
Two Experiments on Learning Probabilistic
Dependency Grammars from Corpora

Glenn Carroll and Eugene Charniak*

Department of Computer Science

Brown University

Providence RI 02912

Introduction
We present a scheme for learning prohabilistic depen-
dency grammars from positive training examples plus
constraints on rules. In particular we present the results
of two experiments. The first, in which the constraints
were minimal, was unsuccessful. The second, with sig-
nificant constraints, was successful within the bounds of
the task we had set.

We will explicate dependency grammars in Section 2.
For the moment we simply note that they are a very
restricted class of grammars which do not fit exactly
into the Chomsky hierarchy, but whose appearance is
most like the context-free grammars.

We assume that the goal of learning a context-free
grammar needs no justification. The problem has at-
tracted a fair amount of attention, ([1,4] are good sur-
veys.) but no good solutions have been found. Our
choice of learning from only positive training examples
needs only a little more justification. Obviously, if it
is possible, a scheme which only uses positive train-
ing examples is preferable in that one can simply give
the learner the examples (henceforth called the "cor-
pus") and no further work is required in the form of
a "teacher." That such a scheme may be possible is
suggested by the fact that children seem to learn lan-
guages with little correction to their speech. To keep
things simple, initially, we assume that the corpus con-
tains parts of speech, and not words. That is, the input
is a tagged corpus, minus the words.

We have chosen to learn probabilisiic grammars be-
cause the scheme we use requires it. Such a grammar
assigns a probability to every string in the language. As
we will see, our algorithm tries to find a probabilistic de-
pendency grammar which makes the training-corpus as
likely as possible. The idea is that rules which gener-
ate sentences not in the language, but which neverthe-
less have non-zero probability will make the probabil-
ity assigned to the corpus lower than need be. (Since
the incorrect sentences would have non-zero probabil-
ity, a better scheme which did not have the rule could,
in effect, divide up this probability among the correct

*We would like to thank Mark Johnson for many useful
discussions. This research was supported in part by NSF
contr~t IRI-8911122 and ONR contract N0014-91-J-1202.

sentences, making the ones found in the corpus more
likely.)

Moving down one layer of detail, our scheme works
as follows:

0. Divide the corpus into two parts, hereafter called the
rule corpus and the training corpus.

1. For all of the sentences in the rule corpus, generate
all rules which might be used to generate (and/or
parse) the sentence, subject to constraints which we
will specify later.

2. Estimate the probabilities for the rules.

3. Using the training corpus, improve our estimate of
the probabilities.

4. Delete all rules with probability ~ 6 for some small
6. What remains is the grammar.

Steps 0 and 4 are trivial. Step 3 is not, but the tech-
nology is now reasonably well established. We have used
the inside-outside algorithm [2,5]. This is an iterative
algorithm which takes a context-free grammar and ini-
tial probability estimate and sees how often each rule
would be used in generating the training corpus. These
counts then form the basis of an improved estimate of
rule probabilities. These probabilities are then used to
get an improved count and the process repeats. At each
iteration the inside-outside algorithm is guaranteed to
lower (or keep constant) the estimated cross-entropy
(the negative log of the probability assigned by the
model) of the text given the probabilistic context-free
grammar. Unfortunately, the entropy minimum found
need not be the global minimum. At the beginning of
this research we assumed that this would not be a prob-
lem. The first experiment shows that this assumption
is incorrect.

Returning to the outline of our scheme, we also need
to make an initial estimate for the probabilities. We
have adopted a scheme which uses the fact that the
possible rules are generated for each sentence (step 1).
It is possible (indeed likely) that a rule will be gener-
ated several times, each for a different sentence (or
different part of the same sentence). We keep a count
of how many times each rule is generated. Let Cr be the
count for rule r. Let RA be the set of rules with with

From: AAAI Technical Report WS-92-01. Compilation copyright © 1992, AAAI (www.aaai.org). All rights reserved.

