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Abstract 

We present an efficient scheme to evaluate the [O](m) integrals that arise in many ab initio quan- 
tum chemical two-electron integral algorithms. The total number of floating-point operations 
(FLOPS) required by the scheme has been carefully minimized, both for cases where multipole ex- 
pansions of the integrals are admissable and for cases where this is not so. The algorithm is based 
on the use of a modified Chebyshev interpolation formula to compute the function exp(-7') and 
the integral F,,,(T) = J&'"exp(-Tu2) du very cheaply. 

Introduction 

In retrospect, the 1986 paper [l] by Obara and Saika (0s) appears to have her- 
alded a renaissance of interest in the efficient computation of the many two- 
electron repulsion integrals (ERIS) that are needed in most ab initio calculations 
of electronic structure. 0s introduced an eight-term recurrence relation by which 
the ERIS between Gaussian basis functions of arbitrarily high angular momentum 
may be generated recursively from auxiliary s-type integrals, and in the years fol- 
lowing, a number of algorithms [2-61 have been developed that successfully ex- 
tend this approach by using other recurrence relations in addition to, or instead 
of, the original one. 

The generation of ERIS using such algorithms involves two disjoint tasks. First, 
a small number of auxiliary s-type integrals ([ss I ssIcm) or [O]'")) are formed, and, 
second, these are suitably combined together using the available recurrence rela- 
tions. However, although considerable effort has recently focused on the opti- 
mization of the second of these tasks, the first has received scant attention. The 
predictable consequence of this neglect, as Hamilton and Schaefer have noted 
[3], is that the point has been reached at which the computation of integrals of 
comparatively low angular momentum, for example, highly contracted ( p p  1 pp) ,  
is now dominated by the formation of the requisite auxiliary s-type integrals. 

In the present paper, we address this problem and describe a highly optimized 
scheme for computing [O]'"' integrals. 

A Statement of the Problem 

Suppose that we have a primitive shell of Cartesian Gaussian functions on 
each of four centers A, B, C, and D and that their exponents and contraction co- 
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efficients are a, P ,  y, and 6 and DA, DB, Dc, and Do, respectively. (For defini- 
tions of these and other terms, see [4]). Then, the fundamental integral in which 
we are interested is given by 

where r12 = Irl - r21 and the six-dimensional integral is over all space. 
First, we define three quantities associated with the shells onA and B: 

U P  = 1/ta + P )  

up = (.rrap)3/2DADBe -4uPlA-BIz 

P = (aA + PB)ap 

and three associated with the shells on C and D: 

UQ = l / ( y  + 6) 

Q = (yC + 6 D ) a ~  
uQ = (.rraQ)3/2~c~oe-y6u~lC-DIz. 

It is important to note that all such shell-pair quantities can be evaluated within 
a comparatively cheap preliminary loop over all possible pairs of shells in the 
system. We therefore assume that all such quantities will have been calculated 
and stored before the main loop over all possible quurtets of shells is entered. 

Within the shell-quartet loop, we define four parameters: 

u = UpUQ (11) 

As Boys has shown [7], the [0](0) integral can be reduced to a much simpler 
one-dimensional integral related to the incomplete gamma function. In terms of 
(9)-(ll), it may be expressed as follows: 

1/2 1 

[0](0) = 1Y(2'8~)'/~( 2, .rr lo e-TU2du.  

In most calculations, we must generalize this formulation to 

and evaluate the set of [0Icm) (0 I m I L)  for some given L.  The computation of 
such sets should be as efficient as possible, since, in the course of a large direct ab 
initio calculation [8], it represents a major proportion of the total work performed. 
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An Efficient Scheme to Compute the [O]'"' 

We first consider the shell-quartet parameters in (8)-(11). Of these, the most 
expensive to compute is R2, which, if evaluated by a straightforward application 
of (8), will involve three subtractions, three multiplications, and two additions, 
i.e., eight floating-point operations (FLOPS). This cost can be reduced, however, if 
the quantities 

0 = a ( A  - B(/(a + p)  
p = (A - B) . (B - Q)/IA - BJ 

v =z 1B - QI2 - p2 

R2 = (w + p)' + v, 

(14) 

