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Abstract

In this dissertation, I provide a thorough description of my development of theoreti-

cal, analytical, and experimental techniques pertaining to novel measurements of the

electrostatic double layer (EDL) using atomic force microscopy (AFM), among other

techniques. The EDL refers to the structure formed by ions that exists at the inter-

face between a solid and a liquid. The EDL is an important physical element of many

systems and its behavior has been of interest to scientists for many decades. Because

many areas of science and engineering are moving to test, build, and understand

systems at smaller and smaller scales, this work focuses on nanoscopic experimen-

tal investigations of the EDL. In that vein, AFM will be introduced and discussed

as a tool for making high spatial resolution measurements of the solid-liquid inter-

face, culminating in a description of the development of a method for completely

characterizing the EDL using direct force measurements with AFM.

I first explore, in a historical fashion, the development of the various models and

theories that are used to describe the electrostatic double layer. Later, various ex-

perimental techniques and ideas are addressed as ways to make measurements of

interesting characteristics of the EDL. Finally, I will introduce a newly developed

approach to measuring the EDL system with AFM. Using this approach, AFM mea-

surements were made of the diffuse double layer potentials using a two-electrode

system consisting of a metal coated atomic force microscopy cantilever and a metal

substrate.

The variation in the diffuse layer potential was measured as a function of probe-

sample potential difference, ∆V. From these measurements, values of the bulk solu-
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tion potential were inferred using a model of two capacitive elements in series. The

expected variation of diffuse layer potential was obtained for a model of the bulk

solution potential varying linearly with ∆V in 0.1 mM, 0.5 mM, and 1 mM solutions

of NaCl. It was found that the diffuse layer potentials varied roughly linearly with

applied sample bias up to 100 mV. The values of the diffuse layer potentials varied

from −46 mV to −11 mV, −89 mV to −8 mV, and from −71 mV to −13 mV for the

0.1 mM, 0.5 mM, and 1 mM solutions, respectively, for applied biases ranging from

0 to +400 mV. The results suggest that measurements of electrostatic double layer

potentials can be made with atomic force microscopy without the need for a reference

electrode.

Specifically, I show that AFM can be used to measure the two most commonly

referenced potential drops in a solid-liquid interface system, referred to as the diffuse

layer potential and the Stern potential. Also, in concert with the aforementioned

model, the potential of the solution itself with respect to an external measurement

point can be calculated. Experimental data validates the implementation of such a

model and, together, the results indicate that AFM can be used to fully characterize

the electrostatic environment of certain solid-liquid interface systems.
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Chapter 1

Introduction

Whenever a solid object is placed into a solution containing ions, charge accumulation

can occur at the solid-liquid interface. An initially charged object in any medium will

attract opposite (counter) charges from any nearby sources. In the case of an electrode

in solution, the source of the counter charges will come from any dissolved ions or

from the solvent molecules themselves. The charges can be cations or anions from the

electrolytic species present as well or, in the case of an aqueous solution, positively

charged hydronium or negatively charged hydroxide molecules.

Even if the solid is initially uncharged, a net charge will develop on its surface and

the charge migration is thus initiated. A net charge can develop on such a neutral

surface via a variety of physiochemical processes. Two dominant sources of charging

are surface group ionization or dissociation (i.e., COOH → COO− +H+) and entropic

forces that result from the asymmetry created by the interface versus an infinite solu-

tion environment and drive ions toward the solid surface. No matter how the surface

charge develops, what is important is the fact that the surface, now charged, will

attract counter charges from solution and the region of space immediately surround-

ing the solid-liquid interface becomes filled with charges. This distribution of charges

and counter charges at the interface are what form the EDL.

How the charges are distributed and what sort of electrostatic environment they

create is a relevant question in many fields of science such as biology, biochemistry, soil

sciences, mineralogy, chemistry, and solid state physics. This is because the presence

of the EDL is what mediates all interactions that take place in liquid environments
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of any kind. Whether it be colloids in a dispersion, cells in vivo, electrodes in a

liquid cell battery, or any other system in which a solid-liquid interface is present, the

EDL is present and plays a role in determining things like reaction rates, biological

compatibility, or colloidal stability. Many models have been developed in the last

150 years to describe the electrostatic characteristics of the solid-liquid interface.

Following the trend of much of modern science, the current goal of many researchers

in the field is to probe the interface at smaller and smaller length scales.

My research has focused on utilizing AFM to investigate the solid-liquid interface.

Within that context, I have focused on attempting to characterize the EDL that forms

at the interface in terms of the electrostatic potentials that develop within certain

spatial regimes. In Chapter 2, the development of the most widely accepted models

of the EDL will be presented and discussed in chronological fashion. It is important

to understand this developmental process as it gives a firm footing from which further

development of new models and experimental techniques that rely on such models

for the interpretation of experimental data can be built.

As the majority of my work has utilized AFM as the measurement system of

choice, Chapter 3 delves into the full operational specifics of AFM, its capabilities,

limitations, and its utility for nanoscale measurements of the EDL. Understanding

how the instrument works and how it measures what it measures will provide a

better foundation onto which the ideas presented in both Chapters 4 and 5 can be

built. Chapter 4 presents a short literature review of some of the recent scientific

developments in regard to measuring the characteristics of the EDL. This places the

new research of this work in context and serves to introduce some terms and basic

ideas for these types of measurements. The review will focus mostly on experiments

in which AFM was the prevalent technique, but will not be limited to such cases.

Finally, Chapter 5 will present the new research and progress I have made in

the last several years as pertains to the measurements and analysis of AFM-based
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measurements of the EDL, with special focus on the electrostatics of the solid-liquid

interface. This will include both theoretical and experimental research outcomes. The

main result of the work presented within is a measurement of a particular potential

drop that occurs on the solution side of the solid-liquid interface. This parameter has

thus far only been measured once with AFM and the techniques developed make its

measurement much simpler and more robust. A secondary outcome of the research

presented is the ability to also measure the potential of the interior or bulk of a

solution with respect to an external reference point. Both of these outcomes serve

as solid advancements in the nanoscopic experimental investigation of solid-liquid

interface systems. According to the results presented, a first of its kind complete

characterization of these systems is now possible.
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Chapter 2

Models of the EDL

The development of models of the solid-liquid interface has been ongoing for over a

century. Many scientists have contributed to the overall understanding of this system.

A full treatment of all theories and their respective place within the larger knowledge

structure is beyond the scope of this thesis. Here, instead, I will discuss a few of the

major developments in the field relevant to my work in roughly chronological order.

Of course, there should be some metric by which the validity of each model can

be tested. It turns out that the metric that is most often used is a quantity known as

the differential capacitance, CD. The differential capacitance differs from the normal

or integral capacitance, C, only in that the regular capacitance is a special case of

the differential capacitance. The differential capacitance is defined as the rate of

change of stored charge Q divided by the rate of change in the potential difference

within that system, V , such that CD = dQ

dV
. This differs in definition from the normal

capacitance, which is typically written C = Q

V
. CD can be thought of as the “real” or

“fundamental” capacitance. In general, Q is always a function of V . In the simplest

possible case, where Q = C0V , with C0 being some constant, CD and C are equal. If the

situation deviates even slightly from this special case, then the two functions become

different. For instance, if some initial charge, Q0 is present, such that Q = Q0 + C0V .

Even if one adopts a more rigorous definition of C, such that C = ∆Q

∆V
, CD and C

still diverge for situations in which the stored charge is a nonlinear function of the

potential difference. It is for this reason that measurements of the EDL tend to use

the differential capacitance, as it is known that their behavior is not that of an ideal
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parallel plate system.

2.1 Helmholtz Model

Helmholtz is often credited as being the first scientist to investigate the solid-liquid

interface and propose a model for this system. In a paper in 1853, often cited as

that in which the first EDL theory was proposed, Helmholtz explored the electrical

nature of the interface of two different conducting materials in contact or close to

contacting one another[70]. He imagined a potential difference V being applied to

one of the conductors. Citing the fact that all excess charge on a conductor resides

on its exterior surface, he proposed that imposing V on a conductor would lead to

surface charge density on this conductor. This charge would cause counter charges

from the second, initially equilibrated, conductor to migrate toward its surface. He

dubbed these two sheets of charge the “electric double layer”.

In Helmholtz’s simplified model, a monolayer sheet of charge forms at each surface.

Helmholtz did not classify this system as a “capacitor”, because the term was not

introduced into the physical sciences vernacular until the 1920s[1]. Today, however,

the system he described is recognized as just that. Helmholtz went on to derive an

expression for the charge per unit area, σ, on the conductor surface as a function

of the applied potential difference, V , and the conductor separation distance, d. He

found that

σ =
ǫǫ0

d
V. (2.1)

Here, ǫ and ǫ0 are the dielectric constant of the medium between the charge layers

and the permittivity of free space, respectively.

Viewing the entire system as a single capacitor leads to an expression for the

differential capacitance (per unit area), CD, of the system,

CD =
dσ

dV
=
ǫǫ0

d
. (2.2)
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Therefore, the Helmholtz model predicts a differential capacitance that does not

depend on potential difference or any factors other than the separation distance

and the dielectric constant of the region between the two charge-carrying materi-

als. Helmholtz cited Gauss’ result that the excess charge on a conductor will reside

on its surface to derive his results and attempted to translate this result to the solid-

liquid interface[70]. From the perspective of molecules on a solid conductor surface

that has been immersed in a solution, however, the second conductor (the liquid)

is essentially infinite in space and approaches infinitely close to the metal surface.

This leads to an ambiguity of where the surface of the second conductor actually is

located. Furthermore, the charges in a liquid are not bound to a particular lattice

structure as they are in a metal conductor. These two discrepancies between a solid-

solid and solid-liquid interface are why the predictions of the Helmholtz Model were

not realized in later experiments.

One of the first researchers to put the various models, including the Helmholtz

Model, of the EDL to the test experimentally was Grahame in 1947[31]. The measure-

ments made by Grahame of the differential capacitance of NaF solutions in contact

with a mercury droplet showed that it was not constant as proposed in the Helmholtz

Model. Grahame showed that the differential capacitance was a function of multiple

factors including ionic concentration and applied voltage. Grahame’s contributions,

being seminal in the field, are discussed in more detail at the end of this chapter.

The underlying failure of the Helmholtz model to describe the solid-liquid inter-

face, again, stems from the fact that Helmholtz was not considering that specific

interface, but the more general case of two conducting materials close to contact.

Among other models tested by Grahame was one that could potentially account for

this shortcoming in the Helmholtz model. This model was that of Gouy and Chap-

man.
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(a)

(b)

Figure 2.1: The (a) charge and (b) potential distributions according to the Helmholtz
theory. The two conductors develop equal and opposite surface charges, akin to a
capacitor. Here, the charges are represented by black and white circles. The potential
in this model is a linear function of the separation the conductors, represented here
by the value of z.

2.2 Gouy-Chapman Model

In the years between 1906 and 1915, before Grahame’s experiments, Louis Georges

Gouy and David Leonard Chapman independently considered the situation of a solid

conductor immersed in an electrolytic solution[30, 16] and sought to build on and

improve the work of Helmholtz. They both recognized that the major shortcoming

of the Helmholtz model was its inability to describe the mobility of charges in the

liquid phase. They both used thermodynamic techniques to solve the problem. Their

approaches differed slightly, but they arrived at the same result. Since they took

slightly different approaches, I present an approach that is similar to both without

being exactly equal to either. The process begins by writing the Poisson equation for

a general charge distribution, which is

∇2φ = − ρ

ǫǫ0

. (2.3)
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Here, ∇2 is the Laplacian differential operator, φ is the electric potential difference

at some point with respect to infinity in Volts, ρ is the charge distribution measured

in C
m3 , ǫ is the unitless dielectric constant of the solution and ǫ0 is the permitivitty of

free space in F
m

. This equation relates the charge distribution in any region of space

to the electrostatic potential that generates that charge distribution or vice versa.

Gouy and Chapman realized that the thermal motion of the ions in solution would

contribute a great deal to their overall energy profile. Ludwig Boltzmann had recently

derived a set of statistical relations with which one could calculate the probability

for a number of particles to be in a particular energy state. These relations hold

true only if the temperature is high enough and/or the particle density is sufficiently

low so as to neglect any quantum mechanical effects, which is generally the case for

aqueous solutions at standard conditions. According to Boltzmann statistics, the

concentration of any particular ionic species, i, at any point in the solution is given

by

ci = c0i exp
[

−Wi

kT

]

, (2.4)

where c0i is the bulk concentration at infinity, Wi is the energy required to bring the

ion in from infinity to the specified location, k is the Boltzmann constant, and T is

the temperature. The work required to move a certain charge depends on its valency,

denoted by Z. This value reflects the excess charge on a particular molecule or atom

and is also known as the oxidation state. For example, sodium has a Z of +1, whereas

chlorine has a Z of −1. Therefore, the work term can be rewritten as

Wi = eZiφ, (2.5)

where e is the elementary charge, φ is the scalar electric potential, and Zi is the

valency of the ion species. Therefore, the local ion density will be

c =
∑

i

c0i exp[−eZiφ

kT
], (2.6)
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and hence the local charge density, ρ will be

ρ = e
∑

i

c0iZi exp
[

−eZiφ

kT

]

. (2.7)

Combining (2.3) with this result yields

∇2φ = − e

ǫǫ0

∑

i

c0iZi exp[−eZiφ

kT
] (2.8)

This is known as the Poisson-Boltzmann equation. It is a nonlinear second order

differential equation. Equations of this type typically need to be solved numerically.

Solutions of (2.8) arise when one considers particular cases, such as different

electrode geometries. Before considering any geometry, we note that we can perform

a Taylor series expansion of the exponential function itself, which includes a linear

term followed by higher order terms. If the argument is considered to be small,

the higher order terms become insignificant. In this case, the argument begins to

get “small” when the electrostatic potential energy has a value much less than the

thermal energy. That is, when eZiφ ≪ kT . For standard laboratory conditions, kT

is about 4×10−21 J or 25 mV. In fact, the model agrees with experiment for values of

the electrostatic potential up to ∼ 100 mV[13, 39]. The procedure of expanding the

exponential function and keeping only the linear term is known as the Debye-Hückel

approximation or the Debye-Hückel Linearization. Doing so reduces (2.7) to

ρ ≈
∑

i

c0iZi

(

1 − eZiφ

kT

)

. (2.9)

Plugging this result back into (2.8) leads to

∇2φ = − e

ǫǫ0

(

∑

i

c0iZi −
∑

i

c0ieZ
2
i φ

kT

)

. (2.10)

The first term in this equation goes to zero due to the Nernst-Planck macroscopic elec-

troneutrality principle of ionic solutions: bulk ionic solutions tend to be electrically

neutral[63]. Equation (2.10) reduces to

∇2φ =
e2φ

ǫǫ0kT

∑

i

c0iZ
2
i . (2.11)
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This is known as the linearized Poisson-Boltzmann equation or the Linear Poisson-

Boltzmann equation. This reflects the fact that the full Poisson-Boltzmann equation

has been linearized by expanding the exponential and only keeping the term in the

expansion that is linear in the potential, φ. This equation, unlike the full form

of (2.8), can be solved analytically for different cases. The solutions of (2.11) vary

depending on the particular geometry and boundary conditions being used. Here, I

will work through two such examples that are relevant to the other work discussed in

this thesis.

2.2.1 The 1-D Case

It is illustrative to consider the case of a planar surface with a potential distribution

in solution that is only a function of a single spatial coordinate. Since (2.11) is a

second order differential equation, it will require two boundary conditions to solve.

In one dimension, one guesses a solution of the form

φ(z) = K1 exp[−κz] +K2 exp[κz], (2.12)

where κ =
√

e2

ǫǫ0kT

∑

i c0iZ2
i is known as the “inverse Debye length” or the “inverse

screening length”. The boundary conditions are φ(z = 0) = φ0 and φ(z = ∞) = 0.

