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In this paper, the disassembly line balancing problem, which involves determining a line design in which used products are completely
disassembled to obtain useable components in a cost-effective manner, is studied. Because of the growing demand for a cleaner
environment, this problem has become an important issue in reverse manufacturing. In this study, two exact formulations are
developed that utilize an AND/OR Graph (AOG) as the main input to ensure the feasibility of the precedence relations among the
tasks. It is also shown that traditional task precedence diagrams can be derived from the AOG of a given product structure. This
procedure leads to considerably better solutions of the traditional assembly line balancing problems; it may alter the approach taken
by previous researchers in this area.
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1. Introduction

In the last two decades environmental issues have become
a major concern for industry. Governments have passed
legislation against the indiscriminate disposal of hazardous
products. Companies have started to comply with these rul-
ings by changing their infrastructure and production pro-
cesses (Inman, 2002). As a result, reverse manufacturing
has become a common practice and disassembly is one of
the key processes in this approach. Disassembly is defined
as a systematic method for separating a product into its
constituent parts, subassemblies or other groupings (Gupta
and Taleb, 1994). The disassembly can be partial or com-
plete. If the quality of the remanufactured product is to
be the same as that of the new product, it is completely
disassembled; otherwise, partial disassembly is sufficient.
Demanufacturing can also include selective disassembly, in
which only the profitable and/or hazardous components
of the product are disassembled. At the operational level,
disassembly is also classified as being either destructive
or non-destructive (Jovane et al., 1993). Destructive dis-
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assembly is used if technological constraints such as irre-
versible connections or damaged parts make it either im-
possible or unprofitable to disassemble the product without
destruction.

Although assembly and disassembly seem to be the re-
verse of each other, they differ in terms of operational and
production planning. The differences in the operational
aspect are due to the variety of the tasks and their differ-
ing durations. The times required for disassembly tasks are
more variable than in assembly, because of both the irre-
versibility of some assembly operations and uncertainty
in the quality of the cores. The differences in the pro-
duction planning arise for two reasons. First, disassem-
bly is a divergent process resulting in multiple items, in
contrast to the convergent nature of the assembly pro-
cess (Brennan et al., 1994). Disassembly can be partial or
complete whereas assembly is always complete. Second,
type, quality, and quantity of the inputs of the disassem-
bly process (cores) show higher uncertainty than the inputs
of the assembly process (subassemblies) (Brennan et al.,
1994).

There are several research areas in the disassem-
bly literature with sequencing and line balancing being
major research streams. Several papers study disassembly
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Disassembly line balancing 867

sequencing problems in which the disassembly process se-
quence is generated for a given product on a single station
(Gungor and Gupta, 2001b; Lambert, 2003). In this pa-
per, however, we study the DisAssembly Line Balancing
(DALB) problem which is the reverse of the well known As-
sembly Line Balancing (ALB) problem. The DALB prob-
lem is the process of allocating a set of tasks to an or-
dered sequence of stations in such a way that some per-
formance measures (e.g., cycle time, number of stations)
are optimized by using the AND/OR Graph (AOG) of the
product. The ALB problem has been extensively studied
in the literature (see Becker and Scholl (2006) and Scholl
and Becker (2006)), but the DALB literature is relatively
sparse.

In this study, we develop two exact formulations (Dy-
namic Programming (DP) and Integer Programming (IP))
for the DALB problem. The proposed models utilize an
AOG as the main input to ensure the feasibility of prece-
dence relations among the tasks. We prove that using an
AOG instead of a precedence diagram leads to better solu-
tions of the traditional ALB problems. In this specific area,
there are only two studies: Altekin et al. (2008) proposes an
IP formulation for profit maximization using an AOG to
solve the disassembly leveling and line balancing problems
simultaneously. The second study from Gungor and Gupta
(2001a) defines the DALB problem for a part precedence
diagram. To cope with the uncertainties in the disassem-
bly process, they propose a solution using the shortest-path
formulation adopted from the ALB problem.

Our study differs from the previous studies in several
ways. First, we develop an IP formulation to effectively
solve the DALB problem. Second, we develop a DP for-
mulation. Third, we prove that several Task Precedence
Diagrams (TPDs) can be derived from the AOG. Fourth,
the ALB problem solved using the AOG results in better
designs than the traditional ALB problem solved using a
TPD. Finally, we compare the proposed IP and DP formu-
lations with respect to various problem parameters.

The rest of this paper is organized as follows. Section 2
contains both a formal definition of the DALB problem and
the related literature. This is followed by the IP formulation
of the problem in Section 3. We discuss the benefits of using
an AOG in both assembly and disassembly processes in
Section 4. A DP formulation of the problem is given in
Section 5 with an illustrative example. In Section 6, we test
the relative performance of the IP and DP formulations on
a set of problems. Finally, we give conclusions and further
research directions in Section 7.

2. Problem definition and the related literature

In this section, we define the DALB problem and give the
main characteristics of the AOG along with the relevant
literature.

2.1. The AOG

An AOG is a graph that depicts all the possible ways of
completely disassembling a product into its basic compo-
nents. Nodes represent subassemblies and components and
the arcs correspond to the disassembly tasks. In this rep-
resentation, it is typically assumed that each disassembly
takes apart the product or subassembly into exactly two
new subassemblies (this assumption can easily be relaxed to
three or more subassemblies in our methodology). Hence,
a term, hyper-arc, is used to denote a link connecting two
subassemblies of the disassembly task with the input node.
Each hyper-arc is adjacent to one input node and adjacent
to two output nodes. The node to which none of the hyper-
arcs are adjacent is called the initial node, and the nodes
from which none of the hyper-arcs are adjacent are called
terminal nodes. (The reader may refer to De Mello and
Sanderson (1990, 1991a, 1991b) for further discussions of
these concepts).

