, z, in the 
interval J~ . Then the asymptotic order of convergence of algorithm R, to find an approxi- 
mation of z, equals p~ . 

(For the definition of J1 see paragraph 2.4.1, and for the definition of p~ see the 
proof of Theorem 3.3.2.) 

PROOF. This proof is similar to that  of Theorem 3.3.2. Let cA, k > 0, be defined 
by (3.3.3). Then c~ ~ 0 by assumption. As in the proof of Theorem 3.3.2, we con- 
sider the asymptotic order of convergence of the iteration process that  is obtained 
if we let the tolerance function ~ tend uniformly to zero on the interval J r .  The 
length of the intervals J ,  converges to 0 for i tending to infinity. So we may choose 
i0 such that  f '  (x) ~ 0 for all x C J~0. From the definition of the algorithm and the 
error formula (3.3.3) we may conclude that  an integer i~ >_/o exists such tha t  
(a) for all i ~ i l ,  satisfying j ,  -- i - 4, a modified extrapolation step is performed; 

then, using the notation ek = b~ - z for arbitrary k, we obtain the following 
error formula: 

e, = 2 p ,  - b , _ l  - z = - e , _ ~ [ 1  - { - O ( e , - 2 e , - z ) ] ;  ( 4 . 3 . 1 )  

hence f(x,) X f(b,_l) _< 0 and the next step will be an intrapolation step; 
(b) for all i ~ i~, satisfying j ,  > i - 3, the relations If(x,)  I <- l/(b,-~) I and 

l x, - z I -< ] b,_~ - z I hold; consequently, b,, a , ,  and c, are obtained by 
(3.1.7). 
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Note that  for all i >__ i l ,  the inequality 3, >-- i - 4 holds because of (a). So no 
bisection steps occur. 

Instead of (3.3.5), we need a more elaborate error formula for this proof, which 
can be obtained by straightforward calculation using the assumption that  f has a 
continuous fifth derivative. 

p, - z = E,_~e,-2e,-3[K~ + K2(e,-1 + e,-2 + e,-3) + 0([ e,_~ [ + 1~,-2 [ + [e,-~ I)2"], 

(4.3.2) 

where K1 is defined by (3.3.2) and K 2  = c2c3/cl 2 - c 4 / c l .  We distinguish two cases. 
(A) There exists an integer/2 ~_/1 such that  j ,  _> i - 3 for all i >_/2. Then, 

for all i ~_/2, the iterate x, is obtained by rational interpolation (with asymptotic 
order of convergence equal to p2). This proves the required result. 

(B) For each /2 >_ i l ,  there exists an i _ is such that  j ,  = i - 4. Hence the 
i th step is a modified step. 

We distinguish two subcases. 
(B.1) K1 ~ 0. By assumption (B) we may choose an integer v >_ ~ such that  

the ~th step is a modified extrapolation step and the term K1 in (4.3.2) dominates. 
Consequently, using (a), the (~ + 1)-th step is an intrapolation step and the sign 
of e,(i > ~) is completely determined by the sign of ek (k -- ~, p - 1, v - 2) and 
K1. Then it is easily checked that,  from the (v + 1)-th step, the iteration can only 
consist of cycles of the form I or IE, when K~ > 0, and I IEE,  when Kx < 0; here I 
denotes a rational intrapolation step and E denotes a rational extrapolation step. 
This contradicts our assumption (B). 

(B.2) K1 = 0. Then the most unfavorable situation is an iteration consisting of 
cycles IEEE' ,  i.e. a rational intrapolation step, two rational extrapolation steps, 
and a modified extrapolation step. Then, according to (4.3.2), we have 
e, = -~,-1 + 0(~,-le,-2~2,_3), and the cycle IEEE '  yields: 

E':  , ,  = -E ,_ I  + 0(~,_1E,_2~2,_3) = 0 (~ , -1 ) ;  

I :  ~,+, = O(~,E,-IJ,_2) = O(~2,_i~2,_2); 

~2 E :  ~+2 = e,+le,~,-,[K2(*,+l + O(~,_,E,_2 ,-3)) + O(e2,-,)] 
~5 2 2 = o(  ,-~,-2(~,-~,-~ + ~,-,)); 

E :  E,+a = O(E,+2e,+,e, 2) = o(eg,_ie4,_2(e,_2e=,._z + e,_,) ) .  

Using similar relations for the (i + 4)-th up to the (i + 7)-th iteration step 
we obtain 

e9 4 2 9 29 ~,+~ = O( ,+~,+~(~,+2~,+~ + ~,+~)) < 0(~,+~,_i).  