The first condition is a definition of the “surface potential”. This is the potential at the

physical surface of the solid with respect to the bulk solution. The second boundary

condition sets the potential in the bulk solution, assumed to be at an infinite distance

from the surface, to be zero. Doing so sets the reference point of the potential scale

for this system to a point within the bulk solution. Plugging these into (2.12) yields

K1 = φ0 and K2 = 0. Therefore,

φ(z) = φ0 exp[−κz]. (2.13)

This leads to a differential capacitance given by

CD =
(

2Z2e2ǫǫ0c0

kT

)

1

2

cosh
(

Zeφ0

2kT

)

. (2.14)
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This is the Gouy-Chapman result for the potential at any distance z from a planar

surface due to the EDL that forms at the surface. The exponentially decaying charge

distribution that results from this model is often referred to as the “diffuse layer” of

a double layer system. Often, the Debye length, given by λ = κ−1, is used in place

of κ. Figure 2.2b shows the charge and potential distributions that result from such

a model. The differential capacitance, CD, predicted by this model rises indefinitely

with increasing potential, φ0.

(a)

(b)

Figure 2.2: The (a) charge and (b) potential distributions in the 1-D Gouy-Chapman
model. The charges (filled circles) within the solid metal (gray) surface in (a) are
bound to their lattice sites, while those in solution (filled and open circles) are free
to form the exponentially decaying distribution proposed by the model. This charge
distribution leads to the potential distribution in (b) which drops exponentially from
the solid surface. The potential has a finite maximum value, φsurface, at the surface.
The exponential decay of the potential is describe by the Debye length, λ.

Note that, through κ (or λ), the spatial potential distribution will be a function

of several factors including the valency of the ionic species present, ionic concentra-

tion, ambient temperature, and the dielectric constant of the medium. Figures 2.3

through 2.5 demonstrate how these factors quantitatively affect the potential distri-

bution.

It is obvious how some of these parameters can be changed within the course of
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(a) (b)

Figure 2.3: Dependence of the spatial potential distribution on the valency of the salt
present in solution. (a) Shows the potential profile of multiple valency salts present
at 1 mM concentration while (b) shows the profile for the same valency salts at a
10 mM concentration. The concentration and valency have noticeable effects on the
magnitude of potential drop through the parameter κ, whereas the temperature has
little or no effect on the shape of the potential plot.

(a) (b)

(c) (d)

Figure 2.4: The temperature dependence of the potential distribution for (a) 1 mM
1:1 salts, (b) 10 mM 1:1 salts, (c) 1 mM 1:2 salts and (d) 10 mM 1:2 salts.
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(a) (b)

(c) (d)

Figure 2.5: Dependence of the spatial potential distribution on the dielectric constant
of the supporting medium. Each of the plots represent solutions of different valency
salts at different concentrations. (a) and (b) show the values for 1 mM and 10 mM
1:1 salts, respectively and (c) and (d) show values for a 1 mM and 10 mM 1:2 salt,
respectively. The dielectric constant of water used in most applications of theory is
∼ 80. Measurements suggest, however, that a value of ǫ ∼ 10 is more accurate[23].

an experiment. For instance, the temperature can be adjusted by means of a heating

element placed within the solution or simply increasing the ambient temperature.

However, the dielectric constant of the solution is more complicated to understand.

It’s reasonable to assume that the addition of salts will affect its value, but to what

extent? Experimental data and models have been combined in a number of studies

to show that the addition of ions actually has little to no effect on the static dielectric

constant of water for concentrations below ∼ 2 M[26]. A number of reasons for the lack

of effect have been proposed. For instance, Wang et al. suggest that water molecules,

being very polar on their own, respond to the presence of an electric field much more
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strongly and thus will dominate the overall response of the solution to an external

field, even in the presence of other ionic species[71]. Another possible explanation is

simply that the number of ions present at concentrations under 1 M is not enough

to influence the response of an aqueous solution to an applied field, regardless of the

polarizability of either type of molecule[34]. Whatever the reason, the bulk dielectric

constant of aqueous electrolytic solutions under 1 M can be considered to be ǫ ∼

80[26]. As will be discussed in Chapter 5, the dielectric constant of the medium at

distances within a Debye length of a surface can be much different than the bulk

value.

2.2.2 Potential of a Spherical Particle

In general, the 3-dimensional case is the one of most interest because it gives the

most accurate representation of a real world scenario. In 3-D, the simplest surface

one could imagine introducing into the theory is a spherical one. This geometry will

be of particular importance in the context of future chapters.

In spherical coordinates,

∇2 =
1

r2

∂

∂r
(r2 ∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin θ

∂2

∂ψ2
(2.15)

To reduce this complex expression, several approximations are made. First, the radius

of curvature of the sphere is assumed to be much larger than the Debye length for

the system is question. In the very large radius limit, the spherical surface essentially

becomes a plane. In this case, only the radial component of the potential will survive.

Assuming the potential has only a radial component and applying the chain rule to

the first term of (2.15) yields

d2φ

dr2
+

2

r

dφ

dr
= − ρ

ǫǫ0

. (2.16)

Using the form of the charge distribution given by (2.7),

d2φ

dr2
+

2

r

dφ

dr
= − e

ǫǫ0

∑

i

c0iZi exp
[

−eZiφ

kT

]

. (2.17)
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Again, the exponential term is expanded assuming low potentials compared to the

thermal energy. Similar to (2.11), this gives

d2φ

dr2
+

2

r

dφ

dr
=

e2φ

ǫǫ0kT

∑

i

c0iZ
2
i

= κ2φ,

(2.18)

where, again,

κ =

√

√

√

√

e2

ǫǫ0kT

∑

i

c0iZ2
i . (2.19)

This equation has the solution

φ(r) = K1
exp[−κr]

r
+K2

exp[κr]

2rκ
. (2.20)

To find the constants K1 and K2, two boundary conditions are once again needed.

Similar boundary conditions as those used in the 1D case are used: φ(r = R) = φ0

and φ(r = ∞) = 0. Equation (2.20) yields K1 = φ0 and K2 = 0. As in the 1D case,

φ0 is the potential difference between the bulk solution and the physical surface and

R is the radius of the surface in question. Combining all these results, the potential

of a spherical particle placed in an electrolytic solution is given by

φ(r) = φ0
R

r
exp[−κ(r −R)]. (2.21)

From (2.19), it is evident that the Debye Length is dependent on the bulk concen-

trations and valencies of the ions present in solution as well at the temperature and

dielectric constant of the solution. Interestingly, the conditions on the surface, such

as the potential, do not affect the screening length. It is a property purely of the

solution.

2.3 Stern’s Modification of the Gouy-Chapman Model

As with the model proposed by Helmholtz, the Gouy-Chapman model failed to ac-

curately predict the differential capacitance of solid-liquid interface systems. In fact,
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the differential capacitance predicted in the Gouy-Chapman model rises infinitely

with increasing surface potential, φ0, according to (2.14). Experiments by Grahame

and others, however, showed that CD did not rise indefinitely and, in fact, saturated

at high values of externally applied bias.

It is important to note here that, while the theory references a potential with

respect to the bulk solution, φ0, an experimenter only has control over the external

bias, V , that is applied to an electrode. For that reason, the notion of the potential

of zero charge (PZC) was introduced in 1928[2].

The overall charge that develops at the solid-liquid interface is clearly a function

of the external bias applied to the solid surface. The potential of zero charge is

the external bias applied to an electrode at which no charge will aggregate at the

electrode-solution interface. In essence, this is the point at which the externally

generated potential matches that of the bulk solution, thus ridding the system of any

potential gradients that would normally drive the formation of the double layer. Once

this point is defined and/or measured, measurements of the differential capacitance,

which have control only over V , can be compared to the theory, which describes only

φ0. Previous to this definition, the two systems (model and experiment) held different

potential reference points. The model declares the bulk solution to be the potential

reference point and of course experimenters are bound to the ground level of their

machines as their reference point. With this definition of the PZC, (2.14) can be

rewritten as

CD =
(

2Z2e2ǫǫ0c0

kT

)

1

2

cosh
(

Ze(V − VP ZC)

2kT

)

, (2.22)

where VP ZC is the potential of zero charge.

The infinite differential capacitance predicted by Gouy and Chapman arises from

the fact that the continuum charge distributions used in their models failed to account

for the finite size of ions and thus charges in this model could approach infinitely close

to the solid surface at high surface polarizations. To overcome this, Stern proposed
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a model that can be thought of as a combination of the Helmholtz model and the

Gouy-Chapman model.

Stern proposed a modification to the Gouy-Chapman model asserting that ions

in solution could not approach infinitely close to the surface. He declared that the

distance of closest approach of an ion was its hydrated radius. When this idea is

introduced, it leads to a charge distribution that consists of a single layer of charges

parallel to the solid surface, termed the “Stern layer”, with increasingly mobile and

decreasingly densely packed charges further from the surface in the diffuse layer.

The model resulting from Stern’s modification to the Gouy-Chapman model is often

referred to as the Gouy-Chapman-Stern model.

The potential produced by such a charge distribution is an initially linear potential

drop across the Stern layer of charges, similar to that of a parallel plate capacitor,

followed by an exponential potential drop though the diffuse layer, as proposed by

Gouy and Chapman. The potential on the solid surface with respect to the bulk

solution is the “surface potential”, φ0. The potential at the outer boundary of the

Stern layer with respect to the bulk solution is known as the “Stern Potential”, φStern.

Therefore the potential distribution, in this case for a planar object, in the Gouy-

Chapman-Stern model is given by

φ(z) =



















φStern−φ0

dStern

z + φ0 z ≤ dStern

φ0 + φStern exp[−κz] z > dStern.

Here, dStern is the thickness of the stern layer, which extends from the surface and

terminates at the centers of the solvated ions forming the Stern layer.

The Stern layer can be implemented into models with varying degrees of com-

plexity. The layer can be considered to consist solely of solvated counterions (large

shaded circles in Figure 2.6), or be a mixture of solvated counterions and individual

solvent molecules, or it could form from some specifically adsorbed ions, or some

combination of all of these. The specific adsorption of ions to the surface takes place
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when covalent bonds are formed between the ions in solution and the atomic of the

solid surface. Furthermore, the strength of the ions’ bond to the surface can have a

large impact on the dielectric properties of the Stern layer, the value of which plays a

role in the magnitude of the potential drop across the Stern layer. For these reasons

and others, a great deal of the current work on the solid-liquid interface is focused on

understanding the behavior of the Stern layer. Regardless of what level of detail is

used to model the Stern layer, its presence solves the problem of infinite differential

capacitance. It does so by limiting the distance of closest approach of ions in solution

to the solid surface.

2.4 Grahame’s Contribution

Grahame contributed to both the experimental and theoretical treatments of the

solid-liquid interface. In 1947, he wrote a review of the various models of the EDL,

including those developed by Helmholtz, Gouy, Chapman, and Stern. In this review,

he also expanded on the ideas of Stern and performed some of the first experimental

studies of these models. He proposed that the solvent molecules could potentially

form the first, compact layer adjacent to the electrode surface. Along with solvent

molecules, Grahame posited that even uncharged molecules could specifically adsorb

to the surface[31]. The next layer, he proposed, would be composed of solvated ions.

This led to the defining of two planes. The plane parallel to the surface at a distance

of one solvent molecule radius is called the “Inner Helmholtz Plane” (IHP). Parallel

to the IHP and located a distance of one solvated ionic radius from the surface is

the “Outer Helmholtz plane” (OHP). The region beyond the OHP is the diffuse layer

defined in the Gouy-Chapman model. Figure 2.6 gives a schematic representation

of the Outer Helmholtz Plane and its position with respect to a surface. Beyond

this, Grahame also derived an expression for the surface charge density present in the

whole double layer as a function of the potential drop across the diffuse layer. He
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Figure 2.6: Schematic representation of the charge and potential distribution accord-
ing the Gouy-Chapman-Stern model. The charge (negative in this example) on the
metal surface (dashes) attracts counterions in solution (large circles). The distance of
closest approach of the counterions is defined by the Outer Helmholtz Plane (OHP).
The location of the OHP, in turn, is dependent on the radius of the counterions and
the solvent molecules (small circles). The potential drops linearly through the Stern
layer out to the OHP and then exponentially through the diffuse layer to the bulk
value. The Inner Helmholtz Plane (IHP) is not considered in this potential profile.
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showed that

σ =
√

8c0ǫǫ0kT sinh
(

eφ0

2kT

)

, (2.23)

where φ0 is the potential difference between a point in the bulk solution and a point

that lies on the OHP[31]. This is known as the Grahame equation. It was derived

assuming that the solvated ions had a distance of closest approach to the surface

given by the position of the OHP. A more detailed analysis of this theory will be

discussed in the final chapter when it is applied to analyze my experimental data.

2.5 Further Refinement of Models

The theories laid out thus far have been what are called “continuum” models because

they treat the solution, consisting of solvent molecules and ions, as a perfectly con-

tinuous medium. Although Stern and Grahame considered the finite size of solvated

ions and declared a distance of closest approach to the surface based on this value, the

discreteness of their models stopped there. Much of the recent research in the field has

focused on treating the system in a more discrete manner. This involves correcting

for ion-ion interactions, steric crowding, etc., and typically relies on computational

modeling[9, 22, 28, 50]. Those models that attempt to treat the ions discretely, but

the solvent in a primitive, continuum manner are referred to as “primitive models”.

Impressively, the models of Gouy, Chapman, Stern, and Grahame are more than suf-

ficient to explain a wide array of solid-liquid interface phenomena without the need

for the addition of discreteness[5, 13].

2.6 Forces Due to Double Layer Interactions: DLVO

Theory

While the models mentioned thus far were concerned with describing the charge dis-

tribution around an object in solution, researchers quickly began wondering if these
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theories could explain any well-studied phenomena. The first application of these

models was put forth in an attempt to explain coagulation of colloids in solution.

Aggregation of aqueous dispersions had been well-studied experimentally up to the

1940s, yet no quantitative model existed to explain the particular behaviors of such

dispersions. Roughly simultaneously, Derjaguin and Landau and Verwey and Over-

beek derived analytical theories that could quantitatively describe particulate coag-

ulation in solution[69, 18]. The theories from the two groups were derived slightly

differently but arrived at similar results. Hence, the theory is collectively known as

DLVO theory. In essence the theory combines the long-range EDL forces, which were

described by Gouy, Chapman, and Stern, with the close-range van der Waals forces

to fully describe the interaction between colloids in solution.

This method was successful in explaining phenomena that were known only empir-

ically previous to its development. For instance, DLVO theory yields a quantitative

dependency between the coagulation rate and salt concentration in solution. It was

the first theory to do so. DLVO theory does, however, also have its shortcomings. For

example, it cannot explain the formation of colloid crystals or the stability of some

colloidal dispersions[42, 52]. The analytical foundation of this theory, however, still

serves as the basis for most models of double layer interactions. Applications of DLVO

theory will be discussed in later chapters, specifically in the context of measurements

of double layer interactions in Chapter 4. First, however, Atomic Force Microscopy

will now be introduced as a general nanoscopic measurement technique and then its

applicability to measurements of the solid-liquid interface will be discussed.
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Chapter 3

Atomic Force Microscopy

The majority of the research I have done with respect to solid-liquid interfacial poten-

tial measurements relies on the use of AFM. Specifically, colloidal force measurements

form the foundation of my work in the field and are where I have contributed to the

development of new techniques and analysis. For that reason, I present in this chapter

an introduction to the construction and operation of an AFM. I will also describe in

some detail several different operational modes of AFM. Note that many details of

equipment and specific designs will be limited to the type of instrument I used while

performing measurements for this thesis (Nanotec Dulcinea control unit and Nanotec

Lanza/Cervantes AFM heads).

