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Abstract. We present a secure two-factor authentication (TFA) scheme
based on the possession by the user of a password and a crypto-capable
device. Security is “end-to-end” in the sense that the attacker can attack
all parts of the system, including all communication links and any subset
of parties (servers, devices, client terminals), can learn users’ passwords,
and perform active and passive attacks, online and offline. In all cases
the scheme provides the highest attainable security bounds given the set
of compromised components. Our solution builds a TFA scheme using
any Device-Enhanced PAKE, defined by Jarecki et al., and any Short
Authenticated String (SAS) Message Authentication, defined by Vaude-
nay. We show an efficient instantiation the modular, generic construc-
tion we give is not PAKE-agnostic because it doesn’t even use PAKE,
but the instantiation of this scheme which instantiates DE-PAKE with
PTR+PAKE is PAKE-agnostic as you say of this modular construction
which utilizes any password-based client-server authentication method,
with or without reliance on public-key infrastructure. The security of the
proposed scheme is proven in a formal model that we formulate as an
extension of the traditional PAKE model.

We also report on a prototype implementation of our schemes, includ-
ing TLS-based and PKI-free variants, as well as several instantiations of
the SAS mechanism, all demonstrating the practicality of our approach.

1 Introduction

Passwords provide the dominant mechanism for electronic authentication, pro-
tecting a plethora of sensitive information. However, passwords are vulnerable to
both online and offline attacks. A network adversary can test password guesses
in online interactions with the server while an attacker who compromises the
authentication data stored by the server (i.e., a database of salted password
hashes) can mount an offline dictionary attack by testing each user’s authenti-
cation information against a dictionary of likely password choices. Offline dictio-
nary attacks are a major threat, routinely experienced by commercial vendors,
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and they lead to the compromise of billions of user accounts [6,7,12,15,17,20].
Moreover, because users often re-use their passwords across multiple services,
compromising one service typically also compromises user accounts at other
services.

Two-factor password authentication (TFA), where user U authenticates to
server S by “proving possession” of an auxiliary personal device D (e.g. a smart-
phone or a USB token) in addition to knowing her password, forms a common
defense against online password attacks as well as a second line of defense in
case of password leakage. A TFA scheme which uses a device that is not directly
connected to U’s client terminal C typically works as follows: D displays a short
one-time secret PIN, either received from S (e.g. using an SMS message) or com-
puted by D based on a key shared with S, and the user manually types the PIN
into client C in addition to her password. Examples of systems that are based on
such one-time PINs include SMS-based PINs, TOTP [10], HOTP [14], Google
Authenticator [4], FIDO U2F [2], and schemes in the literature such as [47].

Vulnerabilities of traditional TFA schemes. Existing TFA schemes, both
PIN-based and those that do not rely on PINs, e.g. [1,8], combine password
authentication and 2nd-factor authentication as separate authentication mech-
anisms leading to several limitations. Chief among these is that such TFA solu-
tions remain vulnerable to offline dictionary attacks upon server compromise in
the same way as non-TFA password authentication schemes (i.e. via exposure
of users’ salted hashes), thus perpetuating the main source of password leakage.
Moreover, existing TFA’s have several vulnerabilities against online attacks: (1)
The read-and-copy PIN-transfer is subject to a variety of eavesdropping attacks,
including SMS hijacking1, shoulder-surfing, PIN recording, client-side or device-
side attacks via keyloggers or screen scrapers, e.g. [43], and PIN phishing [16].
(2) The read-and-copy PIN-transfer allows only limited PIN entropy and while,
say, a 6-digit PIN is hard to guess, PIN guessing can be used in a large-scale
online attack against accounts whose passwords the attacker already collected,
e.g. [12,15,17,20]. For example, if the attacker obtains password information
for a large set of accounts, PINs are 6-digit long, and the attacker can try 10
PIN guesses per account, one expects a successful impersonation per 100,000
users. (3) Current PIN-based TFAs perform sequential authentication using the
password and the PIN, i.e. C sends the password to S (over TLS), S confirms
whether pwd is correct, and only then C sends to S the PIN retrieved from D.
This enables online password attacks without requiring PIN guessing or inter-
action with a device, thus voiding the effects of PIN on password-guessing or
password-confirmation online attacks.

Our Contributions. In this paper we aim to address the vulnerabilities of the
currently deployed TFA schemes by (1) introducing a precise security model for
TFA schemes capturing well-defined maximally-attainable security bounds, (2)

1 E.g., SIM card swap attacks [18] and SMS re-direction where PINs are diverted to
the attacker’s phone exploiting SS7 vulnerabilities [21]. The latter led to NIST’s
recent decision to deprecate SMS PINs as a TFA mechanism [19].
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exhibiting a practical TFA scheme which we prove to achieve the strong secu-
rity guaranteed by our formal model, and (3) prototyping several methods for
validating user’s possession of the secondary authentication factor. We expand
on each of these aspects next.