Therefore, the effective asymptotic order of convergence is at least equal to ~2/~', 
where ~- denotes the largest positive root of the equation x 2 - 9x - 29 = 0, which 
approximately equals 11.52. So ~V~" ~ 1.842, which is larger than P2 • This completes 
the proof of the theorem. [ ]  

Remark. In fact, for analytic functions having a simple zero, it can be shown 
that  no modified steps will asymptotically occur in the iteration of algorithm R. 
So the asymptotic order of convergence of algorithm R is as large as that  of an 
iteration process using 3-point rational interpolation throughout. 
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5. NUMERICAL RESULTS 

We have compared five algorithms for calculating a zero of a function of o n e  

variable: 

Algorithm A, published by Dekker [-33 and described in Section 2; 
Algorithm M, defined in Section 3; 
Algorithm R, defined in Section 4; 
Algorithm B, published by Brent  [-23 (see Section 1) ; 
Algorithm C, published by Anderson and Bjorck [-13 (see Section 1). 

For  testing these algorithms we have chosen four groups of test functions. 

I. Some functions with a simple zero in the interval considered. These functions 
are [-41: 
1. f ( x )  = sin(x) - 0.5 in the interval E0, 1.51; 
2. f ( x )  = 2 x  e x p ( - n )  + 1 - 2 e x p ( - n x )  in the interval [0, 11 and 

n - -  1 , 2 , 3 , 4 ;  
3. f ( x )  = (1 -~ (1 - n ) : ) x  - (1 - n x )  2 in the interval [0, 11, and n = 1, 5, 10; 

these functions have one turning point in [-0, 11; 
4. f ( x )  = x 2 - (1 - x) n in the interval [-0, 11, and n --- 1, 5, 10; 

these functions have one inflexion in [-0, 1]; 
5. f ( x )  = (1 T (1 - n ) * ) x  - (1 - n x )  4 in the interval [-0, 11, and n = 1, 4, 8; 

these functions have one turning point and one inflexion in [-0, 11; 
6. f ( x )  = ( x  - 1 ) e x p ( - n x )  -{- x n in the interval [-0, 11, and n = 1, 5, 10; this 

is a family of curves increasingly close to the x-axis for large n. 

II.  Some functions of the form f ( x )  = x '~ .-]- a x  ~ b, where n -- 3, 5, 9, 19, and 
1. a = l a n d b  = 0; 
2. a = 0 a n d b  = 10 -4 ;  
3. a = l a n d b  = 10-4 .  
These functions have a simple zero and an inflexion point of the order n - 1 or n 
at  the zero or in its neighborhood. 

III .  Some simple polynomials with a multiple zero. f ( x )  = x"  in the interval 
[ - -  1, 10J, and n = 3, 5, 7, 9, 19, 25. These functions have a zero of multiplicity n. 

IV. A function given by Brent  [2J for which all the derivatives vanish at the 
zero of the function ("multiplicity ~ " ) .  This function is defined by  

f(x) = 0  i f x = O ,  

= x e x p  ( - x -2) otherwise. 

The interval is chosen to be [ - -  1, 41. 

The testing has been performed on a Cyber 73 computer, which has a machine 
precision of 48 bits. In all examples the tolerance function is chosen to be ~ (x) -- 
Ix I X 10--14 ~- 10--14. 

The results for these groups of test functions are given in Tables I - IV.  In these 
tables we give the number of function evaluations needed by the various algorithms 
to find a zero of the given function within the given precision. 
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Table I shows that algorithm M behaves almost the same as algorithm A for 
simple zeros, while algorithms R, B, and C are slightly better. The better results 
for algorithm R are due to the use of the higher order rational interpolation formula 
(3.1.5) throughout. The better behavior of algorithms B and C is caused by re- 