Atomic Force Microscopy is the go-to tool for the measurement of nanoscale inter-

actions in a variety of environmental conditions. The AFM is useful for ascertaining

an array of physical properties of a sample such as elasticity, roughness, electrostatic

potential difference, or magnetic field strength. An AFM by definition, however,

measures forces and only forces. By carefully crafting the experimental setup, one

can extract the aforementioned properties, but to do so, one must be able to relate

the force measured by the apparatus to the property in question. The lateral and

vertical resolutions of the instrument are dependent on the particular choice of equip-

ment. Many different operational modes have been developed to serve a myriad of

experimental needs. However, the basic operational principles hold true for almost

all operation modes.

22



3.1 How AFM Works

The standard AFM consists of a cantilever with a probe at one end, laser, photodetec-

tor, a digital control unit, and at least two piezoactuators as depicted in Figure 3.1.

There is, as will be shown, much more included in a typical experimental setup, but

these components form the basis of any AFM system. The microscopic cantilever

and its embedded probe are brought close to the surface via a 3D piezoelectric raster

scanner mounted under the sample stage. The forces on the cantilever-probe system

cause the cantilever to bend. To monitor this motion, a laser beam is directed at the

back of the cantilever and the reflected laser beam is collected and registered by the

segmented photodetector.

Figure 3.1: Schematic of a typical AFM system. The cantilever/tip system is brought
near a sample and its three-dimensional movement is monitored via a laser beam that
is reflected off the back surface of the cantilever. The reflected beam is collected at
a quad-segment photodetector and a computer controlled feedback system is used
to adjust the position of the sample according to various feedback input parameters
defined by the user.

The cantilever is usually approximately 200 µm in length, 50 µm wide, 1 µm

thick. The probe is typically a sharpened conical tip which is defined by its height,

nominal radius, and cone angle. The cantilever and tip’s geometrical dimensions have
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a large impact on the force sensitivity of the AFM system. The average commercially

available cantilever tips are on the order of 20 µm long, with a half cone angle

of approximately 30◦, and a nominal radius of 50 nm. Systems employing these

cantilevers have a lateral resolution of on the order of 30 nm and vertical resolution

of 0.5 nm. Cantilevers are etched from silicon or a silicon-based composite material

and can be treated with a variety of coatings to alter their behavior under different

experimental conditions. For example, gold and platinum coatings are frequently

used to make the cantilever a conductor of electrical current. In terms of modeling,

the cantilever/tip system is almost always considered to be comprised of a beam,

truncated cone, and sphere embedded at the end of the cone.

The laser uses light generally in the visible range with wavelengths on the order of

Figure 3.2: Schematic of a typical AFM cantilever on a larger silicon chip. Image
courtesy of Budget Sensors r.

500 nm and power in the range of 5 mW. It is shone onto the back of the cantilever and

the reflected beam is used as a proxy to measure the movement of the cantilever. The

motion of the reflected beam is measured by a quad-segment photodetector as shown

in Figure 3.1. The photodetector measures the position of the reflected beam in a

2-D plane, which can be related to the 3-D motion of the cantilever. Each position

of the laser spot on the silicon detector generates a current which is converted to a
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Figure 3.3: The standard model for the AFM cantilever/tip system. The cantilever
is a flat beam of length L, width w (not represented), and thickness t. The tip is
composed of a truncated cone, with characteristic height, H, and angle θ with a sphere
of radius R embedded at the end.

voltage and then sent to the digital controller unit. Segments labeled A, B, C, and D

have respective voltages of VA, VB, VC , and VD. The current generated is dependent

on what fraction of the beam is radiated on each of the four segments of the detector.

For this reason, the beam diameter is an important parameter and generally needs

to be on the order of the side length of one of the four square segments. In order

to actually convert the beam position to cantilever motion, the detector registers the

amount of light entering each segment. This information is passed to the computer,

which runs through a simple calculation. To monitor the vertical displacement of the

cantilever, the computer calculates (VA +VB)− (VC +VD). To monitor the horizontal

displacement, the computer calculates (VA +VC)− (VB +VD). With knowledge of the

displacement in each direction and the effective spring constant of the cantilever, one

can calculate the force on the cantilever in each direction. One of the piezoactuators,

the piezo scanner, is used to move the sample or cantilever/tip system in the x-y

plane in order to scan and acquire data over a specified area. The range of standard

piezo scanners is on the order of 10 µm.

Despite its name, an AFM does not measure forces directly. All that is measured

is the deflection of the cantilever via the reflected laser beam. This can be easily

converted to a force, however, with knowledge of the spring constant of the cantilever.
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The spring constant can be obtained via a number of methods. One method involves

adding a known load to the cantilever and measuring its deflection. Another involves

applying the equipartition theorem to the cantilevers thermal noise spectrum. Yet

another involves measuring the dynamic response of the cantilever to an external

driving force applied over a range of frequencies[51].

3.2 Operational Modes Of AFM

All operational modes of AFM require the use of a feedback system. In a feedback

system, a signal which is an output of the measurement system is fed back into the

system and used as an input measurement for some sort of modification or adjustment

signal[7]. Specifically, AFM systems generally apply what is known as a Proportional-

Integral-Derivative (PID) feedback mechanism. In this type of feedback system, the

error or difference between an input signal and a desired value for that signal is

minimized. To do so, the input signal is measured and an error is calculated between

its value and the set point value. Then the system adjusts a particular control variable

in order to further minimize the error. This cycle repeats until stopped by the user.

Each unit in the PID network functions slightly differently. The P unit uses a

gain that is proportional (P) to the error signal as its input to the control variable.

The I unit uses a gain that is proportion to the integral (I) of the error signal as

integrated over a certain number of previous cycles. The D unit uses a gain that

is proportional to the derivative (D) of the error signal as a function of time as its

input to the control variable process. The input value to the feedback system is a

voltage which represents a physical parameter of the experiment. For the majority

of AFM measurements, the control variable is used to adjust the vertical position of

the sample with respect to the AFM tip and the input signal is some property of the

cantilever motion.
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Figure 3.4: Block diagram of a PID feedback loop. A desired state is input by the
user. The difference between that set point and the current state of the system
(error) is calculated and used as the input for the PID network. The output is a
control sequence which gives the system some instruction as to how to change its
state. The process is then repeated continuously.

3.2.1 Contact Mode

In the simplest operational mode of AFM, the tip is brought into contact with the

surface and scanned over a user-defined area. This is known as contact mode. The

feedback parameter here is the z-component of the total force as measured by the

photodetector. This is known as the “normal force”. The feedback is usually employed

to keep the normal force constant. In order to do so, the feedback output uses the

piezo to move the sample in the z-direction, thus adjusting the deflection of the

cantilever as it encounters objects or features on the surface. The voltage sent to

the piezo which is required to keep the normal force constant is then digitized and

turned into a topographical representation of the surface. The piezo can be used to

withdraw the sample far enough such that the tip and sample break contact.
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3.2.1.1 Direct Force Measurements In Air/Vacuum

Typically, one is interested in how the force on the cantilever/probe combination

varies with separation distance. So, a commonly employed measurement is a mapping

of the force on the cantilever versus the z-position of the piezo. This is known as a

“force-distance curve” or “F-Z curve” or “force curve”. A typical contact mode or

“static” force curve taken in air or vacuum conditions is depicted in Figure 3.5.

In the figure, the blue dotted line represents the approach of the probe towards

the sample and the red curve depicts the separation of the probe and sample. Force

curves have a very distinctive structure that has been well explained and modeled in

literature[14]. When the tip is far from the surface (A in Figure 3.5), there is no force

and the cantilever deflection (force) is zero. Once the tip is brought close enough

(∼ 20 nm) to the surface, long-range electrostatic forces tend to pull the cantilever

towards the surface. As the tip gets close and van der Waals forces begin to have

an impact, the total force gradient becomes larger than the elastic constant of the

cantilever and there is an almost instantaneous jump to contact with the surface (B

in Figure 3.5). This is known as “snap-in” or “snap-to-contact” or “jump-to-contact”.

Now the tip and surface are in contact and move in unison with one another (B-D in

Figure 3.5). As the sample is withdrawn from the tip, the adhesive forces between

the two keep the tip “glued” to the surface until the elastic restoring force of the

cantilever is large enough to pull the sample and tip apart (E in Figure 3.5). This is

sometimes referred to the “pull off”. One can see from the figure that the approach

and withdrawal processes do not overlap when plotted with one another. One reason

for this is hysteresis in the sample positioning piezo. Furthermore, the adhesive forces

between the tip and sample are much larger than the attractive van der Waals forces.

This is the reason for the larger force required for pull off.

This mode can be destructive to highly compliant substrates and for that reason

is rarely used for biological and other physically sensitive applications.
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Figure 3.5: A representative force-distance curve measured in ambient laboratory
conditions. The dashed line is the approach curve and the full line is the with-
drawal curve. The cantilever begins far from the surface at zero deflection (A). As it
approaches and the force gradient becomes larger than the spring constant, instan-
taneous jump to contact occurs (B). The sample and cantilever/tip are in contact
and move in unison (B-D). The tip is withdrawn from the surface and eventually the
adhesive forces are overcome and the tip and sample separate (E).

3.2.2 Direct Force Measurements in Liquids: Colloidal Force

Microscopy

A versatile direct force measurement technique for analyzing the solid-liquid interface

is colloidal probe method or colloidal force microscopy. A colloid is roughly defined

as a microscopic or larger molecule or particle that is dispersed in another substance.

Colloidal Force Microscopy is a method used to understand the forces on such particles

as they interact with other objects, typically in a liquid environment. In fact, the

first measurement with AFM of the solid-liquid interface used this technique[11].

In general, the sharpened AFM tip at the end of the cantilever is replaced by a

colloidal probe. A typical colloidal probe is a silica sphere with a radius of 1–10 µm.
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Colloidal Force Microscopy involves performing static force measurements, making it

simple, fast, and versatile. The cantilever/probe system is approached to a surface

and the force is measured as a function of separation distance similar to the force

measurements discussed in Chapter 2.

The relatively large dimensions of the typical colloidal probe increase the signal

to noise ratio while also minimizing the contributions from other components of the

system such as the cantilever itself. The large probe size does present drawbacks,

however. For instance, the lateral resolution of this method is very poor compared

to techniques that employ sharp, nanoscopic tips, making it a poor choice for surface

feature imaging/profilometry. The forces that cause static deflection are directly

related to the electrostatic properties of the surface and probe and are unique to

systems in ion-containing liquid media. The spherical geometry of the probe makes

analysis of these forces easier since most basic force models such as those derived

within DLVO theory, assume at least one of the interacting surfaces to be spherical

in nature. Specific applications of this technique will be discussed in greater detail in

Chapter 4.

Figure 3.6 shows a typical direct force measurement made with a colloidal probe

in an electrolyte solution. The system consists of a ∼ 3 µm silicon dioxide probe

attached to the end of a silica cantilever and a silicon sample surface in an aqueous

1 mM NaCl solution. It can be seen that the characteristic shape of the force-versus-

distance profile is different than those in an air/vacuum measurement. Namely, the

snap-in due to van der Waals forces is smaller in magnitude or not present at all in

many cases. Furthermore, these forces display an exponential distance dependence

and are present due to the interaction of EDL’s from either surface.
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Figure 3.6: A typical force curve measured for a silica colloidal probe and a silicon
sample surface in a 1 mM NaCl solution. Note the exponentially decaying force due to
screening effects. Also, a jump-to-contact can be seen around 5 nm of probe-sample
separation. This is not a constant feature of force curves in liquid and often the
electrostatic and other repulsive forces are enough to negate any attraction due to
van der Waals forces and eliminate any jump to contact.

3.2.3 Non-Contact / Tapping Mode

A more nondestructive operational mode is one known as non-contact or tapping

mode. In this mode, the cantilever is physically oscillated, usually at its resonance

frequency, via a piezoelectric plate on which it rests, and scanned at a certain dis-

tance above the sample. The cantilever is kept far enough from the surface so that

the attractive van der Waals forces do not cause a snap-to-contact. The cantilever

is then driven at its resonance frequency and the associated oscillations will bring

the tip momentarily close to the surface. Forces such as van der Waals, long-range

electrostatic, and air damping between the tip and surface result in a shift in the

dynamic motion of the cantilever. Assuming the cantilever behaves like a simple

harmonic oscillator, the cantilever will then undergo damped harmonic motion. The
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variations in the forces due to the interaction with the surface will cause changes in

the oscillation amplitude and/or resonance frequency. The cantilever oscillations are

monitored via a lock-in amplifier (LIA). Feedback is employed to keep one or more

of the oscillation amplitude, oscillation frequency shift, or phase difference between

the driving waveform and the cantilever oscillations constant. Once again, the feed-

back output is typically the z-position of the sample. Using feedback on any one

of the different parameters listed results in a different operational mode. For ex-

ample, applying feedback to keep the oscillation amplitude or frequency constant is

known as Amplitude Modulation AFM (AM-AFM) and Frequency Modulation AFM

(FM-AFM), respectively. These modes and others like them are useful for gaining a

quantitative measurement of the surface topography, adhesion, compliance, etc. One

may be interested, however, in the electrical or magnetic properties of the sample. In

the case of the electrical measurements, there exists a subset of operational modes,

often collectively referred to as Electrostatic Force Microscopy (EFM).

3.2.4 KFM

By far, the most versatile and often used EFM mode is known as Kelvin Force

Microscopy (KFM) or Kelvin Probe Microscopy (KPM). In this mode, an alternating

AC potential is applied between the tip and substrate. This alters the harmonic

motion of the cantilever by adding a new force to the tip/substrate interactions.

When a potential is applied between any two conductors, the resulting force has the

form

F =
1

2

dC
dz
V 2, (3.1)

where C is the capacitance of the system, z is the direction whose unit vector points

from one surface to the other, and V is the applied potential. In the case of KFM,

V = (VDC −VCP D)+VAC sin(ωt), where VDC is an applied static potential, VCP D is the

contact potential difference between the tip and sample, VAC is the amplitude of the
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applied sinusoidal voltage, and ω is the frequency of oscillation of the AC potential.

The contact potential difference arises from a difference in work functions between

the electrons in two different metals. Due to the different work functions, which can

be a factor of lattice structure, doping, or contamination, the electrons in the highest

occupied state within one metal will be of a different energy than those in a different

metal. Thus, there is an energy difference between them and this is the source of the

contact potential difference. Equation (3.1) now becomes

F =
1

2

dC
dz

(VDC − VCP D + VAC sin(ωt))2

=
1

2

dC
dz

(VDC − VCP D)2 +
1

4

dC
dz
V 2

AC +
dC
dz

(VDC − VCP D)VAC sin(ωt)

− 1

4

dC
dz
V 2

AC cos(2ωt),

(3.2)

where the relation sin(x)2 = 1−cos(2x)
2

has been used.

It is evident from the above equations that the force between the tip due to the

applied potential will be oscillatory in nature. Furthermore, it will have a static

component and components that oscillate at ω and 2ω. That is

F = Fstatic + Fω + F2ω. (3.3)

It is this fact that makes KFM a functional measurement technique. By setting ω

properly, the cantilever can be oscillated at a desired frequency using the electrostatic

interactions between it and the surface. A lock-in amplifier is employed to detect the

oscillation signal, which will have components due to the electrostatic interactions and

the mechanical vibration. The LIA measures the input signal, performs a version of

Fourier analysis and reports the amplitude of oscillation at a particular frequency.

Many different measurements can be made once the cantilever is set in motion. For

example, the contact potential difference between the surface and tip can be found

by oscillating the cantilever using the AC potential while simultaneously applying a

DC potential and varying its value. As seen above, the ω component of the force is

33



dependent on VDC −VCP D. Thus, the force is minimized when the applied DC poten-

tial is equal to the contact potential difference. The characteristic plot of amplitude

of oscillation versus applied DC voltage will have a minimum where VDC = VCP D

as seen in Figure 3.7. This is the most fundamental use of KFM. Of course, the

Figure 3.7: A characteristic “V Curve” showing the minimum in the oscillation am-
plitude, shown here as CH8, at ω due to the applied potential. The minimum occurs
at an applied DC potential equal to the contact potential difference between the tip
and the surface.

practical uses for this technique have been extended to measure new surface proper-

ties. Currently, a great deal of interest is being placed on performing these types of

electrostatic measurements in liquid environments, as will be discussed in the next

chapter.