In order to explain how to get an AOG from a prod-
uct, an assumed product is constructed with seven com-
ponents and their connections (or contacts) are displayed
in Fig. 1. This example is created in such a way that two
TPDs are generated from the AOG of the sample product.
The Graph of Connections (GOC) in this figure presents
the information regarding the contacts between the com-
ponents. The AOG representation of this sample product
is given in Fig. 2. Note that there are 13 nodes and 23
hyper-arcs (disassembly tasks) to completely disassemble
the sample product. The numbers within the nodes repre-
sent the related subassembly. For example, in node 2 (2)
the component 6 is taken away from the product and the
resulting subassembly consists of components 1 through 5
(i.e., 1/5) and component 7. For simplicity, subassemblies
with only one component are not shown in the graph.

To give a formal definition of the AOG, let K be a set of
elements and � (K) be the set of all subsets of K . Consider
a product A with parts PA = {p1, p2, . . . , pN}, where N is
the number of parts. There is a unique AOG of assembly/
disassembly sequences for A defined as < SA, DA > such
that SA = {θ ∈ �(PA)|sa(θ) = “T” and st(θ) = “T”} is the
set of nodes (subassemblies) in the AOG and DA = {(θk,
{θi , θ j})|[θk, θi , θ j ∈ SA] and [τ (θi , θ j ) = θk] and g f (τ ) =
“T” and mf (τ ) = “T”} is the set of hyper-arcs, T stands
for ‘true,’ τ is the assembly task, sa and st are subassembly
and stability predicates, and g f and mf are geometrical
and mechanical feasibility predicates.

We use the predicate notation sa(.) to denote whether
or not a subset of parts constitutes a subassembly. For in-
stance, in Fig. 1 sa(component 1, component 2) = true
means that {component 1, component 2} is a subassem-
bly, whereas sa{component 5, component 6}= false means
that {component 5, component 6} is not a subassembly.
Note that the value of this predicate for any subset of com-
ponents can be easily determined from the GOC. A sub-
assembly is said to be stable if components maintain their
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Fig. 1. A sample product: (a) overview; and (b) the graph of connections.

relative positions and do not break spontaneously. Hence, a
subassembly should also satisfy the stability predicate st(.)
that determines whether or not a subassembly described is
stable. A subassembly is said to be feasible if both of the sa
and st are true.

Assembly/disassembly tasks have three properties. First,
given two input subassemblies φ and θ , we say that joining
them is an assembly task if the output, {Pφ, Pθ}, is also a
subassembly (i.e., sa (Pφ, Pθ ) is true). This property can be
reversed for the disassembly task. Second, an assembly task
should be geometrically feasible, implying a collision-free
path to joining the two subassemblies. We use the geomet-
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Fig. 2. AND/OR graph of the sample product.

rical feasibility predicate gf(.) to denote whether or not an
assembly task is geometrically feasible. Third, an assembly
task should be mechanically feasible—it should be possible
to establish the attachments between the two subassemblies.
We use the mechanical feasibility predicate mf(.) to denote
whether or not an assembly task is mechanically feasible.
A task is said to be feasible if it is both geometrically and
mechanically feasible.

We define an AND/OR path in the graph as a set of
hyper-arcs with k (>0) elements and their corresponding
input and output nodes such that there are no two hyper-
arcs arising from the same node, and there is only one initial
node in the path. An AND/OR path that has k = N−1
nodes is called a Disassembly Tree (DT) of the product.
Note that, a DT should have {p1, p2,. . . , pN} as its initial
node and {p1} , {p2}, . . . , {pN} as its terminal nodes. A
DT with N–1 hyper-arcs (disassembly tasks), represents a
way of completely disassembling the product. There are
17 unique DTs corresponding to the AOG of the sample
product in Fig. 2; two of them are depicted in Fig. 3.

Note that only a subset of the tasks in the AOG is used
to completely disassemble the product. The relation be-
tween TPDs and DTs will become clearer in Section 4.1.
Broadly stated, one TPD may contain the precedence in-
formation of more than one DT. For instance, only two
different TPDs (please refer to Fig. 6) can be generated for
the example product in Fig. 1, whereas the same product
has 17 different DTs. This compactness of TPDs comes at
a price. Namely, we cannot differentiate the tasks of an
AOG that disassemble the same contacts but from differ-
ent subassemblies. Since we label the tasks that apply to
different subassemblies as the same task, we take the maxi-
mum of task durations over all tasks that we unified. From
these discussions it is clear that the studies in the ALB lit-
erature that employ TPDs to solve the problem may not
lead to an optimum solution for the overall problem be-
cause of two reasons. First, there is more than one TPD
for the product, i.e., one TPD does not contain all feasible
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Fig. 3. Two representative DTs of the sample product: (a) DT1; and (b) DT14.

precedence relations; or second, as mentioned above, when
we unify the tasks we take the maximum of the durations so
that even if a single TPD would contain all feasible prece-
dence relations, it will impose higher task times. One of our
main contributions in this paper is to prove this important
property (by the theorem of suboptimality in the following
sections).

2.2. The DALB using an AOG

We now define the DALB using the concepts introduced
in the previous section. Given: (i) a product with a list of
parts (or components); (ii) the tasks required to completely
disassemble the product; (iii) task times (including time to
unfasten the fasteners); and (iv) the precedence relations
among them, the problem is to allocate these tasks to a
sequence of stations such that some performance measure is
optimized. In our case, we minimize the number of stations
for a given cycle time.

There are numerous ways of completely disassembling a
product. We generate the DTs to consider all these possi-
bilities. Note that the ALB or DALB problem with a given
TPD can be solved using procedures (exact or heuristic)
available in the literature. This has been the standard ap-
proach to solving the ALB problem for the last 50 years.
However, this approach may lead to suboptimality if all
possible DTs are not considered. Hence, the optimization
problem defined in this paper ranges over all DTs, in con-
trast to the optimization problem defined in the literature
for a given TPD.