T ab l e  I. T e s t  F u n c t i o n s  of Group  I 

N u m b e r  of func t ion  eva lua t ions  

F u n c t i o n  n A M R B C 

1 - -  10 10 9 8 9 

2 1 9 9 7 8 7 
2 10 10 8 9 8 
3 11 11 9 10 9 
4 12 12 10 10 10 

3 1 10 9 8 8 9 
5 10 10 9 9 8 

10 9 9 9 9 8 

4 1 9 10 8 9 9 
5 10 10 9 9 10 

10 11 11 11 10 11 

5 1 10 10 8 9 9 
4 9 9 9 8 8 
8 7 7 8 7 8 

6 1 9 9 8 9 9 
5 9 9 9 9 9 

10 10 10 10 9 10 

To t a l  165 165 149 150 151 

T a b l e  I I .  T e s t  F u n c t i o n s  of Group  I I  

N u m b e r  of func t ion  eva lua t ions  

a b n A M R B C 

1 0 3 11 12 11 15 12 
5 10 10 10 14 12 
9 10 13 11 16 12 

19 10 13 13 16 12 

0 l o - - 4  3 21 26 17 26 21 
5 22 26 18 27 23 
9 23 27 19 25 24 

19 23 27 19 24 24 

1 10--4 3 11 12 11 14 12 
5 10 10 10 14 11 
9 10 10 11 16 11 

19 10 13 13 16 11 

To ta l  171 199 163 223 185 
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Tables III and IV. Test Functions of Groups III and IV 

Number of function evaluations 

n A M R B C 

Table III 

3 117 151 91 147 118 
5 206 149 163 122 207 
7 293 161 206 138 294 
9 380 160 196 137 381 

19 802 179 206 141 759 
25 1320 159 174 123 961 

Total 3118 959 1036 808 2720 

Table IV 

> 5000 27 23 18 969 

Boolean procedure zeroin(x, y, fx, tolx); 
real x, y, fx, tolx; 
be~in integer ext; 

real c, fc, b, fb, a, fa, d, fd, fdb, fda, w, rob, 
tol, m, p, q; 
b-= x; fb:: fx; a:= x:: y; fa:: fx; 

interpolate: c:: a; fc:: fa; ext:: O; 
extrapolate: if abs(fc) < sbs(fo) then 

begin if c ~ a then be~in d:= a; fd:= fa end; 
a:: b; fa:: fo; b:= x:= c; fD:= fc; C:: a; fc:= fa 

end interchange; 
tol:= tolx; m-: (c + b) × 0.5; mb:: m - b; 
if sbs(mb) > tol then 
be$in if ext > 2 then w:= mb else 

be~In tol:= tol × sign(rob); 
p:: (b - a) x I]3; if ext -< 1 then 
q:: fa - fo else 
be~in fdb:: (--~- fb) / (d - b); 

fda:: (fd- fa) / (d- a); 
p:: fda × p; q:: fdb × fa- fda × fo 

end; if p < 0 then 
be~in p:= -p; q:: -q end; 
w:= if p x i : 0 v p -< q x tol then tol else 
i_ff p <mb x q then p / q else mb 

end; d:= a; fd:= fa; a:= b; fa:= Fo; 
x:: b:: b + w; ~b:: fx; 
If (if fc >- 0 then fb -> 0 else fb _< O) then 
$oto !nterpolate else 
be$in ext:: ifw = mb then 0 else ext + i; 

$oto extrapolate 
end 

end; y:= c; 
zeroin:: if fc ~ 0 then fo < 0 else fo .>. 0 

end zeroin; 

Fig. 1 
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placing each linear extrapolation step by an inverse quadratic interpolation step 
(in algorithm B, see [-2]) or a rational extrapolation step (in algorithm C, see 
[-1]). Hence in algorithms R, B, and C we save roughly 10 percent of the number of 
function evaluations at the cost of slightly more complicated calculations. 

From Table I I  we see that  algorithms R, C, and M are better  than algorithm B 
for finding a simple zero of a function with a high order inflexion point at or near 
the zero. 

Finally, Tables I I I  and IV show clearly that  algorithm A and also algorithm C 
are not efficient for calculating multiple zeros. They may cause a computer program 
to run out of time very quickly. 

6. CONCLUSIONS 

From the results given in Section 5 it is obvious that  algorithms A and C are not 
efficient for practical use on a computer if the multiplicity of the zero is not known 
in advance. 

