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Antonio Peñalver, Francisco Escolano, and Juan M. Sáez
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Abstract. In this paper we address the problem of estimating the pa-
rameters of a Gaussian mixture model. Although the EM (Expectation-
Maximization) algorithm yields the maximum-likelihood solution it
requires a careful initialization of the parameters and the optimal num-
ber of kernels in the mixture may be unknown beforehand. We propose
a criterion based on the entropy of the pdf (probability density func-
tion) associated to each kernel to measure the quality of a given mix-
ture model. Two different methods for estimating Shannon entropy are
proposed and a modification of the classical EM algorithm to find the
optimal number of kernels in the mixture is presented. We test our al-
gorithm in probability density estimation, pattern recognition and color
image segmentation.

1 Introduction

Gaussian Mixture models have been widely used for density estimation, pattern
recognition and function approximation. One of the most common methods for
fitting mixtures to data is the EM algorithm [6]. However, this algorithm is prone
to initialization errors and it may converge to local maxima of the log-likelihood
function. In addition, the algorithm requires that the number of elements (ker-
nels) in the mixture is known beforehand (model-selection).

A d-dimensional random variable y follows a finite-mixture distribution when
its pdf p(y|Θ) can be described by a weighted sum of known pdf’s named kernels.
When all these kernels are Gaussian, the mixture is named in the same way:

p(y|Θ) =
K∑

i=1

πip(y|Θi) (1)

where 0 ≤ πi ≤ 1, i = 1, ..., K, and
∑K

i=1 πi = 1, being K the number of
kernels, π1, ..., πk the a priori probabilities of each kernel, and Θi the parameters
describing the kernel. In Gaussian mixtures, Θi = {μi, Σi}, that is, the average
vector and the covariance matrix. The set of parameters of a given mixture is Θ ≡
{Θ1, ..., Θk, π1, ..., πk}. Obtaining the optimal set of parameters Θ∗ is usually
posed in terms of maximizing the log-likelihood of the pdf to be estimated:
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�(Y |Θ) = log p(Y |Θ) = log
N∏

n=1

p(yn|Θ) =
N∑

n=1

log
K∑

k=1

πkp(yk|Θk). (2)

With Θ∗ = arg maxΘ �(Θ) and Y = {y1, ...yN} is a set of N i.i.d. samples of the
variable Y . The EM (Expectation-Maximization) algorithm [6][12] generates a
sequence of estimations of the set of parameters {Θ∗(t), t = 1, 2, ...} by alter-
nating an expectation step and the maximization one until convergence. The
equations are:

p(k|yn) =
πkp(y(n)|k)

ΣK
j=1πjp(y(n)|k)

(3)

πk = 1
N

∑N
n=1 p(k|yn), μk =

�N
n=1 p(k|y

n
)y

n�
N
n=1 p(k|yn)

,

Σk =
�N

n=1 p(k|yn)(yn−μk)(yn−μk)T

�N
n=1 p(k|y

n
) ,

(4)

A detailed description of this classic algorithm is given in [12]. Here we focus
on the fact that if K is unknown beforehand it cannot be estimated through
maximizing the log-likelihood because �(Θ) grows with K.

In a classical EM algorithm with a fixed number of kernels density can be un-
derestimated giving a poor description of the data. The so called model-selection
problem has been addressed in many ways [16][17][8][7][14]. In this paper we pro-
pose a method that starting with only one kernel, finds the maximum-likelihood
solution. In order to do so, it tests whether the underlying pdf of each kernel
is Gaussian and otherwise it replaces that kernel with two kernels adequately
separated from each other. In order to detect non-Gaussianity we compare the
entropy of the underlying pdf with the theoretical entropy of a Gaussian. After
the kernel with worse degree of Gaussianity has been splited in two, new EM
steps are performed in order to obtain a new maximum-likelihood solution. In
the next sections we describe two different entropy estimation techniques to test
whether a given kernel describes properly the underlying data.

2 Entropy Estimation

Entropy is a basic concept in information theory [4]. For a discrete variable Y
with y1, ..., yN a the set of values, we have:

H(Y ) = −Ey[log(P (Y ))] = −
N∑

i=1

P (Y = yi) log P (Y = yi). (5)

A fundamental result of information theory is that Gaussian variables have the
maximum entropy among all the variables with equal variance. Consequently the
entropy of the underlying distribution of a kernel should reach a maximum when
such a distribution is Gaussian. This theoretical maximum entropy is given by:

Hmax(Y ) =
1
2

log[(2πe)d|Σ|]. (6)
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Then, in order to decide whether a given kernel is truly Gaussian or must be re-
placed by two other kernels, we compare the estimated entropy of the underlying
data with the entropy of a Gaussian.