Now that some of the basic operational principles and modes of AFM are under-

stood, we can turn our attention specific systems of interest to the research presented

in this thesis. Namely, I will discuss the various experimental approaches used to
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understand the electrostatic properties of the solid-liquid interface.
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Chapter 4

Previous Nanoscopic Measurements of the EDL

The solid-liquid interface is a system of great current interest in several academic and

industrial fields. Because it is known that, at small scales, the screening and other

effects from the EDL can be the major driver of system dynamics and behavior, much

of the current work is focused on addressing this particular facet of the interface. In

this chapter, previous studies involving interfacial measurements will be discussed.

The discussion will focus on measurements and measurement techniques involving

electrical characterization of the EDL at microscopic and nanoscopic length scales.

This chapter consists of a basic executive summary of these developments followed

by a more in-depth exploration of specific studies and their results as they pertain to

small scale measurements of the EDL and its properties. The executive summary will

focus on previous research that relates most directly to the work I have performed,

while the subsequent listing will include further works that may not be as directly

related, but nonetheless provide context for my work. Again, this is done in order to

place the novel measurements and developments I will present in Chapter 5 within

context.

4.1 Executive Summary

Our understanding of the EDL and its properties has gradually increased over the

last several decades. Early measurements of the double layer, like those by Grahame

discussed in Chapter 2, focused on bulk characteristic measurements. As computa-
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tional and experimental tools became more powerful and sophisticated, researchers

began to explore the EDL at smaller and smaller length scales. Within the last

decade, micro and nanoscopic devices have been built that rely on the presence of the

EDL to operate. Roughy 20 years after Grahame’s measurements, Tabor, Winterton,

and Israelachvili developed a tool known as the Surface Force Apparatus (SFA) to

measure the forces between surfaces at nanoscopic separations[66]. Some of the first

measurements of EDL forces between surfaces were done using this technique.

Of course, AFM plays a large role in teasing out small-scale properties of interfaces

and for that reason a great deal of effort has been put into developing newer and

more sophisticated measurements, specifically of the electrical properties of surfaces

in solution or the whole solid-liquid interface. Quickly after AFM was developed,

multiple measurements were made of the forces between AFM probes and surfaces

in electrolytic solutions. Butt made qualitative measurements of forces in solution

and showed general agreement with DLVO theory in 1991[11]. Ducker and Senden

followed this up with a quantitative analysis of similar measurements that was used

to extract values for the potential drop across the diffuse layer of the EDL[20].

The next progression in AFM-based measurements of the EDL was the application

of potentials to either the sample or the AFM probe in order to study the effects on

the EDL characteristics. Ishino et al. measured the effects of potentials applied to

a metal-coated AFM probe on the forces measured between it and various surfaces

in salt solutions. Several groups performed measurements that are variations on

this theme[41]. Arai et el. tested the effect of biasing either the sample or the

probe and found a correlation between which surface was biased and the magnitude

of the measured forces, but no correlation for the sign on the force[3]. These and

the vast majority of all other measurements employing bias potentials to either the

sample or probe utilize a three-electrode experimental setup that mimics that of an

electrochemical measurement.
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Barten et al. used the variation in the measured force due to applied biases coupled

with a novel model of the EDL to extract the value of the solution’s potential with

respect to one of the three electrodes[6]. In doing so, the group was able to report

the applied potential with respect to the solution itself. This work forms the basis

of much of my research. The aim of my experiments is first to reproduce the results

found by Barten et al. and finally provide my own method of determining an absolute

potential scale on which all potentials in an AFM-based measurement of the solid-

liquid interface can be measured.

In summary, the electrostatics of the solid-liquid interface have been a popular

scientific topic for over a century. The last several decades have seen advances be-

ginning in basic modeling of such systems, progressing to nanoscopic measurements

that are testing the limits of many of those models. Of course, there are details in

every measurement that leave the door open for further refinement and exploration.

My research seeks to build on the work of Barten et al. Specifically, I aim to build a

model and make measurements of electrostatic properties of the EDL using a unique

two-electrode experimental configuration. Further details and motivations of this

work are presented in Chapter 5.

I will now present a more detailed review of some of the scientific works that

are most relevant to the research I have preformed for this thesis. This section will

demonstrate the diversity of approaches taken to measure electrostatics in liquid

media at small scales. This section will include some research that does not directly

correlate to my work, but instead highlights the state of the field.
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4.2 Unique Methods For Making In-Liquid Electrical

Measurements With AFM

4.2.1 A Model for Electrostatic Actuation in Conducting Liquids –

2009

Panchawagh et al., in 2009, developed a model and performed experiments measur-

ing the dynamics of microscopic actuators operated in conducting liquid media[60].

They were concerned mostly with the frequency dependence of the displacement of

comb-drive and parallel plate actuators, which are two commonly used microelec-

tromechanical devices (MEMs). In both systems, a potential was applied between a

mobile electrode, which was suspended via a spring, and a fixed electrode. Opposite

charges gather on the electrodes and an attractive force develops between them. The

applied potential was constant in magnitude and the frequency was varied.

To analyze the system, they developed a model which treated the system as a

simple RC electrical circuit and all parameters of interest were calculated or derived

from there. Two electrodes were considered to be plates of a capacitor, each coated

with a passivation layer characterized by its permittivity and resistance. The pas-

sivation layer was put in place for purposes important for practical engineering and

adds little to no complication to the physical system. The conducting liquid media

between the two plates was characterized by its conductivity and capacitance. Using

this simple analysis, they were able to model the dynamical behavior of both the

parallel plate and comb-like actuator systems. They showed that the position and

stability of the mobile plates were dependent on the frequency and amplitude of the

applied AC potential.

Moreover, they calculated the force on the electrodes as a function of frequency

and voltage and found the critical frequency at which the actuation force due to the

applied potential overcomes the restoring force of the spring and the plates “pull in” to
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contact. After calculating this critical frequency and using it as a known parameter,

the experimental data did not fit the model prediction for displacement as a function

of frequency. While the form of the dependence (sigmoidal) is predicted correctly, the

experimental data was shifted versus the model prediction. The authors gave a list of

possible causes for a shift in the entire data set. They included the possible difference

in liquid conductivity for small volumes versus bulk liquid, unknown native oxide

layer thickness and hence dielectric response, and dissolution of salts or evaporation

of the conducting liquid which would affect its electrical response.

4.2.2 Dynamic Electrostatic Force Microscopy in Liquid Media

Gramse – 2012

Gramse et al. performed a number of experiments focused on electrical measurements

in liquid media with AFM for several years. They first developed a method with which

it is possible to measure the local dielectric properties of surfaces in conducting liquid

media[33]. They then applied this technique to measure the dielectric constant of

biological components bound to a surface[32]. In order to do so, they modeled the

system using an equivalent circuit analysis. They considered the cantilever and tip

as separate and found the critical actuation frequencies for each. The frequency here

is that with which the potential between the tip and sample is oscillated.

They found that the critical frequency for the cantilever is in the 10 kHz range,

whereas for the tip, it is in the 10 MHz range. This implies that the cantilever

will contribute more to the interaction force than the tip at low frequencies and

vice versa. One expects that if the tip is the major contributor to the force, the force

resolution will be higher for higher frequencies. To test this, they performed dielectric

spectroscopic measurements over a patterned surface in aqueous electrolytic solutions

at varying frequencies. The sample was a surface with intermittent stripes of Si2+

and SiO2.
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It was shown that at high frequencies, the resolution increases and the pattern

becomes more distinguished. This implies that the system is becoming increasingly

sensitive to changes in the electrical properties of the surface.

Next, they used force-distance curves to quantify the capacitance and dielectric

constants of the Si2+ and SiO2 surfaces, respectively. Again, they did so while apply-

ing bias potentials at frequencies ranging from 10 KHz to 20 MHz and showed that

the sensitivity of these measurements increases as the applied frequency increases.

The argument for higher frequencies yielding higher resolution is that at frequencies

in the MHz range, the EDL can essentially be considered to be static in nature. As

the biasing frequency is lowered the ions within the EDL are more dynamic and hence

the forces are also dynamic, leading to convolution and decreased resolution.

4.2.3 High-Resolution Frequency-Modulated Atomic Force

Microscopy in Liquids Using Electrostatic Excitation Method –

2010

Umeda et al. developed a method that allowed for frequency modulation AFM (FM-

AFM) to be performed in liquid environments[68]. This method involved applying a

bias potential between a cantilever which had a conductive coating on its back side

and a thin conducting layer (indium tin oxide) deposited on a glass window above the

cantilever. The coating allowed the laser light to pass through while simultaneously

acting as a counter electrode for the cantilever. By varying the frequency of the

applied bias between the cantilever and the coated window, they were able to oscillate

the cantilever over a range of frequencies.

The advantage of this setup is that the potential is applied between the cantilever

and a counter electrode that is not the sample. This means that the electrical prop-

erties of the sample do not affect the operation. Therefore, this method is uniquely
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capable of electrically exciting the cantilever with a non-conducting sample. The

AFM was operated in frequency modulation mode in order to obtain topographic

scans of surfaces.

They found that at lower bias frequencies, the amplitude of oscillation is increased.

The peculiarly large oscillation amplitude at low frequencies is attributed to surface

stress forces. The surface stress force arises when charges from solution accumulate

in an asymmetric fashion on the tip side and backside of the cantilever. The fact that

the surface stress dominated the cantilever deflection at low frequencies is due to the

formation of the EDL. At lower frequencies, the charges have more time to approach

their equilibrium positions around the cantilever and hence the EDL will be more

fully formed and contribute more to interaction forces.

It can be seen that the distribution of charges around a solid surface in solution

are of interest to researchers in a wide variety of fields. Several of the above studies

do not focus on the characterization or measurement of the EDL, they simply note

its presence and importance in modulating the behavior of their various systems.

Because the bulk of the work that I will show later in this thesis attempts to

clarify some confusing terminology and interpretation of measurements in the field of

solid-liquid interfacial measurements using AFM, the focus now shifts to direct mea-

surements of double layer properties using various nanoscopic surface probe devices.

The previous studies presented in this section serve as a semi-chronologically ordered

foundation for the body of work developed fully in Chapter 5.

4.3 The Surface Force Apparatus

Measurements of the electrostatic potentials associated with double layer systems

have been in development for nearly 40 years. The first small scale (nanoscopic)

measurements of surfaces in electrolytic solutions were carried out using a device

devised by Isrealachvili in 1978[43]. This device was a modified version of the Surface
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Force Apparatus (SFA) developed by Tabor, Winterton and Israelachvili several years

earlier[66]. This version of the device measured the forces between two cylindrical

objects immersed in a salt solution as a function of their nanoscopic separations. The

separations were measured via the interference fringes of multiple light beams that

were passed through the system. The forces were measured via the displacement of

a calibrated spring system connected to one of the two samples.

4.4 Measuring Double Layer Forces with AFM

Because of the geometrical requirement of the samples in SFA measurements, this

technique was limited in its uses. Most measurements were done on mica or glass

samples or surfactant-modified versions of those two materials. Further iterations of

the SFA were introduced and used to measure forces between surfaces in solution.

The advent of AFM ushered in a new era of measurements of the solid-liquid interface.

4.4.1 Measuring Electrostatic, van der Waals, and Hydration Forces

in Electrolyte Solutions with an Atomic Force Microscope

–1991

By deriving a useful analytical equation to describe the force between a sphere and

plane in solution, Butt was able to quantitatively analyze data from AFM force mea-

surement experiments in different liquid environments[11]. He showed that the size of

the measured forces were in agreement with those predicted by the derived expression.

The data was then used to calculate the screening length, which also agreed well with

that predicted by the Debye-Hückel solution of the Poisson-Boltzmann equation.
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4.4.2 Measurement of Forces in Liquids Using a Force Microscope –

1992

Later, Ducker and Senden used AFM to measure the forces between similar surfaces

to extract quantitative information about “surface potentials” at a variety of solution

pH’s and concentrations[20]. Their results were in agreement with previously mea-

sured values using other experimental techniques and calculations. This was one of

the earliest reports of using DLVO theory to find fits to experimental data on the

force between surfaces in solution using AFM. By using similar surfaces, they were

able to reduce the number of fit parameters since the two “surface potentials” were

assumed to be equal.

How does the choice of surface effect the analysis of the output data? Recall

that the only output of an AFM is the force experienced by the probe. Therefore,

if one wishes to extract information about the electrostatic potentials, one needs an

expression that relates the force to the various potentials of interest. This has been

done in many forms by essentially extending the framework of DLVO theory to new

geometries. For instance, the interaction energy as a function of potentials between

two spherical particles, each surrounded by diffuse charged layers, was calculated by

Hogg and Healy in 1965[39]. Lin et al. used this result to obtain a simple expression

for the force between a spherical particle and a planar surface separated by a distance

z[53]. This is mentioned specifically because it represents the typical model of the

geometry used in AFM experiments. They found that the force for such a geometry

is given by

F (z) =
4πǫǫ0Rφ1φ2 exp[− z

λ
]

λ
, (4.1)

where φ1 and φ2 are the diffuse layer potentials of the two surfaces with respect to

bulk, R is the sphere radius, ǫ and ǫ0 are the dielectric constant of the medium and
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permittivity of free space, respectively, and λ is the Debye length. Looking at the

form of this expression it becomes clear that both potentials cannot be measured

simultaneously. At least not by fitting experimental force data, since the function is

indiscriminate of the two potentials. For this reason, one of the surfaces must first

be electrically calibrated. That is, its potential must be known. Only then can the

experimental data be fit for the remaining potential of interest. This calibration step

has been handled by a number of researchers in the recent past.

The most common way to exploit the structure of (4.1) is to create a situation

in which the two potentials are equal, as done by Ducker and Senden. This is typi-

cally accomplished simply by ensuring the two surfaces are chemically and physically

similar, e.g., gold and gold. By doing so, (4.1) reduces to

F (z) =
4πǫǫ0Rφ

2 exp[− z
λ
]

λ
. (4.2)

The two potential parameters are thus reduced to one. Once the potential of both

surfaces is known, the sample surface can be replaced and its potential measured via

(4.1) where φ1 is now known and φ2 is unknown.

4.4.3 Electric Double-Layer Potentials and Surface Regulation

Properties Measured by Colloidal-Probe Atomic Force

Microscopy - 2014

Montes Ruiz-Cabello et al. measured the forces between colloids of different types

using colloidal probe AFM[54]. They employed the “similar surfaces” method to ef-

fectively calibrate a sulfate-latex coated probe and then used that probe to measure

the properties of other colloidal particles which were then themselves used as probes

to measure the properties of even more colloidal particles with varying surface coat-

ings. By measuring the force between two spherical objects of similar materials, they

were able to exploit both the geometrical and compositional symmetry of the system
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to utilize an equation of the form of (5.14). They then used differences between mea-

sured forces and theory to show a need for consideration of the “charge regulation

parameter”, which is dependent on the capacitances of the inner (Stern) and diffuse

layers. They claim that force measurements should be analyzed under the assump-

tion of constant charge regulation parameter, as opposed to constant surface charge

or constant potential as is customary.