TFA Security Model with End-to-End Security. We introduce a Two-
Factor Authenticated Key Exchange (TFA-KE) model in which a user authenti-
cates to server S by (1) entering a password into client terminal C and (2) proving
possession of a personal device D which forms the second authenticator factor.
In the TFA-KE model, possession of D is proved by the user confirming in the
device equality of a t-bit checksum displayed by D with a checksum displayed by
C. Following [50] (see below), this implements a t-bit C-to-D user-authenticated
channel, which confirms that the same person is in control of client C and device
D. This channel authentication requirement is weaker than the private channel
required by current PIN-based TFAs and, as we show, it allows TFA schemes to
be both more secure and easier to use.

The TFA-KE model, that we define as an extension of the standard Password-
Authenticated Key Exchange (PAKE) [24] and the Device-Enhanced PAKE
(DE-PAKE) [37] models, captures what we call end-to-end security by allow-
ing the adversary to control all communication channels and compromise any
protocol party. For each subset of compromised parties, the model specifies best-
possible security bounds, leaving inevitable (but costly) exhaustive online guess-
ing attacks as the only feasible attack option. In particular, in the common case
that D and S are uncorrupted, the only feasible attack is an active simultaneous
online attack against both S and D that also requires guessing the password and
the t-bit checksum. Compromising server S allows the attacker to impersonate
S, but does not help in impersonating the user to S, and in particular does not
enable an offline-dictionary attack against the user’s password. Compromising
device D makes the authentication effectively password-only, hence offering best
possible bounds in the PAKE model (in particular, the offline dictionary attack
is possible only if D and S are both compromised). Finally, compromising client
C leaks the password, but even then impersonating the user to the server requires
an active attack on D. We prove our protocols in this strong security model.

Practical TFA with End-to-End Security. Our main result is a TFA scheme,
GenTFA that achieves end-to-end security as formalized in our TFA-KE model
and is based on two general tools. The first is a Device-Enhanced Password
Authenticated Key Exchange (DE-PAKE) scheme as introduced by Jarecki et
al. [37]. Such a scheme assumes the availability of a user’s auxiliary device,
as in our setting, and utilizes the device to protect against offline dictionary
attacks in case of server compromise. However, DE-PAKE schemes provide no
protection in case that the client machine C is compromised and, moreover,
security completely breaks down if the user’s password is leaked. Thus, our
approach for achieving TFA-KE security is to start with a DE-PAKE scheme
and armor it against client compromise (and password leakage) using our second
tool, namely, a SAS-MA (Short-Authentication-String Message Authentication)
as defined by Vaudenay [50]. In our application, a SAS-MA scheme utilizes a t-bit
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user-authenticated channel, called a SAS channel, to authenticate data sent from
C to D. More specifically, the SAS channel is implemented by having the user
verify and confirm the equality of two t-bit strings, called checksums, displayed
by both C and D. It follows from [50] that if the displayed checksums coincide
then the information received by D from C is correct except for a 2−t probability
of authentication error. We then show how to combine a DE-PAKE scheme with
such a SAS channel to obtain a scheme, GenTFA, for which we can prove TFA-
KE security, hence provably avoiding the shortcomings of PIN-based schemes.
Moreover, the use of the SAS channel relaxes the required user’s actions from a
read-and-copy action in traditional schemes to a simpler compare-and-confirm
which also serves as a proof of physical possession of the device by the user (see
more below).

We show a concrete practical instantiation of our general scheme GenTFA,
named OpTFA, that inherits from GenTFA its TFA-KE security. Protocol OpTFA

is modular with respect to the (asymmetric) password protocol run between
client and server, thus it can utilize protocols that assume PKI as the traditional
password-over-TLS, or those that do not require any form of secure channels, as
in the (PKI-free) asymmetric PAKE schemes [25,32]. In the PKI case, OpTFA

can run over TLS, offering a ready replacement of current TFA schemes in the
PKI setting. In the PKI-free case one gets the advantages of the TFA-KE setting
without relying on PKI, thus obtaining a strict strengthening of (password-only)
PAKE security [24,44] as defined by the TFA-KE model.

The cost of OpTFA is two communication rounds between D and C, with
4 exponentiations by C and 3 by D, plus the cost of a password authentication
protocol between C and S. In the PKI setting the latter is the cost of establishing
a server-authenticated TLS channel, while in the PKI-free case one can use an
asymmetric PAKE (e.g., [27,36]) with cost (some of it computable offline) of 3
exponentiations for C, 2 for S, and one multi-exponentiation for each.

Implementation and SAS Channel Designs. We prototyped protocol
OpTFA, in both the PKI and PKI-free versions, with the client implemented as a
Chrome browser extension, the device as an Android app, and D-C communica-
tion implemented using Google Cloud Messaging. We also designed and imple-
mented several instantiations of the human-assisted C-to-D SAS channel required
by our TFA-KE solution and model. Recall that a SAS channel replaces the
user’s read-and-copy action of a PIN-based TFA with the compare-and-confirm
action used to validate the checksums displayed by C and D. The security of a
SAS-model TFA-KE depends on the checksum entropy t, called the SAS chan-
nel capacity, hence the two important characteristics of a physical design of a
SAS channel are its capacity t and the ease of the compare-and-confirm action
required of the user. In Sect. 6 we show several SAS designs that present different
options in terms of channel capacity and user-friendliness.