The estimation of the Shannon entropy of a probability density given a set of
samples has been studied widely in the past [1]. In this paper we present results
with two different methods: “plug-in” and “non plug-in”.

2.1 Entropy Estimation with Parzen’s Windows

The Parzen’s windows approach [11] is a non-parametric method for estimating
pdf’s for a finite set of patterns. The general form of these pdf’s using a Gaussian
kernel and assuming diagonal covariance matrix ψ = Diag(σ2

1 , ...σ
2
Na

) is:

P ∗(Y, a) ≡ 1
Na

∑

ya∈a

Kψ(y − ya), (7)

where Kψ(y−ya) is a gaussian kernel centered y ya, a is a sample of the variable
Y and Na is the size of the sample. In [15] a method for adjusting the widths
of the kernels using maximum likelihood is proposed. Given the definition of
entropy in Equation 5, we have:

Hb(Y ) ≡ −Eb[log(P (Y ))] = − 1
Nb

∑

yb∈b

log(P (yb)) (8)

where b is a sample of the variable Y and Nb is the size of the sample. If expression
in Equation 7 is plugged into Equation 8 then the entropy is estimated by:

H∗(Y ) =
1

Nb

∑

yb∈b

log

(
1

Na

∑

ya∈a

Kψ(yb − ya))

)
(9)

2.2 Renyi’s Entropy and Entropic Spanning Graphs

Entropic Spanning Graphs obtained from data to estimate Renyi’s α-entropy[10]
belong to the “non plug-in” methods of entropy estimation. Renyi’s α-entropy
of a probability density function f is defined as:

Hα(f) =
1

1 − α
ln

∫

z

fα(z)dz (10)

for α ∈ (0, 1). The α entropy converges to the Shannon entropy −
∫

f(z) ln f(z)dz
as α → 1, so it is possible to obtain the second one from the first one.

A graph G consists of a set of vertices Xn = {x1, ..., xn}, with xn ∈ Rd and
edges {e} that connect vertices in graph: eij = (xi, xj). If we denote by M(Xn)
the possible sets of edges in the class of acyclic graphs spanning Xn (spanning
trees), the total edge length functional of the Euclidean power weighted Minimal
Spanning Tree is:

LMST
γ (Xn) = min

M(Xn)

∑

e∈M(Xn)

| e |γ (11)

with γ∈ (0, d) y | e | the euclidean distance between graph vertices.
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The MST has been used as a way to test for randomness of a set of points.
In [9] it was showed that in d-dimensional feature space, with d ≥ 2:

Hα(Xn) =
d

γ

[
ln

Lγ(Xn)
nα

− ln βLγ ,d

]
(12)

is an asymptotically unbiased, and almost surely consistent, estimator of the
α-entropy of f where α = (d − γ) and βLγ ,d is a constant bias correction de-
pending on the graph minimization criterion, but independent of f . Closed form
expressions are not available for βLγ ,d, only known approximations and bounds:
(i) Monte Carlo simulation of uniform random samples on unit cube [0, 1]d; (ii)
Large d approximation: (γ/2) ln(d/(2πe)) in [2].

We can estimate Hα(f) for different values of α = (d − γ)/d by changing the
edge weight exponent γ. As γ modifies the edge weights monotonically, the graph
is the same for different values of γ, and only the total length in expression 12
needs to be recomputed.

Entropic spanning graphs are suitable for estimating α-entropy with α ∈ [0, 1[,
so Shannon entropy can not be directly estimated with this method. Figure 1
on the left hand shows that the shape of the function does not depend neither
on the nature of data nor on their size.

Fig. 1. Left: Hα for gaussian distributions with different covariance matrices. Right:
α∗ for dimensions between 2 and 5 and different number of samples.

We will approximate the value of Hα for α = 1 by means of a continuous
function that captures the tendency of Hα in the environment of 1. From a
value of α ∈ [0, 1[, we can calculate the tangent line y = mx + b to Hα in this
point, using m = H

′

α, x = α and y = Hα. In any case, this line will be continuous
and we will be able to calculate its value for x = 1.