She ate the hamburger with a fork

Figure 1: Informal dependency-grammar notation

non-terminal A on the left-hand side. Then the initial
probability estimate P~ for rule r ERA is given by

C,P’(r) E,icR, ~ C,j
(1)

At this point we have taken care of steps 2-4, leaving
only step 1 of our algorithm to be filled out. That is, of
course, where the difficulties arise.

Dependency Grammars and Their
Properties

The most obvious difficulty with step 1 is that there
are an unbounded number of rules which could lead
to a given sentence, given an unbounded set of non-
terminals. If we specify a finite set of non-terminals
then the set of rules is finite, but would be, in general,
very large. Thus we need some grammar schema which
will limit the number of applicable rules to some more
manageable number. The schema we adopt for the pur-
pose of this experiment is dependency grammar)

Informally, a dependency grammar produces a set of
terminals connected by a set of directed arcs -- one arc
for every terminal except the root terminal. See Fig-
ure 1. Formally, a dependency grammar is a 3-tuple
< S, N, R > where S is the start symbol for the rewrite
rules, N a set of terminal symbols, and R a set of rewrite
rules, where R is a subset of the set defined as follows:
{S ---, ~ I n E N) U {~ ---, an~3 I n E N, ~,/3 E F} where
F is a set of Strings of zero or more ~, for a E N. In stan-
dard linguistic usage, a bar, as in ~, indicates a function
from terminals and non-terminals to non-terminals. In
our usage, a bar indicates a function from terminals to
non-terminals. Such a rewrite system produces a tree
structure in the normal way. For the above example,
the tree structure would be as shown in Figure_

Since the set of non-terminals is restricted to {A I A E
N} U {S}, the number of rules which could be used to
generate a sentence is finite. To be more precise about
this, we will say that a context-free rule r conforms
to a sentence s (with respect to a set of rules R) if
is possible for any expansion of the right-hand side of r
(using the rules in R) to produce a sequence of terminals
found in s. Intuitively, a rule conforms if it can be used
in some parse of s. We then have the following theorem:

Theorem 1: A sentence of length n, consisting of
all distinct terminals will have n(2"-1 + 1) dependency
grammar rules which conform to it (with respect to the

1We got this idea from Martin Kay, who mentioned it to
Mark Johnson, who in turn mentioned it to us. Thanks to
both of them.

S

!
verb

She ate the hamburger

prep

with a fork

Figure 2: Tree-structure version of a dependency-
grammar parse

set of all dependency grammar rules on the terminals in
the sentence). (Proof is omitted.)

For example, Figure shows the 15 = 3(23-1+ 1) rules
conforming to the string "det noun verb". When not all
of the terminals are the same, then the number of dis-
tinct rules is less, but still grows quickly with sentence
length.

Ordering the Corpus
It should be clear that even restricting consideration
to dependency grammars, the algorithm described in
section 1 is not feasible. The first sentence picked at
random from a book one of the authors was reading
had 41 terminal symbols. The number of rules which
conform to such a sentence is

(41(24° q- 1) ~, 41((21°)4) ~, 40((103)4) ~ 4.1013

It is also true that generating all conforming rules for
the entire corpus (as was implied by the algorithm in
Section 1) will generate a large number of rules. We
need some way to trim the number of rules we will con-
sider.

The scheme we present starts from the observation
that children are exposed to simple language before see-
ing more complex language. Thus it occurred to us that
we might order the sentences in terms of their length,2

and apply the above learning algorithm iteratively, over
groups of successively longer sentences. The idea is
that the learning algorithm will make decisions about
which simple rules to keep--and which simple rules to
discard--after seeing only a small subset of the corpus.
Once a rule has been rejected, we do not allow it to be
re-constructed later on in the learning process. Thus, as
we move to more complex sentences, we need only gen-
erate new rules which conform to the sentences, given
our restricted set of rules. We need never generate all
10is rules for the example above, nor need we ever try
and parse a sentence using such an enormous rule set.

2One might also order by "complexity" measures other
than length, such as the use of comparatively rare parts of
speech. Currently we are only using length.