Our base-line implementation of a SAS channel encodes 20-bit checksums as
6-digit decimal PINs, which the user compares when displayed by C and D (no
copying involved). However, we also propose two novel and higher-capacity SAS
channels. In the first design, the device D is assumed to have a camera and the
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checksum calculated by the client is encoded as a QR code and displayed by C.
The user prompts D to capture this QR code which D decodes and compares
against its own computed checksum. The second design is based on an audio
channel implemented using a human speech transcription software. If device D

is a smartphone then the user can read out an alphanumeric checksum displayed
by C into D’s microphone2, and D decodes the audio using the transcriber tool
and compares it to its checksum.

Related Works. We discuss related works in greater detail in Sect. 7. The main
observations are: First, multiple methods have been proposed in the crypto litera-
ture for strengthening password authentication against offline dictionary attacks
in case of server compromise by introducing an additional party in the pro-
tocol (e.g., password-hardened or device-enhanced authentication [23,27,31,37]
and Threshold-PAKE or 2-PAKE, e.g. [28,40,44]), but these schemes offer no
security against an active attacker in case of password leakage or client compro-
mise, hence they are not TFAs. Second, many TFA schemes offer alternatives to
PIN-based TFAs, but none of them offer protection against offline attacks upon
server compromise except for the scheme of [47] (see Sect. 7). Moreover, if these
schemes consider D as an independent entity (rather than a local component of
client C) then they either have on-line security vulnerabilities or they require a
pre-set secure full-bandwidth C-D channel. In our case, we do with just a SAS
channel that as we show in Sect. 6 has several practical implementations. Third,
we are not aware of any attempt to model security of TFA schemes where D and
C are not co-located, nor do we know any PKI-free TFA schemes proposed for
this setting.

Road-Map. In Sect. 2 we present TFA-KE security model. In Sect. 3 we describe
our protocol building blocks. In Sect. 4 we present a practical TFA-KE protocol
OpTFA, and we provide informal rationale for its design choices. In Sect. 5 we
show a more general TFA-KE protocol GenTFA, of which OpTFA is an instance,
together with its formal security proof. In Sect. 6 we report on the implementa-
tion and testing of protocol OpTFA, and we describe several SAS channel designs.
In Sect. 7 we include more detailed direlated works.

2 TFA-KE Security

We introduce the Two-Factor Authenticated Key Exchange (TFA-KE) security
model that defines the assumed environment and participants in our protocols
as well as the attacker’s capabilities and the model’s security guarantees. Our
starting point is the Device-Enhanced PAKE (DE-PAKE) model, introduced
in [37], which extends the well-known two-party Password-Authenticated Key
Exchange (PAKE) model [24] to a multi-party setting that includes users U,
communicating from client machines C, servers S to which users log in, and
auxiliary devices D, e.g. a smartphone. A DE-PAKE scheme has the security

2 Note that thanks to the full resistance of our TFA-KE schemes to eavesdropping,
overhearing the spoken checksum is of no use for the attacker.
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properties of a two-server PAKE (2-PAKE) [28,40] where D plays the role of the
2nd server. Namely, a compromise of either S or D (but not both) essentially does
not help the attacker, and in particular leaks no information about the user’s
password. However, whereas 2-PAKE might be insecure in case of a compromise
of both S and D, in a DE-PAKE the adversary who compromises S and D must
stage an offline dictionary attack to learn anything about the password.

The TFA-KE model considers the same set of parties as in the DE-PAKE
model (which we recall in AppendixA) and all the same adversarial capabili-
ties, including controlling all communication links, the ability to mount online
active attacks, offline dictionary attacks, and to compromise devices and servers.
However, the DE-PAKE model does not consider client corruption or password
leakage. Indeed, in case of password leakage an active adversary can authenticate
to S by impersonating the legitimate user in a single DE-PAKE session with D

and S. Since a TFA scheme is supposed to protect against the client corrup-
tion and password leakage attacks, our TFA-KE model enhances the DE-PAKE
model by adding these capabilities to the adversary while preserving all the other
strict security requirements of DE-PAKE. In general, DE-PAKE requirements
were such that the only allowable attacks on the system, under a given set of
corrupted parties, are the unavoidable exhaustive online guessing attacks for
that setting; the same holds for TFA-KE but with additional best resilience to
client compromise and password leakage.

Note, however, that if C,D,S communicate only over insecure links then an
attacker who learns the user’s password will always be able to authenticate to S

as in the case of DE-PAKE, by impersonating the user to D and S. Consequently,
to allow device D to become a true second factor and maintain security in case
the password leaks, one has to assume some form of authentication in the C to
D communication which would allow the user to validate that D communicates
with the user’s own client terminal C and not with the attacker who performs a
man-in-the-middle attack and impersonates this user to D.