From now on, we will call α∗ to the α value that generates the correct entropy
value in α = 1, following the described procedure.

As Hα is a monotonous decreasing function, we can estimate α∗ value in
the Gaussian case by means of a dichotomic search between two well separated
α values for a constant number of samples, problem dimension and different
covariance matrices. Experimentally, we have verified that α∗ is almost constant
for diagonal covariance matrices with variance value greater than 0.5.
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In order to appreciate the effects of the dimension and the number of samples
on the problem, we calculated α∗ for a set of 1000 distributions with random
2 ≤ d ≤ 5 and number of samples. Experimentally we have verified that the
shape of the underlying curve adjusts suitably to a function of the type: α∗ =
1− a+b expcD

N , where N is the number of samples, D is the problem dimension and
a, b, c are three constants to estimate. In order to estimate these values, we used
Monte Carlo Simulation, minimizing the mean square error between expression
and data. We obtained a = 1.271, b = 1.3912 and c = −0.2488. Figure 1 on the
right hand shows α∗ for different dimension an number of samples.

3 Entropy-Based EM Algorithm

Comparing the estimations given for Equations 6 with 9 and 12, we have a way
of quantifying the degree of Gaussianity of a given kernel. Given a set of kernels
for the mixture (initially one kernel) we evaluate the real global entropy H(y)
and the theoretical maximum entropy Hmax(y) of the mixture by considering
the individual pairs of entropies for each kernel, and their prior probabilities:

H(Y ) =
K∑

k=1

πkHk(Y ) and Hmax(Y ) =
K∑

k=1

πkHmaxk
(Y ) . (13)

If the ratio H(y)/Hmax(y) is above a given threshold we consider that all ker-
nels are well fitted. Otherwise, we select the kernel with the lowest individual
ratio and it is replaced by two other kernels that are conveniently placed and
initialized. Then, a new EM with K + 1 kernels starts.

A low H(y)/Hmax(y) local ratio indicates that multi-modality arises and thus
the kernel must be replaced by two other kernels. In the split step the original
covariance matrix needs to generate two new matrices with two restrictions:
overall dispersion must remain almost constant and the new matrices must be
positive definite. This is an ill-posed problem because the number of equations
is less than the number of unknowns [13][18].

From definition of mixture in equation 1, considering that the K∗ component
is the one with lowest Gaussianity threshold, it must be decomposed into the K1
and K2 components with parameters Θk1 = (μk1 , Σk1) and Θk2 = (μk2 , Σk2).
The corresponding priors, the mean vectors and the covariance matrices should
satisfy the following split equations:

π∗ = π1 + π2
π∗μ∗ = π1μ1 + π2μ2

π∗(Σ∗ + μ∗μT∗ ) = π1(Σ1 + μ1μ
T
1 ) + π2(Σ2 + μ2μ

T
2 )

(14)

Recently, in [5] a spectral decomposition of the actual covariance matrix is
performed and the original problem is replaced by estimating the new eigenvalues
and eigenvectors of new covariance matrices.

Let
∑

∗ = V∗Λ∗V T
∗ be the spectral decomposition of the covariance matrix∑

∗, with Λ∗ = diag(λj∗1, ..., λj∗d) a diagonal matrix containing the eigenval-
ues of

∑
∗ with increasing order, ∗ the component with the lowest entropy ratio,
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π∗, π1, π2 the priors of both original and new components, μ∗, μ1, μ2 the means
and

∑
∗,

∑
1,

∑
2 the covariance matrices. Let also be D a dxd rotation ma-

trix with columns orthonormal unit vectors. D is constructed by generating its
lower triangular matrix independently from d(d − 1)/2 different uniform U(0, 1)
densities. The proposed split operation is given by:

π1 = u1π∗, π2 = (1 − u1)π∗
μ1 = μ∗ − (

∑d
i=1 ui

2

√
λi∗V

i
∗ )

√
π2
π1

, μ2 = μ∗ − (
∑d

i=1 ui
2

√
λi∗V

i
∗ )

√
π1
π2

Λ1 = diag(u3)diag(ι − u2)diag(ι + u2)Λ∗ π∗
π1

Λ2 = diag(ι − u3)diag(ι − u2)diag(ι + u2)Λ∗ π∗
π2

V1 = DV∗, V2 = DT V∗

(15)

where, ι is a d x 1 vector of ones, u1, u2 = (u1
2, u

2
2, ..., u

d
2)T and u3 = (u1

3, u
2
3, ...,

ud
3)