2

m
S ~ det
S ~ noun

S ~ verb
det ~ det
det ---, det noun
det ~ det verb
det ---, det noun verb

noun ---} noun
noun ~ det noun
noun ---, noun verb
noun ~ det noun verb
verb ~ verb
verb ~ det verb
verb ~ noun verb
verb ---, det noun verb

Figure 3: The 15 rules which conform to "det noun verb"

1.0 S ~ verb

.2 verb --* verb

.4 verb ~ noun verb

.4 verb ~ verb noun

.5 noun .-~ noun

.5 noun ---* det noun

Figure 5: Intended solution for the simple corpus

1.0 S ~ verb

.2 verb ---, verb

.2 verb --~ noun verb

.2 verb ~ verb noun

.2 verb ~ det no-5"a~ verb

.2 verb ~ verb det noun

Figure 6: Solution actually found for the simple corpus

To further reduce the number of rules, we added an arbi-
trary limit on the number of symbols which can appear
on the right-hand side of a rule. With these restrictions
we anticipated that the number of rules suggested would
be kept to a manageable number.

An Example

To get some feel for what is involved in this algorithm,
consider the problem of inferring the dependency gram-
mar for the following toy corpus:

"noun verb" "verb noun" "verb"
"det noun verb" "verb det noun"

The program generated the 22 rules of Figure as
those which conform with the sentences of the corpus.
The probabilities there are those assigned by equation 1.
We expected that the program would eventually choose
rules (and probabilities) shown in Figure 5. In point
of fact, it turns out that there are two different gram-
mars which both assign an entropy of 1.054 bits/word

to the corpus. The second is shown in Figure 6. It was
this second grammar which our program found. It is
interesting, however, to see how it arrived at this result.

The reader will remember that the algorithm for ob-
taining the (locally) best probabilities for the rules
iterative. The cross-entropy of the corpus was calcu-
lated after every iteration. It decreased rapidly for 6
iterations, and then at at more leisurely pace for an-
other 14 iterations, until the decrease was less than the
.001 bits/word limit we imposed. Figure shows the
probabilities assigned to the rules after 0, 6, and 20 it-
erations. Note the probabilities after 6 iterations. All
of the rules which are in neither of the rule sets found
in Figures 5 or 6 have received zero probabilities. The
rules which appear in both sets have probability one,
and those which appear in one of the sets have proba-
bilities between those they assume in the two sets. To
put it another way, the algorithm effectively first nar-
rows the possible theories down to two, and then chooses
one over the other.

Upon thinking about this, we realized that it was
not a coincidence that there was a second equally good
grammar. Note that the preferred grammar had one
rule for each sentence. We will call such grammar a
"memorizing grammar." It is not too hard to see that a
memorizing grammar for a corpus will assign the high-
est probability of any probabilistic context-free gram-
mar for that corpus. 3

This is a problem, since memorizing grammars are
not very interesting. However, in our outline of the al-
gorithm in Section 1 we specified that it generates the
rules on one set of examples and evaluates the probabil-
ities on a disjoint set of examples from the same corpus.
What memorized one set, will, of course, not work on
the other, while the more general solution should do
fine. It is also the case that the limit on rule length will
inhibit the emergence of a memorizing grammar (pro-
vided that we have sentences of length greater than the
maximum rule length).

Experiment One
In both experiments we used the dependency grammar
of Figure 7 to randomly generate sentences until a cer-
tain number of words had been generated. In this way

3Although there may be other equally good grammars.