To that end our TFA-KE model augments the communication model by an
authentication abstraction on the client-to-device channel, but it does so without
requiring the client to store any long-term keys (other than the user’s password).
Namely, we assume a uni-directional C-to-D “Short Authenticated String” (SAS)
channel, introduced by Vaudenay [50], which allows C to communicate t bits
to D that cannot be changed by the attacker. The t-bit C-to-D SAS channel
abstraction comes down to a requirement that the user compares a t-bit checksum
displayed by both C and D, and approves (or denies) their equality by choosing
the corresponding option on device D.

As is standard, we quantify security by attacker’s resources that include
the computation time and the number of instances of each protocol party the
adversary interacts with. We denote these as qD, qS , qC , q′

C , where the first two
count the number of active sessions between the attacker and D and S, resp.,
while qC (resp. q′

C) counts the number of sessions where the attacker poses
to C as S (resp. as D). Security is further quantified by the password entropy
d (we assume the password is chosen from a dictionary of size 2d known to
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the attacker), and parameter t, which is called the SAS channel capacity. As we
explain in Sect. 3, a C-to-D SAS channel allows for establishing a D-authenticated
secure channel between D and C, except for the 2−t probability of error [50],
which explains 2−t factors in the TFA-KE security bounds stated below.

TFA Security Definition. We consider a communication model of open chan-
nels plus the t-bit SAS-channel between C and D, and a man-in-the-middle adver-
sary that interacts with qD, qS , qC , q′

C sessions of D,S,C, as described above. The
adversary can also corrupt any party, S, D, or C, learning its stored secrets and
the internal state as that party executes its protocol, which in the case of C

implies learning the user’s password. All other adversarial capabilities as well
as the test session experiment defining the adversary’s goal are as in DE-PAKE
(and PAKE) models – see AppendixA. In particular, the adversary’s advantage
is, as in DE-PAKE and PAKE, an advantage in distinguishing between a random
string and a key computed by S or C on a test session.

The security requirements set by Definition 1 below are the strictest one can
hope for given the communication and party corruption model. That is, wher-
ever we require the attacker’s advantage to be no more than a given bound with
a set of corrupted parties, then there is an (unavoidable) attack - in the form of
exhaustive guessing attack - that achieves this bound under the given compro-
mised parties. Importantly, and in contrast to typical two-factor authentication
solutions, the TFA-KE model requires that the second authentication factor D

not only provides security in case of client and/or password compromise, but
that it also strengthens online and offline security (by 2t factors) even when the
password has not been learned by the attacker.

Definition 1. A TFA-KE protocol TFA is (T, ǫ)-secure if for any password dic-
tionary Dict of size 2d, any t-bit SAS channel, and any attacker A bounded by
time T , A’s advantage AdvTFA

A in distinguishing the tested session key from ran-
dom is bounded as follows, for qS , qC , q′

C , qD as defined above:

1. If S, D, and C are all uncorrupted:

AdvTFA

A ≤ min{qC + qS/2t, q′
C + qD/2t}/2d + ǫ

2. If only D is corrupted: AdvTFA

A ≤ (qC + qS)/2d + ǫ
3. If only S is corrupted: AdvTFA

A ≤ (q′
C + qD/2t)/2d + ǫ

4. If only C is corrupted (or the user’s password leaks by any other means):
AdvTFA

A ≤ min(qS , qD)/2t + ǫ
5. If both D and S are corrupted (but not C), and qS and qD count A’s

offline operations performed based on resp. S’s and D’s state: AdvTFA

A ≤
min{qS , qD}/2d

Explaining the bounds. The security of the TFA scheme relative to the
DE-PAKE model can be seen by comparing the above bounds to those in
Definition 2 in AppendixA. Here we explain the meaning of some of these
bounds. In the default case of no corruptions, the adversary’s probability of
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attack is at most min(qC+qS/2t, q′
C+qD/2t)/2d improving on DE-PAKE bound

min(qC+qS , q′
C+qD)/2d and on the PAKE bound (qC+qS)/2d. For simplicity,

assume that qC = q′
C = 0 (e.g., in the PKI setting where C talks to S over TLS

and the communication from D to C is authenticated), in which case the bound
reduces to min(qS , qD)/2t+d. The interpretation of this bound, and similarly for
the other bounds in this model, is that in order to have a probability q/2t+d

to impersonate the user, the attacker needs to run q online sessions with S and
also q online sessions with D. (In each such session the attacker can test one
password out of a dictionary of 2d passwords, and can do so successfully only if
its communication with D is accepted over the SAS channel, which happens with
probability 2−t.) This is the optimal security bound in the TFA-KE setting since
an adversary who guesses both the user’s password and the t-bit SAS-channel
checksum can successfully authenticate as the user to the server.

In case of client corruption (and password leakage), the adversary’s proba-
bility of impersonating the user to the server is at most min(qS , qD)/2t, which
is the best possible bound when the attacker holds the user’s password. In case
of device corruption, the adversary’s advantage is at most (qC+qS)/2d, which
matches the optimal PAKE probability, namely, when a device is not available.
Finally, upon server corruption, the adversary’s probability of success in imper-
sonating the user to any uncorrupted server session is (assuming q′

C = 0 for
simplicity) at most qD/2t+d. In other words, learning server’s private informa-
tion necessarily allows the adversary to authenticate as the server to the client,
but it does not help to impersonate as the client to the server. In contrast, widely
deployed PIN-based TFA schemes that transmit passwords and PINs over a TLS
channel are subject to an offline dictionary attack in this case.