4.4.4 Stern Potential and Debye Length Measurements in Dilute

Ionic Solutions With Electrostatic Force Microscopy – 2013

Other methods for calibrating the probe have been developed as well. Kumar et al.

developed an analytical model and measurement scheme that consisted of multiple

calibration steps plus a final measurement step. They employed multi-frequency

KFM-type measurements coupled with an analytical expression for the capacitive

gradient of the tip-sample system to extract a value for the potential of the AFM

probe. With the potential of the AFM probe known, force measurements were fit

to an equation of the form of (4.1). Their analysis included a fractional term that

related the diffuse layer potential drop that was extracted from the fitting to the

applied potential to the probe. In essence, this fraction represented the potential drop

across the Stern layer. Their measurements were the first to use AFM to measure

the potential drop across the Stern layer directly. An underlying assumption in their

analysis was that the liquid in which the sample and AFM probe were immersed

could be grounded by introduction of a platinum wire that was itself grounded into

the solution.
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4.5 Measuring Interfacial Electrostatics of Specific Systems

4.5.1 Determining Surface Potential of the Bitumen-Water Interface

at Nanoscale Resolution Using Atomic Force Microcopy – 2007

In 2007, Drelich et al. derived a model for a conical tip and flat substrate interaction

force that incorporated both the electrostatic contribution as well as forces due to

van der Waals interaction[19]. To do so, they modified the model of Parsegian and

Gingell, which calculated the force per unit area between two infinite plates in a salt

solution[61]. They did so by adjusting the planar geometry of one of the surfaces to

that of a truncated cone with a sphere embedded at the end. The model they devel-

oped was much more complex in form than that of Parsegian and Gingell. However,

even this model, with its complex structure, suffers from the indiscriminate nature of

the two potentials. That is, force data cannot be fit to this model with the hope of

extracting unique solutions for the two potential parameters in a single process.

In this work, the authors first calculated the surface charge density of the sample

and converted that to a “surface potential” via the Grahame equation. Their analysis,

similar to other authors, required importing information about the sign of the surface

charge of the probe as an input parameter in the fitting of the data.

4.5.2 Probing Anisotropic Surface Properties of Molybdenite by

Direct Force Measurements – 2015

In 2015 Hu et al. used AFM to measure the “surface potentials” of the various faces

of the layer-type mineral molybdenite. The measurements were carried out using a

standard silicon nitride cantilever with a sharpened probe. This team utilized the

force model developed by Drelich for such systems. They showed that the various sur-

face faces of the mineral exhibited different electrostatic properties when surrounded
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by an aqueous electrolyte solution. They also showed that the solution pH affected

the magnitude of the potentials in the solution side of the interface.

4.5.3 Double Layer Structure of Ionic Liquids at the Au (111)

Electrode Interface: An Atomic Force Microscopy Investigation

– 2011

Hayes et al. used AFM force measurements to probe the adsorbed layers of ions

adjacent to a gold surface in ionic liquid solutions at varied gold bias values[35]. They

measured the force required to “rupture” through the various layers of adsorbed ions

and observed that the ionic packing at the surface could be altered by adjusting

the bias potential. Specifically, they found a constant multilayer morphology at the

interface with increased numbers of ionic layers at larger (positive or negative) applied

bias potentials.

4.5.4 Dielectric Constant Measurements of Interfacial Aqueous

Solutions Using Atomic Force Microscopy – 2001

de Souza et al. used AFM force measurements in concert with a model of a medium

with spatially varying dielectric constant to claim that variation in the dielectric

constant is the reason for forces on AFM probes immersed in the EDL of other

surfaces. Their work confirmed other studies that showed that the dielectric constant

of the double layer region is much smaller than that of the bulk solution. No attempt

is made to treat the EDL as two separate subsystems, suggesting a Gouy-Chapman

type interpretation of its structure.
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4.5.5 Ionic Liquids Behave as Dilute Electrolyte Solutions – 2013

Debbie et al. utilized a specialized Electrochemical Surface Force Apparatus (ECSFA)

to make direct surface force measurements combined with thermodynamic arguments

to demonstrate that ionic liquids behave in a similar fashion to dilute electrolytic

solutions in solid-liquid interface systems[27]. More specifically they showed that

the electrostatic properties of ionic liquid-surface interface systems can be described

using classical Poisson-Boltzmann formulations. They show that the ionic liquids

display screening and charge distribution properties similar to those of dilute aqueous

electrolyte solutions.

4.6 Measuring In-Solution Potentials as a Function of

Sample Biasing

4.6.1 Stern Potential Near Gold and Chromium Surfaces in Contact

With Aqueous and Alcoholic Ammonium Salt Solutions – 1991

Using an early version of a surface force balance technique, Keldenich and Peschel

deduced values of the potential at the Outer Helmholtz Plane with respect to the bulk

solution, termed the “Stern potential”[45]. They showed that the Stern potential is

dependent on the chemical composition as well as concentration of solutions and

also the physical structure of the surface (gold or chromium). They noted that each

surface-solution pair exhibits specific chemistries that affect the potential distribution

within the solution side of the interface. Ultimately, they measured Stern potentials

ranging from about 20 to 150 mV.

49



4.6.2 Electrical Double-Layer Forces Measured with an Atomic Force

Microscope while Electrochemically Controlling Surface

Potential of the Cantilever – 1994

Ishino et al. measured the response of forces between a gold-coated AFM tip and

surfaces modified with various self-assembled monolayers (SAM). For each modified

surface, they varied the potential applied to the metal-coated AFM tip and observed

variations in the magnitude of the force for all surfaces studied. However, only for

a stearic acid-modified surface did they observe a change in the sign of the force.

They related the sign of forces under various conditions to the different chemical

compositions of the particular monolayers under investigation.

4.6.3 Effects of Electric Potentials on Surface Forces in Electrolyte

Solutions – 1995

Arai et al. used AFM to analyze the electric double layer of a gold surface in an

aqueous solution of NaOH as a function of applied biasing potential. They found

that the bias potential applied to either the gold sample or a gold-coated probe did

affect the magnitude of the interaction force, however it had no effect on the sign of

the interaction force. By performing further measurements using a probe made of

silicon nitride, they concluded then that the diffuse layer potential of the gold surface

is always negative within the conditions of their experiment, possibly the result of

OH− ions adsorbing the gold surface.
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4.6.4 Measurement of Double-Layer Forces at the

Electrode/Electrolyte Interface Using the Atomic Force

Microscope: Potential and Anion Dependent Interactions –

1996

Hiller et al. measured the forces between a colloidal silica probe and silicon and gold

substrates as a function of applied bias potential for various salt solutions. Fits of

measured forces were used to extract values of the “surface potential”. It was found

that the applied potential could be used to transform the forces between the silica

probe and the gold sample from attractive to repulsive. These forces corresponded

to diffuse double layer potentials ranging between −47 mV and +5 mV for applied

potentials of −700 mV and +100 mV.

4.6.5 Direct Measurement of Diffuse Double-Layer Forces at the

Semiconductor/Electrolyte Interface Using an Atomic Force

Microscope – 1997

Hu et al. measured the forces at the interface of a TiO2 crystal and an aqueous

electrolyte solution of 1 mM using a silica colloidal probe. The pH of the solution

was adjusted and the effect on the measured forces was observed. Simultaneously, the

effect of applied bias potentials on the measured forces was investigated at each of the

various pH levels. It was found that the applied potential at which interaction forces

fall to zero, referred to as the “potential of zero force” (pzf) was a function of pH.

Measured forces were used to calculate values of the potential drop across the diffuse

part of the double layer, termed in this work, the “surface potential”. This value

ranged from approximately −50 mV to +20 mV under applied potentials ranging

from approximately −1000 mV to +500 mV.

51



4.6.6 The Electrical Double Layer on Gold Probed by Electrokinetic

and Surface Force Measurements – 2002

Giesbers et al. used colloidal probe AFM as well as streaming potential measure-

ments to measure the effect of solution pH on the double layer surrounding a gold

surface[29]. Using the electrokinetic techniques, they found that the electrostatic

environment surrounding the gold surface was sensitive to solution properties and

noted a negatively linear relationship between solution pH and the zeta-potential.

For surface force measurements, they employed a “similar surfaces” method to limit

the amount of information that needed to be inferred about the system. In this way,

they were able to fit experimental force measurements for only one potential as illus-

trated by (5.14) and found a similar inverse relationship between the “double layer

potential” and the solution pH.

4.6.7 Double Layer of a Gold Electrode Probed by AFM Force

Measurements – 2003

Barten et al. continued to probe the gold-solution interface by using colloidal probe

AFM measurements in concert with a model developed within their group to describe

the solid-liquid interface that included an oxide layer as well as the Stern and diffuse

layers[6, 21]. The model was known as the “amphifunctional double layer model”.

Utilizing this combination, they were able to measure the effect of applying bias

potentials to the gold surface in solutions of varying pH. Furthermore, they use the

applied potential at which the measured force fell to zero to get a measure of the

potential of the bulk solution with respect to their external power supply. By doing

so, they were able to report the applied bias potentials with respect to the solution

as opposed to a reference electrode. Getting there, however, required the use of a

reference electrode initially. They assumed the potential of the bulk solution remained
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constant even while the gold electrode was biased by several hundred millivolts, which

is unlikely to be true.

4.6.8 Probing the Surface Properties of Gold at Low Electrolyte

Concentration – 2016

Recently, in 2016, Tivony and Klein used Surface Force Balance (SFB) measurements

on gold surfaces immersed in highly dilute aqueous electrolyte solutions to understand

the effect of biasing the gold surface on interaction forces between the gold and a mica

probe. From these measurements, they deduced the value of the “surface potential”

of the gold electrode. They found that this potential increases from largely negative

to positive as the biasing potential is increased from negative to positive.

4.6.9 Double Layer Forces Over Large Potential Ranges as Measured

in an Electrochemical Surface Force Apparatus – 2001

Frechette and Vanderlick used a modified SFA to study the effect of electrode biasing

on the forces between gold and mica surfaces separated by 1 mM KClO4. The major

achievement of this work was the study of the mica-gold system under a wide potential

range (−700 mV to −200 mV). Through this large applied bias potential range, they

found the gold “surface potential” to change from −200 mV to 0 mV. In subsequent

publications, the same team found that the applied bias also has effect on the adhesive

forces between the mica and gold in electrolyte solutions.

Experimental investigations of the double layer take many forms. This chapter

has thus far focused on AFM-based measurements. Other methods include electro-

chemical approaches such as impedance spectroscopy and cyclic voltammetry, spec-

troscopic techniques such as total internal reflection microscopy and X-ray photo-

electron spectroscopy (XPS), electrophoretic techniques such as streaming potential
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measurements, and several others[5, 10, 13, 29, 57, 64].

4.7 Cyclic Voltammetry / Electrochemistry

As it will be compared and contrasted with AFM as a solid-liquid interface measure-

ment technique and because it will be used in this work, a brief discussion of basic

electrochemical measurements seems fitting.

Electrochemistry is the study of chemical process that cause the physical motion

of electrons. A typical electrochemical measurement system is composed of a cell in

which the solution is contained. Inserted into this cell are a number of electrodes. By

far the most common experimental setup is a three-electrode configuration. The three

electrodes include a working electrode, a counter electrode, and a reference electrode.

The working electrode is the one to which a biasing voltage is applied. The counter

electrode is used as a sink for the electrons in motion (current). And finally the

reference electrode as a point of constant potential against which the potential of

the working electrode is measured. The specific motivations for this experimental

configuration are discussed in more detail in Chapter 5.

Electrochemical techniques are not particularly sensitive to small scale interac-

tions at the interface and generally are used as measurements of bulk properties of

surface/solution combinations[8, 49, 55, 59]. Furthermore, the need of a third elec-

trode makes the use of these techniques for small, confined systems more procedurally

difficult. There have been advances in combining the nanoscopic resolution of AFM

with the ability of electrochemistry to detect and characterize the chemical behavior

of solutions and interfaces. Namely, scanning electrochemical microscopy (SECM),

developed by Bard et al., aims to bridge the gap between the two measurement

techniques[4]. It is capable of topographical mapping as well as probing the sur-

face reactivity of solid-state materials, electrocatalyst materials, enzymes and other

biophysical systems[72].
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One can see from the works cited above that AFM is common and highly adapt-

able tool for nanoscale investigations of the solid-liquid interface. Given the diverse

conditions and environments in which AFM has been applied, there is still one com-

monality between all measurements that utilize external biasing of either the probe

or the sample. They all borrow the three-electrode scheme developed within the field

of electrochemistry to analyze and report their measurements. This scheme, while

the standard in that field, has limitations in nanoscopic measurements. My research

aims to address these shortcomings and develop a new scheme that is more suitable

to AFM-based measurements of in-liquid electrostatics.
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Chapter 5

Measurements of the Stern and Bulk

Potentials of Metal-Electrolyte Interfaces

In this chapter, I will first present the details of the research that I have completed

with respect to nanoscale electrical characterizations of the solid-liquid interface using

AFM. First, I will explain the development of a specific nomenclature that clarifies

several commonly encountered concepts in measurements of the type I have employed.

This will include the definition of terms and mathematical descriptions of their re-

lationships. That will be followed by a description of a model of the force due to

double layer interactions between two surfaces that will be the basis of the analysis of

my measurements. I will then walk through the derivation of mathematical relations

between the various potential drops that occur within the EDL. After laying out

the theoretical developments I have made, I will describe in detail the experimental

procedures that I carried out in order to characterize the EDL in a more complete

fashion and discuss the results of such these measurements.

5.1 A New Nomenclature for Solid-Liquid Interface

Systems

Often, in experimental sciences, the goal is simply to devise a simpler way to measure

a certain quantity of interest. Of course, this simpler method should preserve or

improve current levels of accuracy and resolution available with established methods.

Simpler in this case means with less cumbersome equipment or fewer analytical or
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procedural steps. My contribution to the field of nanoscale interfacial measurements

is the development of a method to more simply measure the potential drop across

the diffuse layer of a sample. In order to facilitate simpler experimental procedures

for measuring the electrostatic nature of the solid-liquid interface with AFM, a new

theoretical framework was deemed necessary. To that end, I devised a novel model

of a nanoscopic system consisting of two electrodes, separated by a liquid, and held

under potential control. The inclusion of only two electrodes is the simplifying factor

of this model and experimental setup. Previous to this work, a three-electrode scheme

with more complex electrical relationships was the standard in the field.

The implementation of the model, along with an associated nomenclature, accom-

plishes two main feats of scientific interest. First, much of the ambiguity due to poorly

developed and maintained conventions is eliminated. Secondly, the simple algebraic

model requires only a single parameter to be measured experimentally and from there,

predicts the behavior of system components. In this way, measurements of only that

single parameter can lead to a full characterization of the electrode-liquid-electrode

system.

5.1.1 Potentials and Potential Differences

In many investigations of the solid-liquid interface, a value referred to as the “surface

potential”, “double layer potential”, “absolute potential”, “effective potential”, or

some combination thereof is often the parameter which is measured or inferred and

reported [10, 20, 24, 25, 46, 58, 67]. In reality, these terms almost always refer to the

potential difference between a point on or near the solid surface and a point within

the bulk solution, assumed to be infinitely far from every other component of the

system. The exact spatial origin, i.e., exactly at or somewhere near the solid surface,

depends on the model chosen to examine the system. The term “surface potential”,

however, is also used frequently in studies that employ electrochemical techniques to
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describe the biasing potential applied to the working electrode. This is an example of

the ambiguity in the description of electrostatic potentials that is present throughout

much of the literature in the field. Typically, the exact terminology used is field-

specific, only complicating things more.

Another layer of confusion is created when one considers the electrostatic poten-

tial coordinate reference system employed in many investigations of the solid-liquid

interface. As discussed briefly in previous chapters, the in-solution potential drops

that occur across the Stern and diffuse components of the EDL are inherently refer-

enced to the bulk solution in all theoretical models. In many AFM-based, as well as

electrochemical measurements, one or more of the electrodes present in the system

are held under potential control. This means the potential applied to those electrodes

becomes an experimental variable. These potentials, unlike the potential drops in the

solution, are inherently referenced to the ground level of the power supply to which

they are connected. So now there are two separate reference points against which two

sets of potential drops are measured. In order to combat the obvious confusion, the

field of electrochemistry has adopted the practice of introducing the reference elec-

trode as a point of constant potential against which the externally applied potentials

can be measured.