A typical AOG shows all the possible subassemblies
(not precedence relations among the disassembly tasks),
whereas a DT contains information about the tasks needed
to completely disassemble the product. In order to effec-
tively formulate the DALB problem, we introduce another
graph called a Transformed AOG (TAOG); this is a mod-
ified version of an AOG containing full information on
all the DTs (i.e., an AOG with explicit information on
the precedence relations between tasks). There are sev-
eral graphs (DT and disassembly graphs) that represent
assembly/disassembly-related information. The term DT
(Johnson and Wang, 1995, 1998; Krikke et al., 1998) is
used to refer to a Bill of Materials (BOM) structure of the
product. Hence, it does not have any direct relation to an
AOG. A disassembly graph (Lambert, 1997, 2003) is the
same as an AOG—another name for the same concept. A

TAOG is an alternative representation of AOG that makes
the IP formulation more efficient. Note that we also use
the term disassembly to represent alternative disassembly
sequences (not AOG or BOM).

A TAOG is formed as follows. Each node in the AOG
corresponding to a subassembly is represented by an arti-
ficial node in the TAOG and each hyper-arc in the AOG
is represented by a normal node in TAOG, while main-
taining the precedence relations between the subassem-
blies (artificial nodes) and the tasks (normal nodes). We
label the artificial nodes Ai s and normal nodes Bi s as
shown in Fig. 4. An artificial node may be preceded or
succeeded by more than one normal node. However, only
one of the predecessors and one of the successors should be
processed.

We identify two types of arcs in a TAOG: AND-type and
OR-type. The AND-type arc imposes the regular prece-
dence relation whereas the OR-type arc allows the selec-
tion of any of the follower arcs. To differentiate between
the AND-type and OR-type relations, we put a small curve
as an indicator of OR-type relations in Fig. 4. Using the
OR-type arcs in an AOG allows us to consider only a subset
of tasks to completely disassemble a product.

2.3. Relevant literature

The literature on the DALB problem is scarce and there
are only two relevant studies. Altekin et al. (2008) consider
a profit-oriented DALB problem. The authors define the
problem for an AOG that tries to answer both the dis-
assembly leveling and line balancing problems simultane-
ously. Merging tactical and operational level problems, the
authors construct a huge IP problem that cannot be solved
optimally even for very small products.

In the other study, Gungor and Gupta (2001a) define
the DALB problem for a Part Precedence Diagram (PPD).
They do not focus on methods of solving the problem; but
focus rather on uncertainties in the disassembly lines using
a solution procedure given in the literature.

Our study differs from the above studies in several re-
spects. First, we focus on a complete disassembly process
rather than partial disassembly, even though our proposed
methodology applies also to partial disassembly. Second,
we use a TAOG instead of the AOG or PPD. Third, we de-
velop a more compact and efficient IP formulation for the
DALB problem. Fourth, we also develop a DP formulation
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Fig. 4. The TAOG of the sample product.

for the same problem which turns out to be very efficient
in solving large problems. Fifth, using the suboptimality
theorem in Section 4, we show the derivation of well-known
TPDs from AOG that link the analyses of the ALB and
DALB problems.

From another perspective, our idea of using an AOG
instead of a TPD aims to improve the information about
the precedence relations and task times contained in the
TPD. There are a few attempts in the ALB literature in
the same vein, although without using an AOG. Specifi-
cally, Pinto et al. (1983) consider a TPD with tasks, each
of which can be performed in a number of ways. Their
only similarity to our study is due to the fact that there are
alternative ways of doing tasks. However, they do not con-
sider explicitly or implicitly an AOG. They solve the line
balancing problem together with the equipment selection
problem. Capacho and Pastor (2006) state that the solu-
tion of the line balancing problem with a given TPD can
be improved if sequence-independent tasks can be changed
into sequence-dependent tasks by incorporating appropri-
ate OR-type relations. This statement is intuitive and is
considered in similar studies, such as the disassembly se-
quencing problem. On the other hand, our idea of using
an AOG is merely to differentiate between subassembly in-
dependent tasks as opposed to sequence-dependent tasks
(Section 4). The authors do not propose any methodol-
ogy to implement their idea. Similarly, Scholl et al. (2006)
consider sequence-dependent tasks by relaxing some AND
type relations in a given precedence diagram. They de-
velop an IP formulation by using a TPD rather than an
AOG.

3. IP formulation of the problem

Notation

Ak = artificial nodes in AOG k = 0, 1,
2, . . . , h;

Bi = normal nodes in AOG i = 1, 2,
. . . , l;

dBi = task time (normal node) of Bi ;
P (Ak), P (Bi ) = immediate predecessor set of Ak, Bi ,

respectively;
S (Ak), S (Bi ) = immediate successor set of artificial

node Ak, Bi , respectively;
T = cycle time;
j = station index j = 1, 2, . . . , M.

Decision variables

xi j =
{

1 if task Bi is assigned to station j,
0 otherwise.

Auxiliary variables

f j =
{

1 if station j is opened,

0 otherwise.

zi =
{

1 if task Bi is performed,
0 otherwise.

The formulation of the problem can be given as

min
M∑

j=1

j × f j
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subject to
∑

i :Bi ∈S(Ak)

zi = 1 for k = 0, (1)

∑
i :Bi ∈S(Ak)

zi =
∑

i :Bi ∈P(Ak)

zi for k = 1, 2, . . . , h, (2)

M∑
j=1

xi j = zi for i = 1, 2, . . . , l, (3)

∑
i :Bi ∈P(Ak)

v∑
j=1

xi j ≥
∑

i :Bi ∈S(Ak)

xiv for k = 1, 2, . . . , h,

v = 1, 2, . . . , M, (4)
l∑

i=1

xi j × dBi ≤ T × f j for j = 1, 2, . . . , M, (5)

xi j ∈ {0, 1},
f j ∈ {0, 1}, (6)
zi ∈ {0, 1}.