Extension: The Case of C and S Corruption. Note that when C and D are
corrupted, there is no security to be offered because the attacker has possession
of all authenticator factors, the password and the auxiliary device. However, in
the case that both C and S are corrupted one can hope that the attacker could
not authenticate to sessions in S that the attacker does not actively control.
Indeed, the above model can be extended to include this case with a bound of
qD/2t. Our protocols as described in Figs. 3 and 4 do not achieve this bound,
but it can be easily achieved for example by the following small modification
(refer to the figures): S is initialized with a public key of D and before sending
the value zid to D (via C), S encrypts it under D’s public key.

3 Building Blocks

We recall several of the building blocks used in our TFA-KE protocol.

SAS-MA Scheme of Vaudenay [50]. The Short Authentication String Mes-
sage Authentication (SAS-MA) scheme allows the transmission of a message from
a sender to a receiver so that the receiver can check the integrity of the received
message. A SAS-MA scheme considers two communication channels. One that
allows the transmission of messages of arbitrary length and is controlled by an
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active man-in-the-middle, and another that allows sending up to t bits that can-
not be changed by the attacker (neither channel is assumed to provide secrecy).
We refer to these as the open channel and the SAS channel, respectively, and call
the parameter t the SAS channel capacity. A SAS-MA scheme is called secure
if the probability that the receiver accepts a message modified by a (compu-
tationally bounded) attacker on the open channel is no more than 2−t (plus a
negligible fraction). In Fig. 1 we show a secure SAS-MA implementation of [50]
for a sender C and a receiver D. The SAS channel is abstracted as a comparison
of two t-bit strings checksumC and checksumD computed by sender and receiver,
respectively. As shown in [50], the probability that an active man-in-the-middle
attacker between D and C succeeds in changing message MC while D and C

compute the same checksum is at most 2−t. Note that this level of security is
achieved without any keying material (secret or public) pre-shared between the
parties. Also, importantly, there is no requirement for checksums to be secret.
(In Sect. 5 we present a formal SAS-MA security definition.)

Thus, the SAS-MA protocol reduces integrity verification of a received mes-
sage MC to verifying the equality of two strings (checksums) assumed to be
transmitted “out-of-band”, namely, away from adversarial control. In our appli-
cation, the checksums will be values displayed by device D and client C whose
equality the user verifies and confirms via a physical action, e.g. a click, a QR
snapshot, or an audio read-out (see Sect. 6). In the TFA-KE application this
user-confirmation of checksum equality serves as evidence for the physical con-
trol of the terminal C and device D by the same user, and a confirmation of
user’s possession of the 2nd authentication factor implemented as device D.

Fig. 1. SAS Message Authentication (SAS-MA) [50]

SAS-SMT. One can use a SAS-MA mechanism from C to D to bootstrap a
confidential channel from D to C. The transformation is standard: To send a
message m securely from D to C (in our application m is a one-time key and
D’s PTR response, see below), C picks a CCA-secure public key encryption key
pair (sk, pk) (e.g., pair (x, gx)) for an encryption scheme (KG,Enc,Dec), sends
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pk to D, and then C and D execute the SAS-MA protocol on MC = pk. If D

accepts, it sends m encrypted under pk to C, who decrypts it using sk. The
security of SAS-MA and the public-key encryption imply that an attacker can
intercept m (or modify it to some related message) only by supplying its own key
pk′ instead of C’s key, and causing D to accept in the SAS-MA authentication
of pk′ which by SAS-MA security can happen with probability at most 2−t.
The resulting protocol has 4 messages, and the cost of a plain Diffie-Hellman
exchange if implemented using ECIES [22] encryption. We refer to this scheme
as SAS-SMT (SMT for “secure message transmission”).

aPAKE. Informally, an aPAKE (for asymmetric or augmented PAKE) is a
password protocol secure against server compromise [25,32], namely, one where
the server stores a one-way function of the user’s password so that an attacker
who breaks into the server can only learn information on the password through an
exhaustive offline dictionary attack. While the aPAKE terminology is typically
used in the context of password-only protocols that do not rely on public keys,
we extend it here (following [37]) to the standard PKI-based password-over-
TLS protocol. This enables the use of our techniques in the context of TLS, a
major benefit of our TFA schemes. Note that this standard protocol, while secure
against server compromise is not strictly an aPAKE as it allows an attacker
to learn plaintext passwords (decrypted by TLS) for users that authenticate
while the attacker is in control of the server. As shown in [37], dealing with this
property requires a tweak in the DE-PAKE protocol (C needs to authenticate
the value b sent by D in the PTR protocol described below - see also Sect. 6).