(15) 

(16) 

(17) 

have been precomputed. It is easy to show that, in terms of these, R2 becomes 

which costs only three FLOPS (two additions and a multiplication). 
As (9) stands, 6' costs two FLOPS (a division and an addition), and this cannot 

be reduced. However, it will turn out later that a scaled version of 6' is more 
useful than 6' itself and, if the scaling has been precomputed, no extra cost is 
incurred; thus: 

where 2A is an interpolation interval to be defined later. 

wise scaled. Again, this can be achieved for the same cost as (10): 
Similarly, we prefer (for reasons that will later become apparent) T to be like- 

T 6' 
2A 2A 
- = -R2. 

If T is large enough, we can take advantage of the asymptotic formula 

which leads to the very simple result 

U [ O p  - (2m - l)!!m, R 
from which we see that (in the large-T limit) the [O](") integrals are closely related 
to multipole interactions between the AB and CD shell-pairs. 

For smaller values of T, we propose that an efficient way to evaluate the [0](") 
is to rewrite (13) as 

[O]'"' = (2m - l)!!U - G,(T) ,  ( 2"d- r + l I 2  
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where 
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then to compute GL(T) using an efficient interpolation scheme and to calculate 
the remaining G,(T) (0 I m < L)  using the downward recurrence relation 

Of course, (24) uses exp(-T), and we propose that this, too, be found using an 
efficient interpolation scheme. 

Our algorithm for [0Icm) generation is now almost completely defined. It re- 
mains only to discuss the interpolation scheme that we have implemented. 

Modified Chebyshev Interpolation 

Suppose that we wish to develop interpolation formulae over some finite do- 
main for a function f whose values and derivatives f("'(x) (rn = 0,1,2, . . .) are 
known at a set of points x = Xj. Ultimately, we seek an nth-degree polynomial 
in x: 

A , ( x ; j )  = a0 + u l x  + u2x2 + ... + U , P ,  (25) 
to approximate f(x) over the jth interpolation interval because (25) can be evalu- 
ated very efficiently (in just n adds and n multiplies) as 

A&) = a0 + x(u1 + x(u2 + ... + xu,)). (26) 
For convenience, we will focus on one interpolation interval ( X  - A, X + A) 
and we will develop the theory in terms of the normalized variable: 

x - x  t = -  
A '  

Clearly, any nth-degree polynomial in t is equivalent to another in x. 
The most obvious choice for A,(t) is the Taylor polynomial: 

(")" ( X), (28) (tAY A,T"y'"'(t) = f(X) + (tA)f(')(X) + ,!f'*'(X) + . . . + -f "'( 
n! 

and McMurchie and Davidson [9], Harris [lo], and Head-Gordon and Pople [2] 
have all advocated the use of Taylor interpolation to compute Frn(T) [7]. How- 
ever, although (28) is very accurate near the middle of the interpolation interval, 
it becomes much poorer near the endpoints and, for small A7 its maximum error is 

.&,+I 
E,T"y'"' ~ f'"+I'(X) . 

(n + l)! 
There usually exist other nth-degree polynomials whose maximum error is less 
than this. The best of these, the "min-max" polynomial [ll], is generally awk- 
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ward to compute, but the least-squares polynomial A$h'6y(x), which minimizes 
the integral 

+' [A,Cheby(t) - f(X + tA)]' dt 
(1 - t 2 ) ' / 2  

is almost as good [ll] and, as we now demonstrate, is easy to compute. 
We expand A, ( t )  as a sum of Chebyshev polynomials: 

AnC""Y(t) = aoTo(t) + U l T l ( t )  + . . . + a,T, ( t ) ,  (31) 
and then minimize (30) (using the orthogonality of the T,) to obtain 

The left integral is elementary. Assuming that the right integral cannot be evalu- 
ated in closed form, we expand f(X + At) in series to obtain 

If we interchange the order of integration and summation, we obtain 

These "Chebyshev-moment" integrals vanish unless 
when 

m = k , k + 2 , k + 4  ,..., 

The nonvanishing integrals are well known: 

(36) 
tk+2mTk(t) rr(k + 2m)! 