Constraints (1) and (2) ensure that exactly one of the OR-
successors is selected. Hence, these two constraints force the
solution to be a set of tasks that constitute a DT. Constraint
(3) ensures that a selected task is assigned to one of the sta-
tions. This constraint resembles the occurrence constraints
in the ALB literature. Constraint (4) defines the precedence
relations. Since exactly one of the OR-predecessors and
one of the OR-successors of an artificial node is selected,
constraint (4) ensures that the selected successor is not as-
signed to a lower-indexed station than the one to which the
selected predecessor is assigned. Constraint (5) forces the
total workload of a station to be less than the cycle time,
if that station is opened. Constraint (6) indicates the 0–1
integer variables.

Note that this formulation is a general case of the tra-
ditional ALB problem in the sense that when the auxiliary
variable zi and the constraints (2) and (3) are eliminated,
and the constraints (4) and (5) are modified appropriately,
the IP formulation of the ALB problem is obtained.

Our formulation differs from the previous model of Al-
tekin et al. (2007) in the following respects. In their study the
authors solve the disassembly planning problem of deter-
mining the disassembly level that maximizes profits. They
consider an operational problem in which the decisions are
made frequently as new products arrive to be disassem-
bled or cost/profit parameters change. Hence, the authors
use costs, profits and inventory-related parameters as well
as task durations and an AOG. Their model essentially
generates partial disassembly decisions. Since their model
involves several decision variables, parameters and con-
straints, the resulting model can be optimally solved only
for very restrictive problem sizes.

In this study, however, we consider a strategic design
problem for highly standard product structures. We assume
that the level of disassembly (full disassembly or partial

disassembly) is already set for a family of products af-
ter economic and technical analyses. In other words, we
consider a system that will be operational for the foresee-
able future barring major changes in the environmental
factors.

There are also modeling differences between these two
studies. Cycle time is a decision variable in Altekin et al.
(2008) whereas it is a fixed parameter in our study. We use
a TAOG which enables us to incorporate a large number
of precedence relations in a very compact form, whereas
Altekin et al. (2008) uses the original AOG with its ad-
ditional decision variables (our artificial nodes are repre-
sented by the dummy decision variables in their study).
Their model can be cast to handle only the complete dis-
assembly case by adjusting the cost/profit parameters ap-
propriately, but it still has to consider all possible disas-
sembly levels, which diminishes the effectiveness of their
model in the complete disassembly case. Another distinc-
tion is that Altekin et al. (2008) works with both AOG and
a PPD, but we use the TAOG. This enables us to develop
a more efficient model for a specific problem with fewer
variables and constraints. For that reason, in our compu-
tational experiments we manage to solve reasonably large-
size problems. In summary, our study differs from Altekin
et al. (2008) in terms of objective, scope and the modeling
approach.

4. Theorem of suboptimality

Both the AOG and TPD include information about the
task precedence relations that should be considered in the
assembly/disassembly process. The tasks in the AOG are
defined based on the contacts broken and the current sub-
assembly, whereas the tasks in the TPD are defined only
in terms of the contacts. This leads to some tasks being
labeled differently in the AOG; however, in the TPD a task
that breaks a specific contact is labeled uniquely, indepen-
dent of the current subassembly. For instance, tasks τ 6 and
τ 8 in Fig. 5 break the same contacts (c4, c5), but in the
AOG, they are labeled as different tasks. Hence, we call the
tasks in the AOG Subassembly-Dependent tasks (SD tasks)
and the tasks in TPD Subassembly-Independent tasks
(SI tasks).
Theorem of suboptimality. The optimal solution to the DALB
(ALB) problem for a given TPD of a product (z∗

TPD) consti-
tutes an upper bound on the optimal solution to the DALB
(ALB) problem for the AOG (z∗

AOG) of the same product.

We can give the proof for the ALB problem. The same
proof also holds for the DALB problem since it is the reverse
of the ALB problem.

Proof. Since the main intuition of the theorem is discussed
in length in Section 2.1, we now provide a simple argument
to support it as follows.
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Fig. 5. Two subassemblies of the AOG in Fig. 2 and their GOC.

The ALB problem using a TPD (ALB-TPD) is actually a
problem of sequencing the SI tasks, defined many decades
ago (Held and Karp, 1962). Each SI task sequence gener-
ated from a given TPD corresponds to a specific design, one
of which characterizes the optimal solution. An AOG con-
tains all feasible ways to assemble/disassemble the product.
Hence, any SI task sequence obtained from the TPD of a
product has a corresponding SD task sequence in the AOG
of the same product. Then, it only remains to see that the
solution to the ALB problem characterized by an SI task
sequence uses an equal or larger number of stations than
the solution to the ALB problem characterized by the cor-
responding SD task sequence. However, when unifying a
few SD tasks and labeling them as the same SI task we
need to take the maximum of the durations of the SD tasks
as the duration of the corresponding SI task (since we lose
the information on which subassembly the relevant SI task
applies). Hence, the duration of the SI task is equal or larger
than the corresponding SD task, yielding a line design with
equal or more number of stations. �

4.1. The derivation of a TPD from the AOG

In this section we use an example to demonstrate the
derivation of TPDs from the AOG of a product. The dis-
cussion here also clarifies the impact of the theorem of
suboptimality.

Denote the set of DTs in the AOG as SDT. Re-label the
tasks in each DT such that the tasks that break the same
contacts are labeled as the same tasks. Denote the resulting
trees as DTm and the set of DTms asSDTm . Note that DTms
include SI task sequences. The two DTms that have exactly
the same tasks are called equitask DTms. To get a TPD
fromSDTm , we first form groups of equitask DTms and then
combine them into a single TPD for each group (let the
set of TPDs be STPD). For instance, suppose that DTm

1 and
DTm

2 consist of only two tasks, τ 1 and τ 2. Suppose further
that, τ 1 is the predecessor of τ 2 in DTm

1 , and the successor
of τ 2 in DTm

2 . Then, DTm
1 and DTm

2 are equitask DTms.
We combine DTm

1 and DTm
2 so that the resulting TPD has

two tasks, τ 1 and τ 2, without any precedence relation be-
tween each other. Note that if there are no equitask DTms,
each DTm corresponds to a TPD. For our sample prod-

uct, by examining the contacts, re-labeling the tasks and
combining the DTms, we obtain two TPDs as illustrated in
Fig. 6.