DE-PAKE. A Device-Enhanced PAKE (DE-PAKE) [37] is an extension of the
asymmetric PAKE model by an auxiliary device, which strengthens aPAKE
protocols by eliminating offline dictionary attacks upon server compromise.
We discuss DE-PAKE in more detail in Sect. 2 and recall its formal model in
AppendixA. We use DE-PAKE protocols as a main module in our general con-
struction of TFA-KE, and our practical instantiation of this construction, pro-
tocol OpTFA, uses the DE-PAKE scheme of [37] which combines an asymmetric
aPAKE with a password hardening procedure PTR described next.

Password-to-Random Scheme PTR. A PTR is a password hardening proce-
dure that allows client C to translate with the help of device D (which stores a
key k) a user’s master password pwd into independent pseudorandom passwords
(denoted rwd) for each user account. The PTR instantiation from [37] is based
on the Ford-Kaliski’s Blind Hashed Diffie-Hellman technique [31]: Let G be a
group of prime order q, let H ′ and H be hash functions which map onto, respec-
tively, elements of G and κ-bit strings, where κ is a security parameter. Define
Fk(x) = H(x, (H ′(x))k), where the key k is chosen at random in Zq. In PTR

this function is computed jointly between C and D where D inputs key k and
C inputs x = pwd as the argument, and the output, denoted rwd = Fk(pwd), is
learned by C only. The protocol is simple: C sends a = (H ′(pwd))r for r random
in Zq, D responds with b = ak, and C computes rwd = H(x, b1/r). Under the
One-More (Gap) Diffie-Hellman (OM-DH) assumption in the Random Oracle
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Model (ROM), this scheme realizes a universally composable oblivious PRF
(OPRF) [36], which in particular implies that x = pwd is hidden from all
observers and function Fk(·) remains pseudorandom on all inputs which are
not queried to D.

k, Kz

PTR (k , pwd) rwd

σ(rwd), Kz

checksumD

z = RKz(zid)

zid

uKEKCS KCS

Insecure Channel

SAS-MA (Mc)

Encrypted and Authenticated Channel under KCS

z

Encrypted under pk, with C’s messages authenticated by SAS-MA along with Mc

Step 1:

uKE

+ zid

Step 3:

aPAKE

Step 2:

SAS-MA 

+ PTR

aPAKE

(rwd , σ) K

pwd

User validates checksum

K

checksumC

C picks (pk, sk)

Encrypted and Authenticated Channel under both KCS and one-time key z

Mc = (pk, zid)

z = RKz(zid)

Fig. 2. Schematic representation of protocol OpTFA of Fig. 3

4 OpTFA: A Practical Secure TFA-KE Protocol

In Sect. 5 we present and prove a general design, GenTFA, of a TFA-KE protocol
based on two generic components, namely, a SAS-MA and DE-PAKE protocols.
But first, in this section, we show a practical instantiation of GenTFA using the
specific building blocks presented in Sect. 3, namely, the SAS-MA scheme from
Fig. 1 and the DE-PAKE scheme from [37] (that uses the DH-based PTR scheme
described in that section composed with any asymmetric PAKE). This concrete
instantiation serves as the basis of our implementation work (Sect. 6) and helps
explaining the rationale of our general construction. OpTFA is presented in Fig. 3.
A schematic representation is shown in Fig. 2.

Enhanced TFA via SAS. Before going into the specifics of OpTFA, we describe
a general technique for designing TFA schemes using a SAS channel. In tradi-
tional TFA schemes, a PIN is displayed to the user who copies it into a login
screen to prove access to that PIN. As discussed in the introduction, this mecha-
nism suffers of significant weaknesses mainly due to the low entropy of PINs (and
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Fig. 3. OpTFA: efficient TFA-KE protocol with optimal security bounds
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inconvenience of copying them). We suggest automating the transmission of the
PIN over a confidential channel from device D to client C. To implement such
channel, we use the SAS-SMT scheme from Sect. 3 where security boils down
to having D and C display t-bit strings (checksums) that the user checks for
equality. In this way, low-entropy PINs can be replaced with full-entropy values
(we refer to them as one-time keys (OTK)) that are immune to eavesdropping
and bound active attacks to a success probability of 2−t. These active attacks
are impractical even for t = 20 (more a denial-of-service than an impersonation
threat) and with larger t’s as illustrated in Sect. 6 they are just infeasible. Note
that this approach works with any form of generation of OTK’s, e.g., time-based
mechanisms, challenge-response between device and server, etc.

4.1 OpTFA Explained

Protocol OpTFA (Fig. 3) requires several mechanisms that are necessary to obtain
the strong security bounds of the TFA-KE model. To provide rationale for the
need of these mechanisms we show how the protocol is built bottom-up to deliver
the required security properties. We stress that while the design is involved the
resultant protocol is efficient and practical. The presentation and discussion of
security properties here is informal but the intuition can be formalized as we do
via the TFA-KE model (Sect. 2), the generic protocol GenTFA in next section
and the proof of Theorem1.

In general terms, OpTFA can be seen as a DE-PAKE protocol using the PTR
scheme from Sect. 3 and enhanced with fresh OTKs transmitted from D to C

via the above SAS-SMT mechanism. The OTK is generated by the device and
server for each session and then included in the aPAKE interaction between C

and S. We note that OpTFA treats aPAKE generically, so any such scheme can
be used. In particular, we start by illustrating how OpTFA works with the stan-
dard password-over-TLS aPAKE, and then generalize to the use of any aPAKE,
including PKI-free ones.

