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An affine manifold is a manifold with a distinguished
system of affine coordinates, namely, an open covering by
charts which map homeomorphically onto open sets in an
affine space E such that on overlapping charts the homeo-
morphisms differ by an affine automorphism of E. Some,
but certainly not all, affine manifolds arise as quotients Ω/Γ
of a domain in E by a discrete group Γ of affine trans-
formations acting properly and freely. In that case we
identify Ω with a covering space of the affine manifold.
If Ω—E, then we say the affine manifold is complete. In
general, however, there is only a local homeomorphism of
the universal covering into E, which is equivariant with
respect to a certain affine representation of the fundamental
group. The image of this representation is a certain sub-
group of the affine group on E, is called the affine holonomy
and is well defined up to conjugacy in the affine group.
See Fried, Goldman, and Hirsch.

THEOREM. There exists a compact affine manifold M satisfying
the following conditions:

(1) M is the quotient of a proper convex domain which is not
a convex cone.

(2) M is incomplete and the affine holonomy group leaves in-
variant no proper affine subspace.

The example we give will be three-dimensional (it is a torus
bundle over the circle); by taking products with compact complete
manifolds, we obtain similar examples in all dimensions greater than
two. The affine holonomy group Γ will be solvable; by Fried,
Goldman, and Hirsch [3] condition (2) cannot occur if Γ contains a
nilpotent subgroup of finite index—hence there cannot be any two-
dimensional examples. There was some hope that the affine holo-
nomy of a compact incomplete affine manifold would necessarily
leave invariant an affine subspace; verifying this for similarity
structures is the key step in the recent classification of closed simi-
larity manifolds by David Fried [2].

There has also been some work proving, under various hypo-
theses, that the universal covering of a compact affine manifold, if
it is convex, must be a convex cone. If in the universal cover, no
geodesic extends infinitely in both directions, it follows from result
of Jacques Vey, that the universal cover must be a cone.
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Finally, the above example leads immediately to another some-
what unusual example: if Ω is the convex universal covering of M
above, then the holonomy group Γ acts properly and freely on the
interior of the complement of Ω as well; thus we obtain a new af-
fine manifold int(i? — Ω)/Γ, which is compact, and has for its uni-
versal covering a concave domain which is not the complement of
an affine subspace.

THE EXAMPLES. Consider a parabola in the plane R2, say the
one given by y2 — 2x = 0. Then the group G' of orientation-preserv-
ing affine transformations preserving it is the two-dimensional group
of affine maps

(s, 16 R) .

(Here the square matrix denotes the linear part and the collumn
vector denotes the translational part of the specified affine map). It
is easy to check that G' is nonabelian, and acts simply transitively
on each of the two open sets

0
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0+ = {(x, VW - 2x > 0}
0_ - {(a?, y)\t - 2x < 0} .

The set 0+ is convex although it is not a cone. This should be con-
trasted to the result of J. L. Koszul [4] that a convex domain in
affine space upon which a unimodular group of affine transforma-
tions acts transitively must be a cone.

To obtain a compact affine manifold it is necessary to consider
the domains 0+xR and 0-xR in Rz. To do this we add a one-para-
meter group of translations in the new direction, as well as modify
G' so as to make the nonunipotent one-parameter subgroup (t = 0)
exponentially contract in the new direction. Specifically, consider
the group G of affine transformations of R3 given by

(s, t,ueR)

Clearly G acts simply transitively on 0+xR and 0_ x R. It is easily
checked that G is isomorphic to the Lorentz group E(l, 1) which
admits discrete cocompact subgroups Γ, none of which have nilpot-
ent subgroups of finite index.

Since G acts simply transitively on 0+ x R (resp. 0_ x R) sub-
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groups Γ as above act properly and freely; the quotient 0+ x R/Γ
(resp. 0- x R/Γ) is a compact affine manifold of dimension three hav-
ing solvable fundamental group. The rest of the assertions in the
theorem follow immediately, taking M= {0+xR)/Γ.

The affine manifold M should be contrasted with the following
theorem of J. Vey [5]:

THEOREM {Vey). Let Ω be a convex domain in E and let Γ be
a group of affine transformations preserving Ω such that Ω/Γ is
compact {but not necessarily Hausdorff). Suppose

(A) Ω contains no complete line
and one of

(B) Ω/Γ is Hausdorff and Γ is discrete
(C) Ω contains an open cone.

Then Ω is an open cone.

The domain Ω — 0+ satisfies (A) but neither (B) nor (C) (taking
Γ = G') and is not an open cone; similarly the domain Ω = 0+xR
satisfies (B) but neither (A) or (C) and is not an open cone. Hence
Vey's result is best possible. (Actually, the conclusion of Vey's
theorem follows from just hypothesis (C)—for every convex domain
is a product Ω'xRk where Ω' satisfies (A); the result for Ω' then
implies the result for Ω'xRh.)

It is interesting to vary to group G with a parameter p. By
considering the parabola py2 — 2x — 0 instead, p Φ 0, we may replace
the group G by the group Gp consisting of the affine maps

2

t (β, t,ueR)

u

Since all parabolas are affinely equivalent, the groups Gp{p Φ 0) are
all conjugate subgroups of the affine group. However, as p —> 0,
the groups GP converge to an isomorphic group Go which acts simply
transitively on each of the half-spaces which compose the comple-
ment of the affine subspace x = 0. Choosing a discrete subgroup Γ
as above, we obtain still another affine structure on the compact
3-manifold M. Notice as p varies from positive to negative, the
affine manifold 0+xR/Γ continuously deforms to the affine manifold
O-XR/Γ, passing through the structure obtained from Go.

It is possible to deform the group Go in another way. Let
G0)X{xeR) be the group of affine transformations
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For λ Φ 0, this group acts simply transitively on a half-space Ω.
For λ = 2, the group G0>λ is just the group Go above. By taking
discrete cocompact subgroups Γ, we obtain more affine manifolds
(all of which are homeomorphic) Ω/Γ. For different values of λ
these affine structures are distinct.

For more examples of affine structures on these manifolds, the
reader is referred to the introduction to Auslander [1], and Fried,
Goldman, and Hirsch [3].

Finally we note that most of these examples are "topologically
conjugate," i.e., there is a homeomorphism of R3 conjugating one
group to another. For example, GOiλ and G0>μ are conjugate under
the Holder continuous map (x, y, z) -> (xμ/\ y, z), at least if λ and μ
have the same sign. All the groups Gp are conjugate to Go under
the algebraic morphism (x, y, z) —> (x — p/2y2, y, z). Thus the affine
manifolds 0+/Γ and 0_/Γ are algebraically equivalent although the
behavior of geodesies on them is quite different.
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