The theorem of suboptimality and the derivation of
TPDs from the AOG can also be seen in Fig. 7. We empha-
size the fact that in the ALB studies, researchers usually
solve the problem for a given TPD without actually know-
ing the product structure. Typically a process engineer pro-
vides this information (a specific TPD) to the analyst who
solves the line balancing problem. However, this selected
TPD may not be optimum considering all possible DTs
that can be generated from the product structure. Hence,
the resulting design proposed by the analyst (even though
the problem is solved by an exact algorithm) may not be
optimal for the actual problem (i.e., z∗

TPD ≥ z∗
AOG). In con-

trast, in this study we use the full information about all
possible TPDs for a given product structure (embedded in
the AOG). Hence, the proposed exact methods in this study
guarantee the optimality.

4.2. Numerical examples to compare the TPD and AOG
approaches

To illustrate the discussion above, we now take the AOG
and the two TPDs in Figs 2 and 6, respectively. Table 1
depicts task durations (for the SI tasks of TPD1 and TPD2)
which are set as the maximum of the durations of the corre-
sponding SD tasks. We solve the ALB-AOG and ALB-TPD
problems for cycle time (T) values varied from 22 to 90.
This range is determined between the maximum task dura-
tion (22) and 90 over which the ALB-AOG and ALB-TPD

b 

a 

c d 

23 

22 b 

a 

c 16 

20 

21 

TPD1 
TPD2 

Fig. 6. STPD obtained by combining equitask DTms of the sample
product.
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Fig. 7. A schematic view of the theorem of suboptimality.

problems yield the same designs. The solutions of the prob-
lems (numbers of stations) using the AOG, TPD1 and TPD2
for the ranged cycle time values are listed in Table 2. Note
that the number of stations found by using the AOG are
the optimal solutions to the problems.

The solutions of the 69 problems in Table 2 show that
using TPD1 and TPD2 as the precedence diagram to the
ALB-TPD problem results in optimal solutions for 28 and
25 problems, respectively. When both TPD1 and TPD2 are
used, the number of problems with optimal solutions in-
creases to 30. It is interesting to note that even if all TPDs
are considered, the AOG still performs better in 56% of
the instances. This is mainly due to the increase in the task
times of the SI tasks when they are unified. This example
clearly shows the superiority of using AOG instead of one
or a set of TPDs.

Furthermore, we also compare the AOG and TPD on a
real-life example from the literature (Lambert, 1997). This
is a ballpoint pen disassembly example used by several re-

searchers. The CAD drawing, GOC and AOG of the ball-
point pen are given in Figs 2 to 4 of Lambert’s paper on
pages 2514 and 2515. Following the analysis of the GOC,
we obtain the SI tasks and their durations from the original
SD tasks (see Table 3). These durations are proportional to
the task costs of Lambert (1997) (fourth column of Table
1). Using the idea given in Section 4.1, we obtain the TPD
in Fig. 8 from the AOG of the product (Fig. 4 in Lambert
1997). We then solve the ALB-AOG and ALB-TPD prob-
lems for cycle time (T) values varying from 80 to 525. This
range is determined between the maximum task duration
(80) and 525 over which the ALB-AOG and ALB-TPD
problems yield the same number of stations. The solutions
of the problems (i.e., number of stations) using the AOG
and TPD for the ranged cycle time values are listed in Table
4. The results indicate that the AOG performs better than
the TPD in 410 out of 445 cases (92.14% of the time the
AOG is superior to the TPD). Even in some cases, the TPD
leads to designs with 60% more stations.
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Table 1. Task duration times of the SD and SI tasks

AOG task

1 6 8 14 19 2 4 10 12 18 3 5 7 11 9 15 13 17 16 20 21 22 23

SD task duration 22 21 21 20 18 22 21 21 20 18 14 13 13 12 16 15 15 14 14 7 7 7 7
SI task duration 22 22 22 22 22 22 22 22 22 22 14 14 14 14 16 16 16 16 14 7 7 7 7
TPD task a a a a a B B B B B c c c c D D D D 16 20 21 22 23

5. The proposed DP approach

5.1. Partial AOG

In the DP formulation, we use a partial AOG denoted as
AOG ({Ai}). The partial AOG is a graph that includes a
subset of DTs with one of their final nodes being Ai . With
this partial AOG (or using a subset of DTs), we reduce the
permutation-size solution space to combination size. The
proposed DP approach is the extension of the well-known
formulation of Held and Karp (1962) with the partial AOG.

AOG ({Ai}) is obtained in two steps: (i) delete all the
normal and artificial nodes that precede node Ai ; and (ii)
delete all the other normal and artificial nodes that pre-
cede the normal nodes deleted in step 1 (i.e., we delete all
the nodes that do not succeed node Ai , either directly or
indirectly). This process results in the AOG ({Ai}) being a
graph such that one of the final nodes of any generated DT
is Ai . This is used in the DP recursion process.

Next, we extend the definition of a partial AOG as fol-
lows. Let AOG ({A1, A2, . . . , Ak}) be a graph obtained
in k steps: First, find AOG ({Ai1}) from the AOG, then
find AOG ({Ai1 , Ai2}) from AOG ({Ai1}), and then repeat
this procedure until finding the AOG ({Ai1 , Ai2 , . . . , Aik−1 ,
Aik}) from the AOG ({Ai1 , Ai2 , . . . , Aik−1}). Note that the
sequence of artificial nodes is arbitrary in this k-step pro-
cedure. By convention, AOG ({Ø}) = AOG, and AOG
({A0}) = Ø. In Fig. 9, some examples of partial AOGs
are displayed for the sample product. The dashed lines and
dashed nodes in the figure are merely intended to help the
reader follow the construction of partial AOGs, but other-
wise do not belong to the partial AOG.