The need for the reference electrode becomes clear when it is recognized that it

is impossible to measure the potential difference between two phases of matter with

purely ohmic techniques like those employed in electrochemical measurements[5]. For

this reason, knowledge of the bulk solution’s potential with respect to some external

ground or reference has eluded researchers. Since all in-solution potential drops are

referenced to this possibly shifting reference point, analysis of their measured values

is not always easily understood.

By building on the work of Grahame and Stern, the model I will present demon-

strates that it is analytically and experimentally possible to devise a measurement
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using AFM that can yield values of the two major potential drops (diffuse and Stern)

that occur in the solution phase. Furthermore, it yields analytic expressions for the

potential at several other points of interest, including that of the bulk solution, with

respect to an external reference point. The measurements by Brown et al. are the

clearest attempt to present all potentials on an absolute scale, but their XPS mea-

surements required access to and use of a highly specialized X-ray light source[10].

Measurements akin to those performed by Barten et al. attempt to bridge the

gap between potential reference frames in AFM measurements by using the so-called

potential of zero force (PZF). The PZF is the applied bias to an electrode at which

the force measured between it and an AFM probe goes to zero[6, 37, 40]. It is implied

that this represents the point at which all charge has been driven from the surface of

the sample, essentially matching the potential of the sample to that of the solution.

This point is then declared to be the potential of the solution with respect to an

external point, and is assumed to be static. While this is a reasonable approach, it

requires a measurement scheme that mirrors electrochemical ones in that it requires

the third reference electrode. It also glosses over the fact that the bulk solution

potential may change throughout a measurement due to the bias potentials applied

to the working or any other electrode.

While it is widely known that the EDL consists of a compact or Stern layer, which

acts as a capacitive element within the overall system, the measurements by Kumar

et al. are the only known instance of AFM being employed to measure the potential

drop across the Stern layer directly[48].

In a typical colloidal probe force measurement, the probe and sample are either

insulated by themselves or connected to an external power supply. It is of interest

to know how biasing the probe or sample or both affects the EDL at their respective

interfaces within the solution and, in turn, the forces between them. As discussed

earlier in this chapter, the application of external bias potentials to either surface
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introduces another electrical reference point (i.e., the power supply ground) besides

the bulk solution potential and these separate reference points have the potential

to make the measurements much less informative if not treated appropriately. The

possibility of an experiment having multiple of these electrical reference points came

up frequently in the analysis of the experiments carried out in my research. I therefore

saw a need to ensure that all measurements of in-solution potentials that included

the use of external bias potentials had a congruous and simple electrical potential

coordinate system.

To that end, I propose here a combination of nomenclature and physical model

of an EDL system which eliminates any ambiguity in terms of potentials and their

respective reference points. Consider an experiment with two electrodes separated by

an electrolytic solution. Both electrodes are connected to a common power supply

with its own ground. We can map the potentials of all points of interest for two

cases; the Gouy-Chapman case in which only a diffuse layer of ions is present and the

Gouy-Chapman-Stern case in which there is both a diffuse layer and a compact Stern

layer. Using these two interpretations, we have the two models in Figure 5.1. Here,

the ground of the power supply machine is taken as the zero point and all potentials

(V ’s) are referenced with respect to it. All corresponding φ’s represent differences

between those potentials. Looking at the two models separately: in the G-C model,

Vs is the potential of the sample with respect to machine ground, Vb is the potential

of the bulk solution with respect to machine ground, Vp is the potential of the probe

with respect to machine ground. Within the solution, φsb is the potential difference

between the sample surface and the bulk solution. This is the diffuse layer potential

drop that is almost always referred to as the “surface potential” in literature. The

potential drop from the probe surface to the bulk solution has a similar form in this

nomenclature, φpb.

In the Gouy-Chapman-Stern model of the EDL, the situation is slightly more
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(a) (b)

Figure 5.1: Potential level diagrams for the (a) Gouy-Chapman and (b) Gouy-
Chapman-Stern models. The V ’s represent potentials measured with respect to the
external machine ground and the φ’s represent differences between the V ’s. Either
φssb or φpsb are what are measured in a typical force experiment.

complex. Vs, Vp, and Vb retain their same meanings as before. Vss and Vps are the

potentials of sample and probe, respectively, at the outer edge of the Stern layer with

respect to machine ground. As for the potential drops in the solution, φsss and φpps

are the potential differences from the electrode surface to the outer edge of the Stern

layers, placed at the OHP, of the sample and probe, respectively. Similarly, φssb and

φpsb are the potential drops from the OHP to the bulk solution. Finally, φsb and φpb

are the potential differences between the bulk solution and the surface of the sample

and probe, respectively. The reason for this nomenclature becomes more obvious

when written mathematically as
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φsb = Vs − Vb ; φpb = Vp − Vb

φsss = Vs − Vss ; φpps = Vp − Vps

φssb = Vss − Vb ; φpsb = Vps − Vb

or more generally φij = Vi − Vj.

(5.1)

5.1.2 Geometric Definition of the Bulk Potential

In many electrochemical and other measurements of solid-liquid interface systems,

the potential of the bulk solution is assumed to be independent of the biasing of

the electrodes. This may be a reasonable assumption for macroscopic investigations,

which typically involve hundreds of milliliters of electrolyte solution with electrodes

separated by tens of centimeters. From the perspective of ions in the vicinity of the

electrodes, this equates to an essentially infinite space. In AFM-based investigations,

however, typical measurement cells contain amounts of solution on the order of micro-

liters and electrode separations on the order of nanometers. Furthermore, the surfaces

of the sample and probe are large enough to be approximated as infinite planes when

compared to the small separation distances. This approximation essentially reduces

the system to a parallel plate capacitor with a dielectric inserted between the plates.

From a purely geometric standpoint, then, the potential of the solution between the

two electrodes will be a function of the distance from and relative potentials of either

electrode as is the case in a parallel plate capacitor.

Note that the definition of the bulk potential presented here differs from the one

sometimes used in literature. In the definition of bulk potential used in this work,

it is the power supply, among other factors, that determines the potential at any

point in the solution. In the case of two flat sheets of charge, the potential at a

point exactly half way between the plates is equal to one half the potential difference

between the plates. This is true no matter how the potential varies in space (linearly,
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exponentially, etc.). Thus, in my model, the bulk solution potential has a contribution

from the potential difference between the electrodes equal to half of the potential

difference. The bulk solution potential in this model has another component that

comes from any initial charging of the solution that may occur in preparing, stirring,

transferring, etc. of the solution itself. This leads to an offset potential that exists

before any experiment begins. Finally, the bulk solution potential can be affected by

the transfer of any charge across the solid-liquid interface. In total, the bulk potential

can be written as

Vb = V0 +
1

2
∆V + Vq(∆V ), (5.2)

where ∆V is the potential difference applied to the two electrodes, Vq is the extra

potential generated in the bulk solution by the flow of charge from either electrode

across the interface, and V0 is the potential offset between the machine ground and

the interior of the solution. This offset can be measured in an experiment where ∆V

is set to zero. As ∆V is shifted from zero, currents of various forms can possibly flow

across the interface. The injection of charge into the solution phase of the system

will affect the value of Vq and thus Vb.

5.2 Capacitive Description of the EDL

I assert that, with knowledge of the diffuse layer potential differences, which, as will

be shown in the next section, can be measured via forces, paired with an appropriate

electrical description of the EDL, one can infer a value for the potential drop across

the compact Stern layer, and hence fully characterize the electrostatic environment

of the solid-liquid interface. Tests of the limits and veracity of this assertion will be

presented in the two final sections of this chapter.

Grahame showed in 1947 that the EDL at an interface can be treated as two

capacitors in series. He arrived at this result by relating the total charge in the EDL,
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which has the same magnitude and opposite sign of the charge on the metal surface,

to the two potential drops that occur from the surface to the bulk solution in the

Gouy-Chapman-Stern model. By doing so he was able to write an expression for the

total capacitance of the interface and showed that the resulting equation followed the

same form as that of two capacitors in series[31].

It should be noted that the physical solid-liquid interface does not include four

separate layers or sheets of charge that one would expect to be present when two

capacitors are configured in series in a circuit. In fact, all of the charge on the solution

side of the interface resides beyond the OHP in the diffuse layer. The mathematics

simply delivers a convenient expression that contains information about both the

Stern and diffuse layers of the system. In the more simplistic Gouy-Chapman model

there is a single term in the expression for the total capacitance. Figure 5.2 depicts the

system with which the EDL can be modeled in the Gouy-Chapman-Stern framework.

In this model, the total capacitance of the system, CT , is given by

Figure 5.2: Schematic of the two capacitors in series model of the EDL system. Cst

and Cd represent the capacitance of the Stern and diffuse parts of the EDL, re-
spectively. φsss and φssb are the potential drops across the Stern and diffuse layers,
respectively. The physical solid-liquid interface does not contain two separate capac-
itive elements. All of the charge exists, instead, within the diffuse layer beginning at
the OHP.
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1

CT

=
1

Cst

+
1

Cd

⇒ CT =
CstCd

Cst + Cd

, (5.3)

where Cst and Cd are the capacitances per unit area of the Stern and diffuse layers,

respectively. In any capacitive system, the total charge accumulated within the sys-

tem is a function of the potential difference between the two terminals. Similarly in

an EDL system, the charge density, σ, on the solution side will be governed not by

the applied potential, ∆V , directly, but by φsb, which is the total potential drop on

the solution side of the interface. Therefore,

σ = CTφsb = Cstφsss = Cdφssb (5.4)

since capacitors in series have equal charges. Grahame showed that the charge density

of the diffuse layer is given by

σ =
√

8c0ǫǫ0RT sinh
[

Zeφssb

2kT

]

. (5.5)

Therefore, the capacitance of the diffuse layer can be written as

Cd =

√
8c0ǫǫ0RT
φssb

sinh
[

Zeφssb

2kT

]

, (5.6)

where c0 is the ionic concentration of the solution, ǫ is the bulk solution dielectric

constant, R is the ideal gas constant, k is Boltzmann’s constant, and T is the temper-

ature. The capacitance of the Stern layer, which is assumed an ideal linear capacitor,

is simply

Cst =
ǫstǫ0

dst

, (5.7)

where dst is the thickness of the Stern layer, generally taken to be the radius of a

hydrated ion and ǫst is the dielectric constant of the Stern layer, which has been

shown to be smaller than the bulk value of 80, but often that value is used[17]. With

this information known, we can relate all potential drops to the total potential drop
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across the EDL, φsb, with

σ = CTφsb = σst = σd

=
CstCd

Cst + Cd

φsb = Cstφsss = Cdφssb

⇒ φsss =
Cd

Cst + Cd

φsb

and φssb =
Cst

Cst + Cd

φsb

(5.8)

Dividing these last two and solving for φsss, we get

φsss =
Cd

Cst

φssb (5.9)

The first relation in the series stems from the argument that capacitors in series will

have equal charges. Plugging in the capacitance expressions, we get

φsss =

√
8c0ǫǫ0RT

φssb

sinh(Zeφssb

2kT
)

ǫǫ0

dst

φssb

=

√
8c0ǫǫ0RT sinh(Zeφssb

2kT
)

ǫstǫ0

dst

.

(5.10)

Therefore, with AFM measurements that yield values of φssb at different applied

∆V ’s, it is possible to find a corresponding value of φsss, the potential drop across

the Stern layer of the sample. A similar derivation could be carried out for φpsb and

φpps.

Furthermore, since φssb is measured directly, it can be related to the potential of

the bulk solution by

Vb = Vs − φsss − φssb. (5.11)

Vs is set during the experiment and φsss is inferred from (5.10) and hence Vb can

be found for each fitted value of φssb. Continuing even further, the relationships in

(5.1) can be used to deduce a value of Vss. In this way, the entire system can be

characterized with respect to the same reference point (using the V ’s only), thus

reducing the ambiguity in electrical coordinate systems that can proliferate in such

measurements. In this process, a model for Vb is proposed and (5.11) can be used
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to recalculate value of Vb using experimentally obtained data, effectively serving as a

consistency check of the model.

Figure 5.3: Relationship between the potential drops across the diffuse and Stern
layers according to (5.10). The different curves represent (5.10) evaluated for various
solution concentrations. The dependence of the potential drop across the Stern layer
on the diffuse layer potential drop increases with increasing solution concentration.

5.3 The Force Due to Double Layer Interactions

An important assumption of this model is that the force due to double layer in-

teractions between surfaces is proportional only to the diffuse layer potential drop.

Under this assumption, a force expression similar to that derived by Lin et al. can be

rewritten in the new nomenclature as[53]

F =
4πǫǫ0Rφpsbφssb exp[− z

λ
]

λ
. (5.12)

Here, R is the colloidal probe radius. Because the model declares that the bulk

potential can shift during an experiment according to (5.2), care must be taken to

account for this shift as it propagates into the values of other parameters. Most

importantly, a shifting bulk potential implies that the value of φpsb is not constant.
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Given the relationships of (5.1) and (5.2), it can be shown that

φpsb(∆V ) = φpsb,0 − ∆V

2
, (5.13)

where φpsb,0 is the value of φpsb measured at no applied bias (∆V = 0).

The introduction of a more descriptive nomenclature has not changed the fact

that this equation is degenerate in the two potential values, φpsb and φssb. Therefore

a fit to data of the measured force cannot be trusted to produce reliable values of

both potentials simultaneously. Still present is the need for some sort of calibration in

order to gain knowledge of one the φ’s in order to fit force data for the other. Here is

where one can implement the symmetric electrode scheme described earlier to reduce

the number of fitting parameters by one. I refer to this as the “probe calibration”

step of the measurement scheme.

5.4 Measuring Diffuse Layer Potential Drops With AFM:

Probe Calibration

A measurement scheme complementary to the model of the EDL that I discussed

earlier in this chapter has also been developed. In this scheme, the AFM probe is

calibrated by using a particular probe-sample pair, which induces the type of sym-

metries employed by Montes Ruiz-Capello et al. mentioned in Section 4.4.2. The

theoretical foundations of this work lie within the limits of the Gouy-Chapman and

Gouy-Chapman-Stern models of the EDL. There is no consideration given to the fi-

nite size of ions other than those within the compact layer. The medium is considered

to be a uniform dielectric with dielectric constant ǫ = 80 up to the Stern layer, where

the dielectric constant drops to a lower value (10 in this work). The veracity of the

Gouy-Chapman-Stern model will be discussed later in this chapter. Let us begin by

first laying out the framework of the analytic model that has been derived.
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This section outlines the general process for making AFM measurements that can

be used as a calibration of the probe in terms of its diffuse layer potential. Typically,

gold or platinum AFM probes are used for electrostatic measurements because they

are inert for relevant environmental and experimental conditions. They are close

to ideal polarizable electrodes, meaning current does not easily flow across the solid-

liquid interface and they also have little specific chemistry with most salts. Therefore,

if we have a gold-coated probe, we can similarly coat a planar sample. From the

perspective of an ion in solution, a sphere with an approximately 5 µm radius and a

planar sample are both infinite planes. The potential profiles of such a situation are

given in Figure 5.4. The symmetry that this creates reduces (5.12) to

F =
4πǫǫ0Rφ

2
psb exp[− z

λ
]

λ
. (5.14)

Looking at (5.14), it is evident that a fit of the force for a value of φpsb will yield

only the magnitude of the potential since the fit parameter is actually φ2
psb.

How can we deduce the sign of the potential difference? It is known that different

surfaces gather particular charges at given pH conditions. The value of the pH at

which no charge gathers on a surface is known as the isoelectric point (IEP). At pH

values above the IEP, surfaces will obtain net negative charges and positive ones at

values below the IEP. This is because the pH is a measure of the ratio of positive

hydrogen and negative hydroxide molecules. Higher pH values indicate a higher ratio

of hydroxide ions in solution, which will result in more negative charges being driven

toward the surface. Given that the IEP of gold is known to be between 3 and 4, its

surface charge state and hence sign of the diffuse potential drop can be found at any

pH[6]. For instance, at a pH of 7, the diffuse layer potential drop will be negative.