T are 2d + 1 random variables needed to construct priors, means and eigen-
values for the new component in the mixture. They are calculated as

u1 ∼ be(2, 2), u1
2 ∼ be(1, 2d),

uj
2 ∼ U(−1, 1), u1

3 ∼ be(1, d), uj
3 ∼ U(0, 1) and j = 2, ..., d

(16)

Fig. 2. 2-D Example of splitting one kernel into two new kernels

A graphical description of the splitting process in the 2-D case is showed
in Fig.2. Directions and magnitudes of variability are defined by eigenvectors
and eigenvalues of the covariance matrix. Otherwise, a completed algorithmic
description of the process is showed in Fig. 3.

4 Experiments and Discussion

In order to test our approach we have performed several experiments with syn-
thetic, real and image data. In the first one we have generated 2500 samples
from 5 bi-dimensional Gaussians with different prior probabilities, averages and
covariance matrices. We have used a Gaussianity threshold of 0.95, and a con-
vergence threshold of 0.001 for the EM algorithm. In both, “plug-in” and “non
plug-in” entropy estimation approaches our algorithm converges after 30 itera-
tions finding correctly k = 5. In Figure 4 we show the evolution of the algorithm.
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Entropy Based EM algorithm

Initialization: Start with a unique kernel.
K ← 1. Θ1 ← {μ1, Σ1} with μ1 = data average and Σ1 = data covariance.
repeat: //Main loop

repeat: //E, M Steps
Estimate log-likelihood in iteration i: �i

until: |�i − �i−1| < convergence th

Evaluate H(Y ) and Hmax(Y ) globally
if (H(Y )/Hmax < entropy th)

Select kernel K∗ with the lowest ratio and decompose into K1 and K2

Initialize parameters Θ1 and Θ2(Eq.15)
Initialize new averages: μ1 and μ2

Initialize new eigenvalues and eigenvector matrices: Λ1, Λ2, V1 and V2

Set new priors: π1 and π2

else Final ← True
until: Final = True

Fig. 3. Entropy Based EM algorithm

Fig. 4. Evolution of our algorithm from 1 to 5 final kernels

We have also tested our algorithm in unsupervised color image segmentation.
At each pixel i in the image we compute a 3-dimensional feature vector xi with
the components in the RGB color space. We obtain the number of components
(classes) M and yi ∈ [1, 2, ..., M ] to indicate from which class the pixel ith
came. Therefore our image model sets that each pixel is generated by one of
the Gaussian densities in the Gaussian mixture model. We have used different
entropy thresholds and a convergence threshold of 0.1 for the EM algorithm. In
Fig. 5 we show some results obtained from three different images. The greater it
is the demanded threshold the higher is the number of kernels (colors) generated.
In the “non plug-in” approach, a random selection of 1000 points has been made
to estimate the MST due to memory problems. The results obtained with both
methods are identical.

Finally, we have applied the proposed method to the well known Iris [3] data
set, that contains 3 classes of 50 (4-dimensional) instances referred to a type
of iris plant: Versicolor, Virginica and Setosa. 50 samples are insufficient to
construct the pdf using Parzen. In order to test our method, we have generated
300 training samples from the averages and covariances of the original classes



656 A. Peñalver, F. Escolano, and J.M. Sáez

Fig. 5. Color image segmentation with increasing gaussianity thresholds

and we have checked the performance in a classification problem with the original
150 samples. Starting with K = 1, the method correctly selected K = 3. Then, a
maximum a posteriori classifier was built, with classification performance of 98%.
With the MST approach, with no pdf estimation required, the algorithm can be
executed with the original data set with the same classification performance.

5 Conclusions and Future Work

In this paper we propose a method for finding the optimal number of kernels
in a Gaussian mixture based on maximum entropy. The algorithm starts with
only one kernel overcoming the local convergence of the usual EM algorithm.
The “plug-in” entropy estimation approach is suitable for low-dimensional prob-
lems with large data, while the “non plug-in” approach is appropriate for high-
dimensional settings with a reduced data set. The algorithm is efficient for den-
sity estimation, pattern recognition and unsupervised color image segmentation.
We are currently exploring methods to remove noisy features from data.
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