Furthermore, let S = {A1, A2, . . . , Ak} be a set of ar-
tificial nodes. Final nodes of an AOG (S), denoted by
F(AOG(S)), are defined as the set of normal nodes that
do not precede any other normal node in AOG (S). For

instance, the nodes B20, B21, B22, B23 are the final nodes of
the AOG in Fig. 4.

5.2. Assembly task sequences

We define assembly task sequences σ = (B1, B2 , . . . , Bt)
that are obtained from the normal nodes (tasks) of the
AOG. This sequence is feasible if:

(i) P(Bi ) �= P(Bj ) for i �= j
(ii) |{B1, B2, . . . , Bi−1}∩P(P(Bi ))| = 1 for i = 2, 3, . . . , t,

where P(Bi ) is the artificial predecessor of the normal node
Bi , P(P(Bi )) is the normal predecessor of the artificial node
P(Bi ) and | . | is the cardinality operator defined on the sets.

The first condition above prevents a sequence with an
artificial node from having two OR-successors simultane-
ously. For instance, the sequence (B1, B4, B5) in Fig. 4 is
prohibited by this condition. Without the second condition,
two normal nodes that are not OR-successors of the same
artificial node but belong to the different DTs may exist in
a given sequence. Note that the sequence (B1, B4, B11, B13)
violates this condition. The second condition also guaran-
tees that the normal nodes follow the precedence relations.
For example, the sequence (B4, B11, B16, B20, B1, B21) is not
allowed because the nodes (tasks) are not in the correct or-
der, although they belong to the same DT.

Final nodes of a sequence, denoted by F(σ ), are defined
to be the nodes of the sequence such that the sequence still
remains feasible when they are removed from the sequence.
The tasks B20 and B21 in Fig. 4 are the final nodes of the
sequence (B1, B4, B11, B16, B20, B21). Associated with each
feasible sequence σ is a particular assignment of tasks to
the stations, (called the induced assignment for σ ). This is
obtained as follows. Assign as many tasks as possible from
the beginning of the sequence to the first station, as many as

Table 2. Number of stations in the solution using AOG and TPDs for different cycle time (T) values

Number of stations Number of stations Number of stations

T AOG TPD1 TPD2 T AOG TPD1 TPD2 T AOG TPD1 TPD2

22–27 4 5 5 30–34 3 3 4 44–63 2 2 2
28 3 5 4 35 2 3 4 64–85 1 2 2
29 3 4 4 36–43 2 3 3 86–87 1 2 1

88–90 1 1 1
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Table 3. Task duration times of the SD and SI tasks

AOG task

a c B j s d g L Q e m p F h I k o N r t

SD task duration 10 20 15 55 55 25 40 65 45 30 70 40 35 45 50 60 80 75 50 60
SI task duration 20 20 55 55 55 65 65 65 45 70 70 70 50 50 50 80 75 50 60
TPD task 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 6 7 8 9

possible from the beginning of the remaining subsequence
to the second station, and so on, while not violating the cy-
cle time (T) constraint. Intuitively, the induced assignment
for a sequence is the optimal assignment. If the induced
assignment for σ requires r stations and w(r ) is the sum
of durations of the tasks assigned to the last station, the
quantity cσ = r − 1 + w(r )/T is a measure of the “cost” of
executing σ .

If a feasible sequence σ ∗ is formed by appending a task
Bt+1 to the end of σ , then:

cσ∗ = cσ + �(cσ , dBt+1 ),

where

�(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�x + y/T	 − x + y/T if �x	 < �x + y/T	
< x + y/T,

y/T if �x + y/T	 = �x	 or �x + y/T	
= x + y/T,

(7)

where �x	 denotes the largest integer smaller than or equal
to x.

The above equation can be interpreted as follows; if the
unused idle time in the last station of the induced assign-
ment σ is greater than or equal to dBt+1 , then � = dBt+1 /T;
otherwise, a new station is opened. Hence, the unused idle
time is added to dBt+1 /T in the computation of �.

We should further point out the fact that there is a nat-
ural correspondence between partial AOGs and feasible
sequences defined by the below two mappings:

G(σ ) = {AOG(S)|F(σ ) = F(AOG(S))},
G−1(AOG(S)) = {σ |G(σ ) = AOG(S)}.

1 

3 

4 

5 

6 

2 

7 

9 

8 

Fig. 8. TPD for the product in Lambert (1997).

Note that G is a one-to-many mapping. In other words,
for an AOG(S) the number of feasible sequences is greater
than or equal to one, while for each feasible sequence there
is only one AOG(S). We define the following cost of each
partial AOG(S) as the cost of the sequence that has the
minimum cost over all the sequences to be obtained from
that partial graph:

C(AOG (S)) = min
σ∈G−1(AOG(S))

cσ . (8)

5.3. The proposed DP approach

From the discussions in the previous sections, it follows that
solving the DALB-AOG problem is equivalent to finding
C(AOG (Ø)). Furthermore, the minimum number of sta-
tions required for the disassembly line to perform the com-
plete disassembly of the product is 
C(AOG(Ø)�, where

x� denotes the smallest integer greater than or equal to x.

Let Bi be the last task of the final node of AOG(Ø). The
optimum solution of the problem is obtained by choosing
the DT with the minimum cost over all the sequences in
which the last task is Bi . A graph is used to generate the
rest of the solution. This graph called AOG(Ø∪P(Bi )) is
developed in such a way that all its tasks belong to the same
DT of the AOG(Ø) with Bi . This procedure is repeated
until AOG{A0} is obtained. C(AOG(S)) can be calculated
by the following recursion using Equations (7) and (8):

C(AOG (S)) (9)

=

⎧⎪⎨
⎪⎩

0 for S = {A0}
min

Bi ∈F(AOG(S))
{C(AOG(S ∪ P(Bi ))) + �(C(AOG(S∪

P(Bi ))), dBi )} for S �= {A0}.