m!(k  + m)!' I 2 1/2 dt = 2k+2m 
-I (1 - t ) 

and substitution of (36) into (35) yields a final expression for the ak: 

which involves only the known quantities f(")(X) and A .  
For small A,  the maximum error of (31) is 

F+l 

2"(n + l)! f'""'(X). a,+1 = E $heby 

Comparing (38) with (29) reveals that nth-degree Chebyshev interpolation is 2" 
times more accurate than is nth-degree Taylor interpolation. Moreover, by re- 
arranging (38), we obtain a formula for the greatest A that will give rise to a 
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Chebyshev interpolation error less than some tolerance E :  

A = [  2yn + l)! & ] + l) . 
rnaxlf("+l)(X)( (39) 

In our algorithm for computing [OJcm) integrals, we choose the grid 

X, = (2j + 1)A ( j  = O , l ,  ...), (40) 
so that the index j to the interpolation table (INT) can be found, very cheaply, as 

j = IN'(&) 

As a compromise between expense and accuracy, we have chosen to use the cubic 
Chebyshev interpolation formula: 

f(x) = aoTo(t) + U l T I ( 0  + a,Tz(t) + asT3(t) 

= a0 + .(+x) + u2[2(+x)2 - 11 + u3[4(T) x - x 3  

- 3( +*)I 
to compute G,(T) and exp(-T). Thus, having formed ao, al ,  a2, and a3 using 
(37), the fi given by 

f3 = 32a3 (46) 
may be computed and stored. It is then possible, given x/(2A) and using (42), to 
interpolate f(x) in just three adds and three multiplies, i.e., in six FLOPS. 

Computational Notes 

We summarize our scheme for computing the [O]'"' (0 I m s L) in Figure 1. 
The number of FLOPS contributed by each of the component steps to the work 
performed in the innermost contraction loop is also shown. We note the follow- 
ing points: 

(1) When L = 0, steps (7) and (8) may be skipped. 



T WO-ELECTRON REPULSION INTEGRALS 

2 2 
(1) R = ( ~ + p )  + V  

(3) & = $ R  2 2  

(4) IF [a < [k] THEN 

751 

3 FLOPs 

2 FLOPs 

I FLOP 

I FLOP 

1 FLOP 

ELSE 

(9b) [o] (m) = (2m - I)!! UQ 2m+l UP 
R 

I SQUARE ROOT + 
( L  i I )  FLOPs 

END IF 
Figure 1. An optimized scheme for the generation of [0](’”) integrals from shell-pair 
data. The number of floating-point operations (FLOPS) that each step contributes to 
the cost of the innermost contraction loop [assuming that constants like 1/(2A) have 

been precomputed] is shown in italics. See text for definitions of symbols. 

When L = 1, three FLOPS may be saved by interpolating Go(T) rather than 
generating it recursively from the GI@) value, i.e., steps (7) and (8) may be 
replaced by a second step like (6). 
The multiplications by (2m - l)!! and UQ in steps (9a) and (9b) may be fac- 
tored out of the innermost contraction loop, and, for this reason, they do 
not contribute to the FLOP-cost of this loop. 
In limited computer memory, it may be impossible to store all the p and 
v values. When this is so, two alternatives are available. One of these is to 
evaluate p and v inside the loop over CD shells but outside the loop over 
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AB shells. The R2 values can then be computed as in step (1). Alternatively, 
the RZ values can simply be found in eight FLOPS using Eq. (8) instead of 
Eq. (17). In this case, p and v values are never needed. It can be shown that 
the first alternative becomes more efficient than the second when the num- 
ber of primitives onA and B is large enough. 

(5) By adding the FLOP costs of the individual steps in Figure 1, it is easy to 
show that the cost, in the innermost contraction loop, of forming a set of 
[0Icm) (0 5 rn 5 L) from shell-pair data is 

L = O  16 + S 8 + S  
L = l  24 + S 9 + s  
L 2 2  (5L + 22) + s (L + 8) + s 

where S represents a square root evaluation. It is clear from this analysis that 
(not surprisingly) the multipole formula (21) is much less expensive than is the 
interpolation formula (22) and that, whenever T is sufficiently large, the former 
should be used. 
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