• OpTFA 0.0. This is standard password-over-TLS where the user’s password is
transmitted from C to S under the protection of TLS.

• OpTFA 0.1. We enhance password-over-TLS with the OTK-over-SAS mecha-
nism described above. First, C transmits the user’s password to S over TLS and
if the password verifies at S, S sends a nonce zid to C who relays it to D. On the
basis of zid (which also acts as session identifier in our analysis), D computes a
OTK z = RKz

(zid) where R is a PRF and Kz a key shared between D and S.
D transmits z to C over the SAS-SMT channel and C relays it to S over TLS.
The user is authenticated only if the received value z is the same as the one
computed by S.

This scheme offers defense in case of password leakage. With a full-entropy
OTK it ensures security against eavesdroppers on the D-C link and limits the
advantage of an active attacker to a probability of 2−t for SAS checksums of
length t. However, the scheme is open to online password attacks (as in current
commonly deployed schemes) because the attacker can try online guesses without
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having to deal with the transmission of OTK z. In addition, it offers no security
against offline dictionary attacks upon server compromise.

• OpTFA 0.2. We change OpTFA 0.1 so that the user’s password pwd is only
transmitted to S at the end of the protocol together with the OTK z (it is
important that if z does not verify as the correct OTK, that the server does
not reveal if pwd is correct or not). This change protects the protocol against
online guessing attacks and reduces the probability of the successful testing of a
candidate password to 2−(d+t) rather than 2−d in version 0.1.

• OpTFA 0.3. We add defense against offline dictionary attacks upon server com-
promise by resorting to the DE-PAKE construction of [37] and, in particular,
to the password-to-random hardening procedure PTR from Sect. 3. For this, we
now assume that the user has a master password pwd that PTR converts into
randomized passwords rwd for each user account. By registering rwd with server
S and using PTR for the conversion, DE-PAKE security ensures that offline
dictionary attacks are infeasible even if the server is compromised (case (3) in
Definition 1). Note that the PTR procedure runs between D and C following the
establishment of the SAS-SMT channel.

• OpTFA 0.4. We change the run of PTR between D and C so that the value
a computed by C as part of PTR is transmitted over the SAS-authenticated
channel from C to D. Without this authentication the strict bound of case (3) in
Definition 1 (simplified for q′

C = 0), namely, AdvTFA

A ≤ qD/2d+t + ǫ upon server
compromise, would not be met. Indeed, when the attacker compromises server
S, it learns the key Kz used to compute the OTK z so the defense provided by
OTK is lost. So, how can we still ensure the 2t denominator in the above bound
expression? The answer is that by authenticating the PTR value a under SAS-
MA, the attacker is forced to run (expected) 2t sessions to be able to inject its
own value a over that channel. Such injection is necessary for testing a password
guess even when Kz is known. When considering a password dictionary of size
2d this ensures the denominator 2d+t in the security bound.

• OpTFA 0.5. We add the following mechanism to OpTFA: Upon initialization
of an authentication session (for a given user), C and S run an unauthenticated
(a.k.a. anonymous) key exchange uKE (e.g., a plain Diffie-Hellman protocol) to
establish a shared key KCS that they use as a MAC key applied to all subsequent
OpTFA messages. To see the need for uKE assume it is omitted. For simplicity,
consider the case where attacker A knows the user’s password. In this case, all A

needs for impersonating the user is to learn one value of z which it can attempt
by acting as a man-in-the-middle on the C-D channel. After qD such attempts,
A has probability of qD/2t to learn z which together with the user’s password
allows A to authenticate to S. In contrast, the bound required by Definition 1
in this case is the stricter min{qS , qD}/2t. This requires that for each attempt
at learning z in the C-D channel, not only A needs to try to break SAS-MA
authentication but it also needs to establish a new session with S. For this we
resort to the uKE channel. It ensures that a response z to a value zid sent by
S over a uKE session will only be accepted by S if this response comes back
on the same uKE session (i.e., authenticated with the same keys used by S to



Two-Factor Authentication with End-to-End Password Security 445

send the challenge zid). It means that both zid and z are exchanged with the
same party. If zid was sent to the legitimate user then the attacker, even if it
learns the corresponding z, cannot use it to authenticate back to S. We note that
uKE is also needed in the case that the attacker does not know the password.
Without it, the success probability for this case is about a factor 2d/qS higher
than acceptable by Definition 1.

Note. When all communication between C and S goes over TLS, there is no need
to establish a dedicated uKE channel; TLS serves as such.

• OpTFA 0.6. We stipulate that D never responds twice to the same zid value
(for this, D keeps a stash of recently seen zid’s; older values become useless
to the attacker once they time out at the server). Without this mechanism the
attacker gets multiple attempts at learning z for a single challenge zid. However,
this would violate bound (1) (for the case qC = q′

C = 0) min{qS , qD}/2d+t which
requires that each guess attempt at z be bound to the establishment of a new
session of the attacker with S.