Table 4. Number of stations in the solution using AOG and
TPDs for different cycle time (T) values

Number of Number of Number of
stations stations stations

T AOG TPD T AOG TPD T AOG TPD

80–89 7 8 115–119 4 6 215–264 2 3
90–99 6 8 120–134 4 5 265–414 2 2
100–104 5 8 135–144 4 4 415–524 1 2
105–109 5 7 145–179 3 4 >525 1 1
110–114 5 6 180–214 3 3
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Fig. 9. Partial AOGs obtained from the AOG of the sample product in Fig. 4.
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The recurrence relation in Equation (9) implies that if the
solution of the ALB-AOG problem for an AOG(S) yields
a sequence of t tasks, the solution of the AOG(S∪P(Bi ))
yields a sequence of t–1 tasks, where Bi ∈ F(AOG(S)). In
other words, the kth stage of the DP formulation is the
set of AOG(S)s that are solved to generate the sequences
with (N − 1 − k) tasks, where N is the number of compo-
nents in the product. Hence, there are a total of N stages,
together with the stage 0, in the solution process of the
problem. Stage 0 has only one state, which is AOG(Ø).
Similarly, the final stage (stage N–1) has only one state,
which is AOG({A0}). The number of states in the other
stages depends on both the number of components and the
geometry of the product.

6. Computational results

In this section, we compare the two exact methods (IP and
DP) by solving several instances of the DALB-AOG prob-
lem. Unlike the ALB problem, there are no test problems
in the literature for the DALB problem that can be used for
benchmarking purposes. Hence, we have to generate the
problem sets for DALB.

6.1. Benchmark problem generation scheme

There are two types of tasks in the AOG: sequential and
parallel tasks. Sequential tasks disassemble only one part
from the subassembly whereas parallel tasks take apart a
subassembly into two, each of which has at least two parts.
Hence, a sequential task precedes at most one task whereas
a parallel task precedes exactly two tasks. For example,
the nodes B9, B13, B15, B16 and B17 in Fig. 4 are the paral-
lel tasks while the others are the sequential tasks. Parallel
tasks are common in AOGs and this makes the DALB-
AOG problem more difficult to solve due to the larger
number of AOG alternatives. On the other hand, having
only sequential tasks in the AOG makes the problem more
manageable to handle. In this study, we use only sequential
tasks to keep the computational times as low as possible.

Another factor that affects solvability (or difficulty level)
of the DALB problem is the size of the AOG. Recall that
the size of AOG depends on both the geometry and number
of components of the product. The number of components
defines the number of tasks (normal nodes) in the solution
of the problem. Since the main assumption of the AOG
is that each task disassembles a subassembly into exactly
two subassemblies or components, the number of tasks in
the solution is one less than the number of components
(or parts) in the product. For example, all of the AOGs in
Fig. 10 belong to the products having N + 1 components.

Even though the number of parts can be easily incorpo-
rated as a problem parameter, the part geometry is difficult
to quantify to determine the size of the AOG. In this study,
we define two parameters: the number of artificial nodes

at each level in the AOG, denoted by a, and the number
of tasks (normal nodes) for each artificial node, denoted
by t, where, to make the terminology understandable, the
level of an artificial node is defined as the number of artifi-
cial nodes preceding it (Fig. 10). The parameter a can vary
from one level to another. The parameter t can vary even
within a single level as well as between levels. In our experi-
ments, we take them to be equal to each other both at each
level and in each single level in order to standardize the
AOGs so that researchers can easily compare their findings
in future studies. The only exception is that the parameter
t does not define the number of normal nodes for the first
and the last a artificial nodes (i.e., A0, Aan−(a−1), Aan−(a−2),
. . . , Aan−1, Aan). In Figs 10(a) and (c), the parameter a =
3, whereas in Fig. 10(b), a = 5. In Figs 10(a) and (b), the
parameter t = 1, whereas in Fig. 10(c), t = 2. When t = 1,
the generation of AOGs is straightforward (see Figs 10(a)
and (b)). However, when t >1, say x, we generate AOGs as
follows: assign the successors of the artificial nodes at level
y to the artificial nodes at level y + 1 one by one. That is, the
first successor of the first artificial node at level y precedes
the first artificial node at level y + 1, the second successor
precedes the second artificial node, etc. After the first arti-
ficial node at level y is connected to the artificial node at
y + 1, assign the first successor of the second artificial node
to the (x + 1)st artificial node, the second successor to the
(x + 2)nd artificial node, and so on. Whenever no unas-
signed artificial nodes remain at level y + 1, we again start
from the first artificial node. For example, as displayed in
Fig. 10(c), t = 2. The first successor (B4) of the first artificial
node (A1) at level 1 precedes the first artificial node (A4)
at level 2; the second successor (B5) precedes the second
artificial node (A5); the first successor (B6) of the second
artificial node (A2) precedes the third artificial node (A6).
Then, the artificial nodes at level 2 are finished. Hence, the
second successor (B7) precedes the first artificial node (A4),
and so on.

Using these three parameters (i.e., a, t and N), the total
number of artificial nodes in the AOG of an N-part prod-
uct, together with the node A0, becomes a × (N − 2) + 1.
The total number of normal nodes is a × [t × (N − 3) + 2].
In our computational experiments we conclude that the
problem is solvable if it can be solved without exhaust-
ing the memory and within 10 minutes of CPU time on a
Pentium 4 Processor with 2.66 GHz using 512 MB RAM.