S
S
S
det

det
det
det
det
noun

noun

noun

noun

noun

noun

verb
verb
verb
verb
verb

verb

verb

RULE
--, det
"-’+ noun

-* verb
-* det

det noun
---* det verb
---* det noun verb
--* verb det
---* verb det nou’-"’~
---, noun
--* det noun
--* noun verb
-~ verb noun
---* det noun verb
-* verb det noun
--, verb
--* det verb
--+ noun verb

det noun verb
---* verb det

verb d-~
---* verb noun

0 ITERS
.181818
.363636
.454545
.250000
.25
.125
.125000
.125000
.125000
.333333
.166667
.166667
.166667
.083333
.083333
.384615
.076923
.153846
.076923
.076923
.076923
.153846

6 ITERS
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
0.0.
.781317
.218683
0.0
0.0
0.0
0.0
.20
0.0
.286749
.113251
.111803
0.0
.288197

20 ITERS
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
0.0
.998847
.001153
0.0
0.0
0.0
0.0
.20
0.0
.200461
.199539
.199539
0.0
.200461

Figure 4: The 22 rules which conform to the simple corpus

we created two sets of sentences with slightly more than
1000 words for the rule corpus, and 9000 words for the
training corpus. Each subset was sorted by length. The
goal, of course, was to see how close the learning algo-
rithm could come to the original grammar.

To keep things simple for the grammar learner, rules
were required to have fewer than five symbols on their
right-hand side, as the longest rule in the grammar of
Figure 7 had four symbols. The learning algorithm
worked as shown in Figure 8.

The algorithm deletes rules with low probability af-
ter a trial period in which they have time to "prove"
themselves by increasing in probability. To keep track
of a rule’s age, the algorithm assigns each terminal, t, a
"date", dr, which is the length of the shortest sentence
in which t appears. It also assigns dt to d~. Informally,
we say that a terminal or non-terminal e is part of (E)
a rule r if it appears on the right- or left-hand side of
the rule. A rule is eligible for deletion when:

] sentence I < 2 [rule - rhs] + max de (2)
¢Er

We have tried several variations on this decision crite-
rion, none of which have had any effect on the negative
results of this section.

As we have indicated, the results obtained by the al-
gorithm were uniformly awful. Figure 9 shows the eight
most probable expansions for ~ found by the system
after seeing sentences of up to length eight. The correct
rule, ~ -~pron, does not appear in the grammar at

all, and was in fact eliminated by the test of equation 2
earlier in the run.

If one really were only interested in reducing the cross
entropy of the corpus, then this grammar is not too bad,
with a cross entropy of 1.245 bits/word on the training
corpus sentences of length up to eight. However, it is not
the minimum, since the correct grammar, when trained
on these sentences, produced a cross entroy of 1.220
bits/word.

So the inside-outside algorithm did not find a global
minimum, but rather a local one. This set us to won-
dering if this was a fluke, or if, as seemed more likely
now, there might be lots of local minima. (This gram-
mar was sufficiently bizarre that it seemed unlikely that
it was somehow special.) If there were lots of local min-
ima then the particular grammar found would be very
sensitive to the initial probability estimates. To test
this, we took all of the rules generated from sentences
of length _< 8 and repeatedly assigned random probabil-
ities to them. For each assignment we trained the rules
and observed the resulting grammars. If there were lots
of local minima we should end up with lots of different
grammars. We classified two grammars as the same if
they had the same rules, and the rules for expanding
a particular non-terminal, when sorted by probability,
were in the same order. Of the 300 starting points tried,
we found 300 different local minima. It should also be
noted that none of the grammars found in the exper-
iment were the correct grammar. This indicates that

4

Figure
corpus

1.0 S --* =

1.0 ~ --* verb.

¯ 1 verb ---* verb
.05 verb --, noun verb
.05 verb -.* pron verb
.05 verb ---, verb noun
.05 verb ~ verb pron
.I verb ~ noun verb noun
.05 verb ~ pron verb noun
.05 verb ~ noun verb pron
.05 verb --* pron verb noun noun
.05 verb --* ~ verb ~ noun
.1 verb --* noun verb noun prep
¯ 1 verb --, pron verb noun prep
.1 verb ~ noun verb pron prep
.05 verb ~ noun verb prep
.05 verb -* pron verb prep
¯ 1 noun --* noun

B
.3 noun ~ det noun
.1 noun ---, det adjnoun
.2 noun --~ __det noun pr_._ep
.2 noun ~ det noun wh
.05 noun ~ noun prep
.05 noun --* noun wh

1.0 pron --~ pron

1.0 adj --* adj

1.0 det --* det

m
1.0 wh --* wh verb

.7 prep --* prep noun
.3 prep --* prep pron

7: Dependency grammar used to generate test

Loop for i from 2 until i > sentence-length-
stopping-point

¯ Add rules required for the sentences with length
i from the rule-creation subset.