Boolean procedure zerolnrat(x, y, fx, tolx); 
real x, y~ fx, tolx; 
b~gin integer ext; boolean first; 

real b, fo, a, fa, d, fd, c, fc, fdb, fda, w, 
mb, tol, m, p, q; 
b:= x; fo:= fx; a:= x:= y; fa:= fx; f~rst:= true; 

interpolate: c:= a; fc:= fa; ext:= O; 
extrapolate: if abs(fc) < ~os(fo) then 

be$in i__ff ~-# a then be$in d:= a; fd:= fa end; 
a:= b; fa:= fo; b:= x:= c; fo:= fc; c:= a; fc:= fa 

end interchange; 
tol:= tolx; m:= (c + b) x .5; rob:= m - b; 
if abs(mb) > tol then 
be~in if ext > 3 then w:= mb else 

be~in tol:= tol x sign(rob); 
p:= (b - a) x fo; if first then 
be~in q:= fa - fo; first:= false end else 
be~in fdb:= (fd- fo) / (d - b); 

fda:= (fd- fa) / (d- a); 
p:= fda x p; q:= fdb x fa - fda x fo 

end; if p < 0 then 
be~in p:= -p; q:= -q end; 
if ext = 3 then p:= p x 2; 
w:= if p x i = 0 v p < q x tol then tol else 
if p < mb x q then p / q else mb 

end; d:= a; fd:= fa; a:= b; fa:= fb; 
x:= b:= b + w; fb:= fx; 
if (if fc >- 0 then fo -> 0 else fb <- O) then 
~oto interpolate else 
be$in ext:= ifw =mb then 0 else ext + 1; 

$oto extrapolate 
end 

end; y:= c; 
zeroinrat:= if fc ~ 0 then fo _~ 0 else fb >_ 0 

end zeroinrat; 

Fig. 2 

ACM Transactions o n  M a t h e m a t i c a l  Software, Vol. 1, No 4, December 1975. 



344 J.C.P. Bus and T.J. Dekker 

Although in most cases the results of algorithm B are slightly better than those 
of algorithm M, this is only due to the use of a more complicated formula in roughly 
30 percent of the iteration steps. Moreover, there are examples (see Table II) for 
which algorithm M requires fewer function evaluations than algorithm B. So for 
rather simple functions, whose evaluation is cheap with respect to the calculations 
performed in one iteration step of algorithm M, we recommend the use of algorithm 
M; we also recommend the use of algorithm M because the upper bound of the 
number of function evaluations needed is better than for algorithm B (see Theorem 
3.3.1). Algorithm R is to be preferred for more expensive functions, because of the 
higher asymptotic order of convergence of the interpolation formula used in this 
algorithm (see Theorem 4.3.2). This statement is affirmed by the numerical results 
given in Section 5. For functions having poles near the zero we also advise the use 
of algorithm R, because of the special character of the interpolating function used 
in this algorithm. 

APPENDIX. ALGOL 60 PROCEDURES 

f x :  

tolx: 

In this Appendix we give the text of two Algol 60 procedures (Figures 1 and 2), 
implementing algorithms M and R, defined in Sections 3 and 4. 

The heading of the procedure implementing algorithm M reads: 

Boolean procedure zeroin ( x,y,fx,tolx) ; 
real x,y,fx,tolx; 

The heading of the procedure implementing algorithm R reads: 

Boolean procedure zeroinrat ( x,y,fx,tolx) ; 
real x,y,fx,tolx; 

The meaning of the formal parameters is: 

x, y: real variables; 
entry: the endpoints of the interval J1 (see paragraph 2.4.1) ; 
exit: if the value of the procedure identifier is true, then the values of x and 
y satisfy (2.2.1) ; 

real expression depending on x; the actual value of fx  should be equal to the 
function value at the point given by the actual value of x; 
real expression depending on x; the actual value of tolx should be equal to 
the value of the tolerance function at the point given by the actual value of x. 

The procedure identifier will have the value t rue  on exit if two argument values 
x and y are found which satisfy (2.2.1); otherwise the value of the procedure 
identifier will be false on exit. The last case can only occur if, on entry, the values 
of x and y do not satisfy f (x)  X f (y)  <_ O. Note that in the procedures we have 
written " i f p  X 1 = 0 V" instead of " i f p  = 0 V ." This is done because of the 
poor arithmetic of the Cyber 73 for values around the smallest positive represent- 
able number. On this computer, it can occur that the Boolean expression p = 0 
has the value false, while the expressions p/1 and p X 1 have the value 0. So 
replacing the expression p = 0 by p X 1 = 0 removes the difficulty, at least in 
the cases we checked. 
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NOTE ADDED IN PROOF 

Instead of "p × 1 = 0," it would be preferable to write "p <_ dwarf," where dwarf 
is a machine constant roughly equal to the smallest positive representable number 
and, more precisely, defined such that  underflow and anomalies of the kind stated 
above can occur only for numbers which are smaller in magnitude. We chose the 
(machine-dependent) formulation p X 1 = 0, because there is not yet  an inter- 
national agreement on the definition of dwarf and/or  related machine constants. 
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