6.2. The DP solution

First, we discuss the use of the parameters N, a and t in
the DP formulation. Note that the number of states in each
stage is equal to a. This is because the (normal) nodes that
are successors of the same artificial node yield the same
partial AOG in stage k + 1 when selected among the fi-
nal nodes in stage k. However, the number of states is one
for the first and the last stage. Parameter t determines the
number of connections between the states of the successive
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Fig. 10. Sample AOGs to illustrate the experiment: (a) a = 3, t = 1; (b) a = 5, t = 1; and (c) a = 3, t = 2.
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Table 5. Solvable size of the AOGs without parallelism by the DP approach

Number of
artificial nodes

at each level (a)

Number of
tasks for each

artificial node (t)

Maximum
solvable number

of parts (N)

Total number of
tasks (normal
nodes in AOG)

Stopping
criteria

3 1 249 744 OM
2 98 576 OM
3 87 762 TR
5 67 966 TR

10 38 1056 TR
4 1 225 896 OM

2 74 576 OM
3 64 740 TR
5 48 908 TR

10 27 968 TR
5 1 206 1025 OM

2 60 580 OM
3 53 760 OM
5 35 810 TR

10 21 910 TR
10 1 159 1580 OM

2 32 600 OM
3 24 650 TR
5 17 720 TR

10 12 920 TR

stages. That is, each state in stage k is connected with t
states in stage k + 1. The above discussion implies that if a
unit of memory space is assigned to each state, a total of
(N − 2) × a + 2 memory spaces are required. The compu-
tational requirements consist of a × [(N − 3) × t + 2] op-
erations. It is a + (N − 3) × t + 1 for the second phase to
find the optimal path. This is valid under the assumption
that a and t are independent of N. However, this does
not actually hold true in practice, leading to an excessive
number of computational requirements (non-polynomial)
of the DP. In our case, we assume independence to keep the
computational times manageable.

In practice, since it is always desirable to solve large-size
products, we first investigate the solvable sizes of the prob-
lem (N) for given values of a and t. As depicted in Table 5,
the parameter t = 1, 2, 3, 5 and 10. The parameter a =
3, 4, 5 and 10. For each combination of these two param-
eters, we run the DP algorithm as many times as possible
until the problem instance cannot be solved to optimality.
The stopping criteria used in the experiments are given in
the right-hand column in the table; OM stands for out-of-
memory and TR denotes the failure of time requirements.
The following observations are made in the experiments.

1. When a increases, the solvable size of the problem de-
creases due to the fact that as a increases, the number of
states increases. This also implies that when the number
of feasible subassemblies increases, i.e., when the prod-
uct geometry is highly compact, it takes more time to
solve the problem.

2. When t increases, the solvable size of the problem de-
creases due to the increased number of computations.

3. All the parameters (a, t and N) have linear (polynomial)
effects on the DP solution except for when t = 1.

4. The proposed DP approach can solve problems with N
ranging from 30 to 60. This is a remarkable performance
considering the “curse of dimensionality” property of
DP approaches.

The above results are valid for any cycle time and task
duration values, since time complexity of the proposed DP
approach does not depend on these parameters.

6.3. The IP approach

We used CPLEX 7.5 to solve the IP model. CPLEX em-
ploys some fathoming techniques to expedite the solution
process. Since the fathoming process is highly dependent
on task durations and cycle time, the solvable size of the
problem by CPLEX is affected by the data set. This means
that, unlike the DP approach, for a given AOG, the prob-
lem solution time changes as a function of task durations
and cycle time. Hence, in the IP case we have to generate a
number of problem instances (minimum five independent
replications) for a given AOG to assess the performance.
Again, a 600 seconds CPU time is taken as the stopping
criterion. Table 6 shows the results.

The first observation from Table 6 is that the IP formu-
lation is not as successful as the DP formulation. The main
reason that the solution time increases exponentially is due
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Table 6. Solvable problem sizes with the IP approach

Number of artificial
nodes at each

level (a)

Number of tasks
for each artificial

node (t)

Maximum
solvable number

of parts

3 1 30
2 30
3 30
5 30

10 30
4 1 25

2 25
3 25
5 25

10 25
5 1 25

2 20
3 20
5 20
10 20

10 1 25
2 20
3 20
5 20

10 20

to the increase in the number of constraints of the IP for-
mulation. This is true even if the number of variables in the
IP formulation is a polynomial function of N, in the order
of O(N2). In contrast, however, the number of stages and
the computation time in the DP formulation increases in
the order of O(N).

Unlike the DP case, t and a do not affect the efficiency
of the IP formulation as much as the parameter N. Our
analysis indicates that the robustness of CPU time in these
two parameters is due to two reasons. First, N increases
the number of variables by O(N2), but a and t increase
the number of variables by O(a) and O(t). Second, while
N affects the constraints given in Equations (3), (4) and
(5), the parameter t does not affect any constraint, and
parameter a only affects the constraints in Equations (2)
and (4).

7. Conclusion and future research

In this paper, we study the DALB problem and develop
IP and DP-based formulations. We also prove the theorem
of suboptimality by which we show that the well-known
TPDs in the line balancing literature can be obtained from
an AOG and the resulting solution using AOG is (poten-
tially) better than the traditional ALB solution using a TPD
in the literature. Our extensive computational experiments
indicate that the DP approach performs better than the IP
approach in terms of the solvable sizes of the problem.

We propose five further research directions. First, one of
the main assumptions in the DALB literature is that each
disassembly task generates two subassemblies. Even though
this assumption reduces the size of the AOG, it increases
the effort needed to solve the DALB problem. This assump-
tion can be relaxed to represent disassembly processes in
a realistic way. Second, the OR-type of precedence rela-
tions can be considered in the derivation of TPDs from
the AOG. This is a non-trivial extension that may require
some significant work. In our study we used AOGs having
only sequential tasks and no parallel tasks. To generalize
from the conclusions, it would be important to consider
AOGs with parallel tasks. Hence, as the third research di-
rection, it might be interesting to test the DP and IP for-
mulations on general AOGs. Fourth, in the disassembly
process, task times when parts are in a poor state may be
longer than for standard parts. This aspect should be explic-
itly modeled with stochastic task times as a separate study.
Finally, it is important to implement the proposed method-
ologies in practice to assess the actual performance of the
models.
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