¯ Estimate the probabilities for all (non-removed)
based upon all sentences of length _< i from.the
rule-training subset.

¯ Remove any rules with probability _< .001 if
equation 2 is true of the rule.

Figure 8: Flow of control for the learning algorithm

.220 pron ~ pron verb

.214 pron ---, prep pron

.139 pron ~ pron verb det
.118 ~ --* verb pron
.117 pron --~ det verb pron
.038 pron --* pron verb noun
.023 pron --* noun verb pron
.013 pron --~ pron verb det det

Figure 9: Some expansions for ~ found by the unre-
stricted system

lhs
noun O O O © © © © O

verb (9 O O o O O O

pron
O

0 X 0 0 0 0 0 0

det X 0 0 0 0 × 0 0

prep 0 (9 0 0 .o 0 0

adj 0
× 0 0 × 0 0 0 0

wh × 0 0 0 0 0 0 0

Figure I0: For each left-hand side, non-terminals al-
lowed on right

there are, in fact, a considerable number of local min-
ima, and that this is indeed a problem. Wyard [8] found
a similar problem with local minima in his genetic al-
gorithm approach.

In general, the incorrect grammars found in these ex-
periments are characterized by large numbers of long
rules (compared to the correct grammar)¯ Some gram-
mar learning schemes maximize not just the fit of the
grammar to the corpus, but that times a term intended
to represent the prior probability of the grammar, where
the latter goes down quickly with the complexity of the
grammar [3,7]. We are, in general, positively inclined
to such a move, and it might well help things here, but
at the moment we see no way to include such a number
in our calculations. (We did try a modification of the
initial probability estimate calculation in which longer
rules were given lower initial probabilities. This did
produce grammars with slightly shorter rules, but still
a very large number of rules, and overall the grammars
were equally bizarre.)

Experiment Two
Given the terrible results of experiment one, we decided
to place more restrictions on the grammar. In particu-
lar, we gave the system a table of what non-terminals
may appear on the right-hand side of a rule with a par-
ticular non-terminal on the left. (Because we are using
dependency grammar, the terminals are already fixed.)
Figure 10 has the left-hand side non-terminals on the
left. For each non-terminal on the right O indicates
that this dependency is used in the grammar (and is

therefore had to be allowed). A cross (×) indicates that
the dependency had to be disallowed for the correct
grammar to be learned. A dot (o) indicates an optional
constraint; the correct grammar could be learned with
or without it.

We started out cautiously, allowing only those de-
pendencies absolutely required by the correct grammar.
The parameter "sentence-length-stopping-point" of Fig-
ure 8 was set to 20. We found that the algorithm con-
verged on the correct grammar after sentences of length
14 or so, the exact number depending on the constraints,
but never higher than 15. We then discovered that
we could allow almost all dependencies, and still have
our procedure converge to the correct grammar, before
reaching the stopping point. Only the six indicated re-
strictions are, in fact, required for the grammar to be
learned correctly. Indeed it would make more sense to
talk about what constituents are not allowed, rather
than those which are. In this sense we have something
close in spirit to the "distituent grammar" of [6].

Having looked at the results of learning runs in which
the above constraints were violated, it is possible to as-
sign "purposes" to most of the above restrictions al-
though to what degree these are idiosyncratic to the
grammar at hand only further experimentation will
show. The restrictions on adjectives, determiners, and
wh prevent det, adj, and wh from being used as sub-
stitutes for noun when they are present in a sentence.
The restriction preventing verb in the expansion ofpron
prevents the strange rules of Figure 9.