The choice of which surface receives the calibration is arbitrary, but in general, it

is more useful to calibrate the probe. With a fully calibrated probe, it is then possible

to measure the diffuse layer potential drop of any surface.
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Figure 5.4: The potential profile for the symmetric electrode case. The drops across
each region are the same in magnitude on either solid-liquid interface. The initial,
linear potential drop from the probe surface represents φpps and that from the sample
surface represents φsss. The exponential drops that occur thereafter represent φpsb

and φssb.

5.5 Assumptions of the Model

Several assumptions have been made in the construction of this analysis, which merit

discussion. First, it was stated earlier in this chapter that the flow of currents across

the interface will affect the value of the bulk potential, a characteristic of the sys-

tem we wish to deduce. The two most functionally important classes of currents in

experiments of this kind are Faradaic and non-Faradaic currents.

Faradaic currents occur when chemical reactions are catalyzed at or near the inter-
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face and electrons “hop” from a chemical species in solution through the electrode or

from the electrode through to the solution. The chemical reactions in electrochem-

ical experiments take the form of reduction and oxidation of electroactive species

within the solution itself. In the model proposed here, it is assumed that there are

no Faradaic currents. That is, no chemical reactions take place at the interface that

would cause charge to flow from the electrode to the solution or vice versa. Is this

reasonable? In a typical electrochemical experiment, these Faradaic currents are the

currents that are of interest to the researcher. Our experiments are carefully designed,

however, to avoid such currents.

For experiments done with this model in mind, we, by design, have no such elec-

troactive species at the potentials applied to the electrode. More specifically, we

typically measure dilute electrolytes such as NaCl of KCl or KNO3, etc. The chemi-

cal species within these salts are known to have higher reduction/oxidation potentials

than the water in which they are dissolved. For instance, it is known that the reduc-

tion potentials of Na+ and K+ are −2.71 V and −2.92 V vs. a Standard Hydrogen

Electrode (SHE), respectively. For comparison, water molecules are reduced at −0.83

V vs. SHE. As for anions, the oxidation potentials of Cl− and NO3 are −1.36 V and

0.8 V vs. SHE. Water molecules are oxidized at −1.23 V vs. SHE. Since the Cl−

atoms and water molecules have similar oxidation potentials, both Cl2 and O2 gases

can be produced at the anode, but only at that applied voltage, which is well above

those used in these experiments.

In practice, our experiment will never apply potentials above a few hundred mil-

livolts, so we will catalyze no reactions and produce no Faradaic currents. This as-

sertion can be tested with relative ease. To do so, cyclic voltammetry measurements

were carried out using a modified AFM system. A CHI Instruments 620B potentio-

stat was connected to the AFM system such that a gold-coated sample surface and

a gold-coated AFM probe acted as the working and counter electrodes, respectively,
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while a platinum wire served as the reference electrode. Figure 5.5 shows the results

from a typical CV measurement in 1 mM NaCl. The absence of any peaks in the

curve in the region between 0 and +300 mV vs. Pt indicate that there are no chemical

reactions or subsequent Faradaic currents at the interface. This type of measurement

was performed before each set of AFM experiments as described below. This step

also served as a method to ensure the purity of all prepared solutions as contaminants

would alter the shape of the current vs. voltage profiles.

Figure 5.5: Cyclic Voltammograms of (a) 0.1 mM NaCl and (b) 1 mM NaCl solutions.
The data indicate that no chemical reactions are being induced, and hence there are
no Faradaic currents in the applied bias range of 0 − 400 mV
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As for non-Faradaic currents, they are not assumed to be zero, but their effect

on the bulk potential is negligible. Non-Faradaic currents are those in which the

source of current is the flow, migration, or reorientation of charges to form the double

layer or alter its capacitance. For this reason, these currents are often also referred

to as “double layer currents”, “charging currents”, or “capacitive currents”. When

non-Faradaic currents are present, charge does not cross the interface, but external

currents can still flow. What effect may these currents have on the bulk potential?

Consider a system very similar to one used in the experiments performed in this

work. In such systems, a roughly 1 cm2 sample surface is immersed in roughly 100

µL of a 1 mM 1:1 salt solution. Within the solution, there are roughly 1016 of

Na and Cl ions each, assumed to be equally distributed throughout the solution in

the initial state. Hence, the total charge in the solution phase is 10−1 C. Typical

measurements of surface charge densities at electrified interfaces are on the order of

mC/m2, or approximately 10−7 C spread over the entire sample surface[36, 47, 71, 73].

If one considers a spherical Gaussian surface of radius r within the bulk solution and

calculates the potential, V , of a point within that region with respect to a point

infinitely far way, this is an analogous calculation of the bulk solution potential.

Doing so for the potential before, V1 = kQ1

r
, and after, V2 = kq2

r
, the double layer is

formed yields V2

V1

= Q2

Q1

= Q1−∆Q

Q1

, where k is the Coulomb constant and ∆Q is the

charge that moves to the surface from the bulk. With the values listed above, this

yields a fractional change in the bulk solution potential of 10−6. This is clearly a

negligible change in the potential of the bulk solution and so it can be approximated

as constant under the migration of charge to the surface.

Under the assumption of no Faradaic currents being present and that the presence

of non-Faradaic currents will not affect the value of the bulk potential, its value can

be found via (5.2).

The next assumption holds that only the diffuse layer contributes to the force
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due to double layer interactions. Why is this? In the model of the system we have

adopted, the region of space between the surface and OHP (Stern layer) contains no

charge. In this region, a linear potential drop occurs, and it is this potential we wish

to probe. The charges of the Stern layer exist at the OHP. An application of Gauss’

Law to the probe, assumed to be spherical, shows that the it can be treated as a

single point charge located at the sphere’s center with a magnitude equal to the net

charge on its surface. A Gaussian surface that encompasses only the charges in the

Stern layer will encompass the net charge on the probe. In the absence of specific

adsorption at the surface, this is zero. Hence the force between it and any other

charge distribution such as the one on the sample surface, also with a charge-free

region out to the OHP, is zero. In this way, we can declare that the Stern layer of

charges do not contribute to the measured force. Therefore, all of the force is from

the interaction of the two diffuse layers of charge and the force expression can be fit

with data to yield values of the diffuse layer potential drop.

5.6 Measurement Simulation: Error Analysis and

Propagation

In order to know to what extent the particular fitting algorithm that was designed

could be trusted, a series of simulations were performed. Essentially, the force model

of (5.14) was used to simulate a large number of individual force measurements with

varying degrees of noise in two separate experimental variables, the probe-sample

separation, z, and the measured force, F . The uncertainty in z could stem from

imperfect calibrations of the piezoelectric positioning devices, mechanical vibrations,

or simple voltage resolution issues from the main power supply. Uncertainty in the

measurement of forces can come from errors in cantilever spring constant calibration,

contributions from forces not considered in a given interaction model, or positional
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uncertainty in the reflected laser beam.

Multiple different experiments were performed to test the uncertainty of force

measurements. First, a simple calculation was done using standard error propagation

techniques to at least understand the order of magnitude of uncertainty in measure-

ments of potentials given uncertainties in z and F . Since (5.14) can be rearranged

to show that the potential, φ is a function of the force, F and the position, z, the

uncertainty in φ is given by

σφ =

√

√

√

√

(

σF

∂φ

∂F

)2

+

(

σz

∂φ

∂z
.

)2

(5.15)

Rearrangement and differentiation of (5.14) yields

∂φ

∂F
=

λ exp[ z
λ
]

8πǫ0ǫDRφ
and

∂φ

∂z
=

φ

2λ

(5.16)

Although this exercise illuminates the order to which error may propagate through

a measurement, it is not empirical in nature. To further understand the scale of error

propagation as well as the sensitivity of the fitting algorithms used, force measure-

ments were simulated assuming the force was given by (5.14). In this series of tests,

simulated force measurements were generated with the uncertainty in z and F rang-

ing from 0.1 to 5 nm and 0.01 to 0.6 nN, respectively. These values are generated

from a heuristic understanding of the measurement system and the sources and mag-

nitude of noise encountered in a typical measurement. As real measurements take

place over a range of approximately 100 nm and the exponential decay takes place

over approximately 30 nm, the simulated uncertainty in z is roughly equivalent to a

15% error. The simulated errors in F are as high as 30%. The noise inserted into

the simulation is Gaussian in nature. Gaussian noise was chosen because it is known

that most noise in electronic circuits has at least a Gaussian component. Gaussian

noise sources in real systems include shot noise, thermal noise, or electromagnetic

interference from external sources.
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In this series of tests, 100 individual measurements were simulated at each noise

level pair. In total, 11 noise level values in z were implemented along with 12 noise

levels in F , for a grand total of 132 combinations. The potential parameter, φ was

set to 50 mV for both series of tests. This value was chosen as it is approximately an

average value of many experimental measurements of the diffuse player potential of

various surfaces in standard electrolyte solutions. Other values were also tested with

similar results.

Figure 5.6 depicts the results of fitting simulated data with Gaussian noise in both

the position and force variables to (5.14). The fitting algorithm continues to fit the

data well even with high levels of noise in both the probe-sample distance and the

force.

Figure 5.6: A selection of simulated force measurements with increasing amounts of
Gaussian noise added to the system. Each simulation has noise added to both the
probe-sample distance, z, and the force, F . The red lines represent fits to the simu-
lated data (blue circles) to (5.14) with the fitting algorithm used for real experimental
data. The black dashed line represents function used to generate the noisy data. The
fits yielded R2 values of (from left to right) 0.974, 0.972, 0.864, 0.680
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Trial z-noise (nm) F-noise (nN) R2

1 0.8 0.07 0.974
2 0.9 0.8 0.972
3 4 0.2 0.864
4 9 0.4 0.680

Table 5.1: A selection of results of performing fits of (5.14) to simulated experimental
force measurements. As expected, the larger noise in both z and F resulted in lower
R2 values.

Figure 5.7 shows the results of plotting the average value of φ found by fitting the

simulated data in exactly the same way as done in real experiments. All constraints

and variables are input to the algorithm in the exact fashion as when fitting real

experimental data. In all cases, R is known from previous measurements as outlined

in Section 5.7 in and λ is also known from (2.19). Table 5.1 shows a condensed

description of the simulation parameters and the associated R2 values.

Statistical analysis of the subsequent fits of the simulated data to (5.14) was per-

formed to obtain average and standard error values of each simulated measurement.

The black vertical lines in Figure 5.7 represent the standard error of the fitting for

each noise combination. In this context the standard error is defined as σµ = σ√
N

,

where σ is the standard deviation and N is the number of trials.

The fit algorithm produced values of φ that deviated by no more than 15% for

values of φ that ranged from 10 mV to 150 mV.

5.7 Reproducing Previous Results

Because the measurements and analysis described in this work are a departure from

standard practice, it is of great importance to ensure that results obtained from them

can be trusted. In the following three sections, I will lay out a series of experiments

that were used to ensure that both our measurement system as well as the analytical

framework I developed produce results consistent with those obtained in previous
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Figure 5.7: Results of performing fits for the value of φ with varying noise levels
in z and F . During the simulations, the potential, φ was set to 50 mV. The data
indicates that, as expected, the fitting algorithm tightly constrains the value of φ
for low levels of noise. As the noise level increases in either z or F , the error in the
fitting increases. The algorithm appears more sensitive to F than z. The black lines
indicate the standard error of the mean for fitted values of φ over 100 trials.

studies.

5.7.1 Materials and Methods

All AFM measurements were carried out using a commercially available AFM from

Nanotec Electronica with a complementary Dulcinea digital control and high voltage

power supply unit. In cases when external biasing was employed, a Keithley 6430 Sub-

Femtoamp Remote source measure unit was connected to the system as necessary.

Colloidal probes used in these measurements were obtained from AppNano (FORT-

TL-A-5).

Aqueous electrolyte solutions were prepared using reagent grade salts dissolved
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in deionized (DI) water obtained from an in-house system. The resistivity of the DI

water was > 17.4 MΩ·cm.

Gold samples and gold-coated cantilevers were prepared via thermal evaporation.

The samples began as 1 cm2 V1 grade mica discs from Ted Pella (Prod #50). The

mica was mechanically cleaved immediately prior to the evaporation process.

The radius of the probes, R, was measured by way of the method of Neto et al.[56].

The probes were removed from packaging, cleaned, and scanned over a TGT1 grating

purchased from NT-DMT. Topographical images of the grating were recorded and

analyzed. The radius was obtained via profilometric analysis of the topographical

data. Results of the profilometric scanning of the grating are shown in figure 5.8(a).

Figure 5.8(b) was obtained by plotting the data from every point along the line in

Figure 5.8(a). The radius was calculated via

R =
H2 +

(

W
2

)2

2H
, (5.17)

where H and W are defined as the height and width, respectively, of the profilometric

curves obtained by scanning the TGT1 grating.

The first step to confirming the veracity of the newly proposed experimental and

analytical system discussed earlier was to reproduce results from several previous

studies on similar systems using the same techniques. Each of these studies involved

biasing either the probe or sample, measuring forces, and extracting values of the

diffuse layer potential drop.

Because my experiments involve two-electrodes (probe and sample), which are

connected to a common power supply, with no reference electrode in place, I first

performed tests in which the sample was the only electrified component in the system.

The probe was insulating silica and remained isolated from the electrical circuit of

the sample, reference electrode, counter electrode, and power supply. Next, I made

measurements using an isolated metallic probe, now with only a reference electrode
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(a)

H 

W 

(b)

Figure 5.8: (a) Topographic image obtained by scanning a TGT1 grating with a
colloidal probe. The height profile seen in (b) is obtained by plotting the points that
lie along the green line in (a). The data from the profile is used to calibrate the radius
of the spherical probe via (5.17).
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Figure 5.9: A photo of a typical AFM experiment within a liquid environment. The
water meniscus can be seen clearly. This meniscus begins from below at the sample
surface and terminates above on the holder in which the cantilever/probe rests. Typ-
ical measurements are made in approximately 100 µL of solution. The small amount
of liquid compared to similar larger scale measurements demands that consideration
must be given to the effects of electrical biasing on the liquid itself.

inserted into the system to understand the effects of a metallic probe in these systems.

Finally, the two-electrode measurements consisting of only an electrically connected

probe, sample, and power supply were made.

5.7.2 Isolated Silica Probe

The first test was carried out using a silica colloidal probe, a gold sample surface, and

a platinum reference and counter electrode, all immersed in a 1 mM KNO3 solution

as done in the work of Barten et al. [6]. The variation in forces between the probe and

sample were measured as a function of sample biasing with respect to the platinum

reference electrode. Figure 5.10 shows the results for one of the tests of this type.

The results indicate that biasing the sample between −400 mV and +400 mV vs. Pt,
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Figure 5.10: Measured diffuse layer potential drops for a gold surface in 1 mM KNO3.
The measurements were made using a silica probe and a platinum reference/counter
electrode. The diffuse layer potential of the silica probe was assumed to be −45
mV[29]. These results demonstrate that our measurement system and analysis of the
forces yield results that are consistent in the nature of the response of the system
with those in literature[6].

leads to a diffuse layer potential drop that shifts by approximately 150 mV. These

results are in good agreement with the results of Barten et al. One major deviation

from those results, however, is the lack of a change in the sign of the force. Barten et

al. observed a switch from repulsive to attractive forces as the sample was driven to

more positive potentials. As noted in Chapter 4, there is some lack of reproduction

of this result, with some groups reporting a change in force sign while others do not.