We cannot make any claim that such restrictions are
"reasonable" in the sense that a child would necessarily
have them. However these restrictions were not com-
pletely arbitrary either. Obviously, a child has access
to semantic information which presumably influences
grammar selection. For example, suppose a child knows
that the color of an object depends on the object in
a way that the object does not depend on the color.
Obviously such information could not be input to our
program, but--extrapolating rather a lot--we could say
that the child has information that while an adjective
might depend on the noun, the reverse is not true. This
could be expressed, and looking across the line for ad-
jectives in Figure 10, we see that we do not allow nouns
and determiners to be part of adjective phrases.

For the moment, however, we justify these constraints
in more practical terms. They are not hard to think
up or specify, and as Figure 10 shows, it may not be
necessary to be all that accurate in their specification.

Future Research
There are three avenues for future work which immedi-
ately present themselves: (a) lessening the constraints
imposed upon the rules in experiment two, (b) trying
the algorithm on real corpora (e.g. the Brown Cor-
pus) and (c) finding and programming other grammar
schema. The import of the first two of these should be
obvious, the third requires discussion.

Although dependency grammar is used by some

grammarians, it has, in fact, severe limitations. To take
an example we immediately stumbled over, there does
not seem to be a good way to handle wh-movement
within the dependency grammar formalism. In unre-
stricted context-free grammars wh-movement is handled
using the so-called "slash categories". For example, re-
strictive relatives are handled with some rules such as:

NP "-* NP wh S/NP
S/NP ---* VP
S]NP .-., NP VP/NP

etc.

Here, of course, S/NP is to be understood as a non-
terminal which expands into an S missing an NP. The
observation that such dodges exist for a wide variety
of cases, and that the necessary context-free rules can
be generated automatically from a smaller set of rules,
engendered the explosion of work on context-free repre-
sentations for language.

Unfortunately, this dodge does not translate over into
dependency grammar. The trick requires two distinct
symbols for a sentence: S and S/NP. In dependency
grammar we use ’verb for S, hut there are no free non-
terminals to use for S/NP. We could, of course ignore
the difference between S and S/NP. This is what we did
in the grammar in Figure 7, but this is hardly a good
solution.

Naturally, the fact that dependency grammar seem-
ingly cannot handle wh-movement does not prevent us
looking for a dependency grammar for the Brown Cor-
pus. It simply means that the grammar is bound to
over-generate, and thus will not produce as low a cross-
entropy as one might otherwise obtain. So we still in-
tend to see what sort of grammar our algorithm finds.
However, we are also on the lookout for other grammar
schemas which have the desirable property of depen-
dency grammars (small numbers of conforming rules)
while being more robust in their handling of natural-
language idiosyncrasies.

References

1. ANGLUIN, D. AND SMITH, C. H. Inductive infer-
ence: theory and methods. Computing Surveys 153
(1983).

2. BAKER, J.K. Trainable grammars for speech recog-
nition. Presented at Proceedings of the Spring Con-
ference of the Acoustical Society of America (1979).

3. COOK, C. M., ROSENFELD, A. AND ARONSON, A.

R. Grammatical inference by hill climbing. Informa-
tional Sciences I0 (1976), 59-80.

4. Fu, K. S. AND BOOTH, T. L. Grammatical infer-
ence: introduction and survey, parts 1 and 2. IEEE
Transations on Systems Man and Cybernetics SMC-
5(1975), 95-111 and 409-423.

6

5. JELINEK, F., LAFFERTY, J. D. AND MERCER, R.
L. Basic methods of probabilistic context free gram-
mars. Continuous Speech Recognition Group IBM
T.J. Watson Research Center, 1991.

6. MAGERMAN, D. M. AND MARCUS, M. P. Parsing
a natural language using mutual information statis-
tics. Presented at Proceedings of the Eighth National
Conference on Arti~cial Intelligence (1990).

7. MUDE, A. V. DER AND WALKER, A. On the in-
ference of stochastic regular grammars. Presented at
Information and Control (1978).

8. WYARD, P. Context free grammar induction us-
ing genetic algorithms. Presented at Proceedings of
the 4th International Conference on Genetic Algo-
rithmss, San Mateo (1991).