A possible explanation for this lies in the fact that the bulk solution potential with

respect to machine ground may differ by hundreds of millivolts in different labs and

on different days. For this reason, one may not be able to drive an electrode to a

potential high or low enough to overcome this offset potential. One advantage of the

model I have developed is that this factor is accounted for by default.
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5.7.3 Isolated Metallic Probe

The next set of tests performed involved replacing the silica probe with one coated in

gold. The probe, although now conductive, was left isolated from the biasing circuit.

Again, a platinum wire was used as a reference electrode. The experiments in this

case were carried out in 1 mM NaCl.

Once the force measurements had been made, the data was analyzed under two

differing assumptions. In the first analysis, the bulk potential was assumed to be

constant. This is the equivalent of what all other studies up to this point have used.

Under this assumption, the bulk solution potential is a point of constant reference for

the diffuse layer potential and all other in-solution potentials. In the second analysis,

the bulk potential was assumed to shift according to (5.2). Figure 5.11(a) shows the

resulting calculations of the diffuse layer potential drop assuming a constant bulk

potential. Under this assumption, the diffuse layer potential drop seems independent

of the applied bias potential. However, Figure 5.11(b) shows that the assumption

of a shifting bulk potential in the analysis yields values of the diffuse layer potential

drop that themselves shift in a similar fashion. That is, they vary roughly linearly

up to an applied bias of about 100 mV.

As with the isolated silica probe measurements, it can be seen that the force and

hence measured diffuse layer potential drop increases up to applied bias values of ∆V

≈ 100 mV. That range of the increase in the diffuse layer potential agrees with this

in literature for similar applied bias ranges[6]. I presume any difference in magnitude

is attributed to the offset bulk potential, V0, which can vary from solution to solution

and experiment to experiment.
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Figure 5.11: Calculated values of diffuse layer potential drops for a system consisting
of a gold sample, an electrically isolated gold probe, and a platinum reference electrode
in 1 mM NaCl over a range of applied sample biases. The underlying force data
was analyzed under the assumption that (a) the bulk potential remains constant
throughout the measurement and (b) the bulk potential is some constant offset plus
∆V/2. The model of a constant bulk potential yields values of the diffuse layer
potential drop that are independent of the applied bias. All previous work in the
field indicates that this is not a reasonable result. The model of a shifting bulk
potential yields the expected linear response of the diffuse layer potential drop to the
applied bias up to ∆V = 100 mV, after which some saturation occurs. Saturation of
this type has been observed in similar systems[3, 12, 25].
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5.8 Two-Electrode Measurements of EDL Potentials with

AFM

Knowing that that AFM measurement system produces reasonable results, the final

step in the series of measurements was to perform true, two-electrode measurements

of solid-liquid interface systems. All measurements were performed in symmetric

(1:1) salt solutions, typically NaCl or KCl. Measurements were carried out using a

gold coated probe and gold sample where the probe was connected to the ground of

the power supply and the sample was biased. No third electrode was present. In

this scheme, the bias potential is applied directly between the probe and sample. It

is known that the nanoscale morphology of the probe and sample can have an effect

on the EDL that forms at either interface [38, 44, 62]. It is also known that surface

morphology varies among coating and fabrication processes [15, 65]. For this reason,

the probe and sample were coated with approximately 100 nm of gold within the

same deposition process. Typically this process was thermal evaporation, although

electron-beam depositions were sometimes used as well. In any case, it was important

that the two surfaces be as chemically and physically similar as possible to induce

the highest degree of symmetry possible so that calibration measurements could be

made and fit according to (5.14).

Again, the force between the probe and sample was measured as a function of

applied biases to the sample. Similarly to the previous set of experiments, analysis

was performed with the two basic assumptions about the nature of the bulk solution

potential. Figure 5.12 depicts the variation in the measured forces as a function of

applied sample bias.

Once again, it can be seen that the force and hence measured diffuse layer potential

drop increases up to applied bias values of ∆V ≈ 100 mV. The range of the increase

in the diffuse layer potential agrees with those in literature for similar applied bias
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Figure 5.12: Force versus probe-sample separation curves for a gold probe and gold
sample in 0.1 mM NaCl at various applied sample biases. There is a clear dependence
of the force on the applied bias potential. Only every sixth data point is shown for
clarity.

ranges[6, 25]. Any difference in absolute magnitude is attributed in this work to the

offset bulk potential, V0, which can vary from solution to solution and experiment to

experiment.

As was done previously, the measured forces were used to calculate the diffuse layer

potential drops. Figure 5.13 illustrates the measured diffuse layer potential drops,

φssb, for solutions of NaCl at three different concentrations. Because the previous

analysis showed that it is most reasonable to assume that the bulk solution has a bias

potential-dependent component, the analysis used to calculate these values was done

using only that assumption.

Using the value of the diffuse layer potential drop, φssb, calculations of φsss were

carried out according to (5.10). Typical calculations of φsss, are depicted in Figure

5.14. With both φssb and φsss known, the value of Vb was recalculated according to

(5.11). Since each surface is treated separately, the bulk potential value with respect
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Figure 5.13: Calculated values of diffuse layer potential drops for a system consisting
of a gold sample and gold probe in (a) 0.1 mM and (b) 0.5 mM and (c) 1 mM NaCl
over a range of applied sample biases. The bias is applied directly between the sample
and probe. Diffuse layer potential drops were calculated assuming the bulk potential
is Vb = V0 + ∆V/2, yielding the expected linear response of the diffuse layer potential
drop to the applied bias for ∆V < 100 mV.
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Figure 5.14: Calculated values of the potential drop across the Stern layer of the
sample surface, φsss, assuming a shifting bulk potential. The values of the Stern
potential are higher for the higher concentration, consistent with the notion of a
more completely filled Stern layer.

to either electrode can be calculated.

This last step serves as a self-consistency check of the model. That is, by assum-

ing that the bulk potential varies with applied bias according to (5.2), the analysis

provides a way to then recalculate the value of Vb after calculating the two in-solution

potential drops under the assumption that the bulk potential varies in that way.

Finally, it is now possible to plot the potential at every spatial point of interest

within the system as a function of applied bias. Importantly, every potential can

be plotted on a single axis, with a single common reference or ground point. The

results of doing so are shown in Figure 5.15. It can be seen that up to ∆V ≈ 100

mV, the bulk potential varies linearly with ∆V . Furthermore, within that range, the

two values of the bulk potential as measured from either electrode are in fairly good

agreement with one another, especially for the 0.1 mM NaCl solution. In the region

above ∆V ≈ 100 mV, the data for the bulk potential as measured from the probe, Vbp,

88



(a)

(b)
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(c)

Figure 5.15: Calculated values for values of Vi, the potentials as measured from
power supply ground. (a) shows each potential for the 0.1 mM NaCl solution. The
list of potentials shown includes Vs, the sample potential, Vss, the potential at the
OHP of the sample, Vbs, the bulk potential as measured from the sample, Vbp, the
bulk potential as measured from the probe, Vps, the potential at the OHP of the
probe, and Vp, the potential of the probe. The potentials are represented by open
squares, filled circles, upright triangles, open diamonds, open circles, and inverted
triangles, respectively. The inset of (a) shows the values of Vbp (open diamonds) and
Vbs (upright triangles). (b) and (c) depict only the bulk potentials as measured from
each electrode for the 0.5 mM and 1 mM solutions, respectively.

deviates sharply from the value of the bulk potential as measured from the sample,

Vbs, and curves upward rapidly. This indicates a breakdown of the model for the bulk

potential that was used to calculate this data. That is, the model’s self-consistency

breaks down at ∆V > 100 mV. This is likely due to the onset of Faradaic currents,

which will add charge to the solution side if the interface, thus shifting Vq from zero.
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Chapter 6

Conclusions / Future Work

6.1 Conclusions

In this work, I have shown that it is possible to use AFM-based direct force measure-

ments between simple surfaces to infer elusive electrostatic properties of the solid-

liquid interface. The work I have presented can serve as a proof-of-concept series of

measurements that open the door for many more nanoscopic measurements of interfa-

cial systems. Furthermore, I have shown that a careful choice of reference point and

nomenclature within the analysis of such force measurements can yield previously

unobtainable insights into the nature of solution-side responses to applied electric

fields.

The combination of model and measurement scheme was used on a system of

a gold sample and a gold probe in various electrolyte solutions. Standard force

measurements yielded values of the diffuse layer potential drop that agreed with

those found in literature. These values were obtained only when the model of a bulk

potential that varies with applied bias was used. These diffuse layer potentials were

found to vary roughly linearly with applied sample bias up to 100 mV. The values of

the diffuse layer potentials varied from −46 mV to −11 mV, −89 mV to −8 mV, and

from −71 mV to −13 mV for the 0.1 mM, 0.5 mM, and 1 mM solutions, respectively,

for applied biases ranging from 0 to +400 mV.

Using the diffuse layer potential drops, the potential drops across the Stern layer

were calculated using a newly derived formula for the relationship between that po-
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tential drop and the diffuse layer potential drop. The Stern layer potential drops

were found to be a function of both solution concentration and applied bias as seen

in previous research. The Stern layer potential drops were found to vary from −7 mV

to −1 mV, −41 mV to −2 mV, and from −40 to −6 mV for the 0.1 mM, 0.5 mM and

1 mM NaCl solutions, respectively, for applied biases ranging from 0 to +400 mV.

Finally, using the known sample and probe potentials with respect to machine

ground and the two potential drops described above, the bulk solution potential with

respect to machine ground was inferred. This potential was also observed to shift

with applied bias, as predicted by the model. The total shift above applied biases of

100 mV could not be fully accounted for by the model, however. Bulk potential offset

values of 56 mV, 136 mV, and 108 mV were inferred using this process.

As I stated in the Introduction, the specific electrostatic characteristics of interfa-

cial systems play a crucial role in many naturally occurring processes and thus these

developments have a broad range of application in biology, chemistry, and engineer-

ing. Knowledge gleaned from these types of measurements can be particularly useful

in the field of fuel cell engineering as the structure of the double layer greatly affects

the charging and discharging of electrodes in both liquid and solid state fuel cell

devices. For instance, application of (5.5) can yield the value of the surface charge

density once the diffuse layer potential drop of the sample, φssb, is measured.

The methods and analysis I have presented are particularly useful because of

their simplicity. The use of standard consumer AFM’s can lead to speedy, versatile,

and stable measurements of this type on many different systems. Furthermore, the

analysis can yield useful information about the sample surface, the solution itself, or

the probe. The consideration of the response of the solution to external biasing in

nanoscopic systems is the crux of this work.
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6.2 Future Work

Interestingly, neither electrode need be biased to utilize the techniques I have pre-

sented in this work. It is still possible to infer the bulk solution potential as well

as the diffuse layer potential drop and Stern layer potential drops. Measurements,

therefore, can fall into one of two categories; biased or unbiased.

In an unbiased experiment, the scientifically interesting work would be in mea-

suring specific material properties in various material-solution combinations. In the

second type of experiment, the response of the system to applied biases would be

the output of interest. For this reason, the materials used in the second type of

experiment are limited to conductors and possibly some semiconductor materials.

It is likely, but yet unproven, that the effect of applied bias on the bulk potential

of the solution is dominated by the geometry of the two electrodes used in a measure-

ment. Therefore, I recommend for future studies the investigation of the effect of the

relative size of electrodes on the bulk solution potential response to applied biases.

This can be achieved by utilizing a sample design that greatly reduces the active

electrode area from the 1 cm2 used in the work above. For instance, one could devise

a sample that is mostly composed of a material similar in nature to the probe, used

for the calibration step, enclosing a smaller, active electrode. Figure 6.1(b) shows the

design of such a sample. Note the relative sizes of the calibration area and the sample

area. Figure 6.1(a) shows a similar sample design but for an unbiased experiment,

where the calibration area needn’t be as large and the material of interest dominates

the overall area of the sample.

The range of applied biases in the studies I performed were limited to between 0

and +400 mV. The model I developed has no apparatus to account for bias polarity,

but it is likely that specific ionic responses can have an effect on the measured forces.

It would be of scientific interest, therefore to expand these measurements to applied

biases of both larger magnitude and difference polarities. This can be done in concert
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(a)

(b)

Figure 6.1: Sample design to be used in the (a) unbiased and (b) biased measurements.
The part of the sample marked “C” is the same material as the probe and is used for
calibration. The area marked “I” in the second design is an insulating layer and “S”
represents the sample surface that will be external biased and subsequently measured.
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with a wider selection of cation/anion pairs to examine the specific ionic effects that

play a role in the double layer forces at various bias values.
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Glossary of Terms

Amplitude Modulation

Atomic Force

Microscopy

Operational mode of Atomic Force

Microscopy in which the cantilever is

oscillated and its amplitude is kept constant

via a feedback loop.

Atomic Force

Microscopy

Surface analysis technique capable of

atomic-level resolution that utilizes a

mechanical cantilever with an attached

probe that is scanned over the surface being

measured.

Counter Electrode Part of a typical three-electrode

electrochemical measurement through which

a current is expected to flow.

Cyclic Voltammetry Electrochemical measurement in which a

potential is applied to a working electrode

and the current through that electrode is

measured.

Debye Length The distance from a surface immersed in a

liquid at which the electrostatic potential

drops by a factor of e.

Differential Capacitance The voltage dependent capacitance of a

system such as the electrostatic double

layer.
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Diffuse Layer aka

Gouy-Chapman Layer

Part of the electrostatic double layer in

which ions are more heavily impacted by

thermal motion and thus move more freely

in space.

DLVO Theory Named for Derjaguin, Landau, Verwey, and

Overbeek. Theory used to describe the

forces between objects in liquid media.

Electrochemical Surface

Force Apparatus

Modified version of the Surface Force

Apparatus that allows for the

electrochemical characterization of surfaces.

Electrostatic Double

Layer

Structure of ions that is present at the

interface of a solid and liquid.

Electrostatic Force

Microscopy

Operational mode of Atomic Force

Microscopy in which electrostatic

interactions between the probe and sample

are measured.

Frequency Modulation

Atomic Force

Microscopy

Operational mode of Atomic Force

Microscopy in which the cantilever is

oscillated and its frequency of oscillation is

kept constant via a feedback loop.

Gouy-Chapman Layer See “Diffuse Layer”.

Gouy-Chapman Model Model of the electrostatic double layer in

which its structure is that of a single diffuse

layer.
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Inner Helmholtz Plane The plane parallel to the solid surface that

runs through the centers of adsorbed

solvent molecules.

Kelvin Force

Microscopy

Operational mode of Atomic Force

Microscopy in which the potential difference

between the probe and sample can be

measured.

Lock-In Amplifier A device used to measure the characteristics

of an input signal by comparing to an

internal reference signal.

Outer Helmholtz Plane The plane parallel to the solid surface that

runs through the centers of nearest solvated

ions.

Potential of Zero

Charge

The potential applied to an electrode at

which no charge accumulates at the

interface of that electrode and the solution

in which it is immersed.

Potential of Zero Force The potential applied to either the sample

or probe in a force measurement experiment

that causes the force to go to zero.

Proportional Integral

Derivative

A feedback control paradigm in which the

error or difference between a set point

variable and a process variable and applies

a correction based on the proportion,

integral, and derivative of that error signal.
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Reference Electrode Part of a typical three-electrode

electrochemical measurement which is used

as a point of constant potential against

which applied biases are measured.

Stern Layer Part of the electrostatic double layer which

encompasses the sheet of rigidly bound ions.

Stern Model aka

Gouy-Chapman-Stern

Model

Model of the electrostatic double layer in

which its structure is that of a rigidly

bound layer of ions directly adjacent to a

diffuse layer of ions.

Surface Force

Apparatus

Surface analysis device used to measure the

forces between two surfaces as a function of

their separation.

Surface Potential Ambiguously defined term most often used

to represent the potential drop through the

diffuse layer of an electrostatic double layer.

Working Electrode Part of a typical three-electrode

electrochemical measurement to which an

external bias is applied.
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