• OpTFA 0.7. Finally, we generalize OpTFA so that the password protocol run as
the last stage of OpTFA (after PTR generates rwd) can be implemented with any
asymmetric aPAKE protocol, with or without assuming PKI, using the server-
specific user’s password rwd. As shown in [37], running any aPAKE protocol on
a password rwd produced by PTR results in a DE-PAKE scheme, a property
that we use in an essential way in our analysis.

We need one last mechanism for C to prove knowledge of z to S, namely, we
specify that both C and S use z as a MAC key to authenticate the messages sent
by protocol aPAKE (this is in addition to the authentication of these messages
with key KCS). Without this, an attack is possible where in case that OpTFA

fails the attacker learns if the reason for it was an aPAKE failure or a wrong z.
This allows the attacker to mount an online attack on the password without the
attacker having to learn the OTK. (When the aPAKE is password-over-TLS the
above MAC mechanism is not needed, the same authentication effect is achieved
by encrypting rwd and z under the same CCA-secure ciphertext [33].)

• OpTFA. Version 0.7 constitutes the full specification of the OpTFA protocol,
described in Fig. 3, with generic aPAKE.

Performance: The number of exponentiations in OpTFA is reported in the intro-
duction; implementation and performance information is presented in Sect. 6.

OpTFASecurity. Security of OpTFA follows from that of protocol GenTFA

because OpTFA is its instantiation. See Theorem1 in Sect. 5 and Corollary 1.

5 The Generic GenTFA Protocol

In Fig. 4 we show protocol GenTFA which is a generalization of protocol OpTFA

shown in Fig. 3 in Sect. 4. Protocol GenTFA is a compiler which converts any
secure DE-PAKE and SAS-MA schemes into a secure TFA-KE. It uses the same
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uKE and CCA-PKE tools as protocol OpTFA, but it also generalizes two other
mechanisms used in OpTFA as, resp. a generic symmetric Key Encapsulation
Mechanism (KEM) scheme and an Authenticated Channel (AC) scheme.

A Key Encapsulation Mechanism, denoted (KemE,KemD) (see e.g. [48]),
allows for encrypting a random session key given a (long-term) symmetric key
Kz, i.e., if (zid, z) ← KemE(Kz) then z ← KemD(Kz, zid). A KEM is secure if
key z corresponding to zid �∈ {zid1, ..., zidq} is pseudorandom even given the keys
zi corresponding to all zidi’s. In protocol OpTFA of Fig. 3, KEM is implemented
using PRF R: zid is a random κ-bit string and z = R(Kz, zid). We also generalize
the usage of the MAC function in OpTFA as an Authenticated Channel, defined
by a pair ACSend,ACRec, which implements bi-directional authenticated com-
munication between two parties sharing a symmetric key K [29,34]. Algorithm
ACSend takes inputs key K and message m and outputs m with authentication
tag computed with key K, while the receiver procedure, ACRec(K, ·), outputs
either a message or the rejection symbol ⊥. We assume that the AC scheme is
stateful and provides authenticity and protection against replay.

The security of GenTFA is stated in the following theorem:

Theorem 1. Assuming security of the building blocks DE-PAKE, SAS, uKE,
PKE, KEM, and AC, protocol GenTFA is a (T, ǫ)-secure TFA-KE scheme for ǫ
upper bounded by

ǫDEPAKE + n · (ǫSAS + ǫuKE + ǫPKE + ǫKEM + 6ǫAC) + n2/2κ

for n = qHbC + max(qS , qD, qC , q′
C) where qHbC denotes the number of GenTFA

protocol sessions in which the adversary is only eavesdropping, and each quantity
of the form ǫP is a bound on the advantage of an attacker that works in time
≈ T against the protocol building block P.

As a corollary we obtain a proof of TFA-KE security for protocol OpTFA

from Fig. 3 which uses specific secure instantiations of GenTFA components. The
corollary follows by applying the result of Vaudenay [50], which implies in partic-
ular that the SAS-MA scheme used in OpTFA is secure in ROM, and the result
of [37], which implies that the DE-PAKE used in OpTFA is secure under the
OM-DH assumption if the underlying aPAKE is a secure asymmetric PAKE.

We note that protocol OpTFA optimizes GenTFA instantiated with the DE-
PAKE of [37] by piggybacking the C-D round of communication in that protocol,
a = H ′(pwd)r and b = ak, onto resp. C’s message MC and the plaintext in D’s
ciphertext eD. The security proof extends to this round-optimized case because
SAS-MA authentication of MC and CCA-security of PKE bind DE-PAKE mes-
sages a, b to this session just as the ACSend(KCD, ·) mechanism does in (non-
optimized) protocol GenTFA.

Corollary 1. Assuming that aPAKE is a secure asymmetric PAKE, uKE is
secure Key Exchange, (KG,Enc,Dec) is a CCA-secure PKE, R is a secure PRF,
and MAC is a secure message authentication code, protocol OpTFA is a secure
TFA-KE scheme under the OM-DH assumption in ROM.



Two-Factor Authentication with End-to-End Password Security 447

Fig. 4. Generic TFA-KE scheme: protocol GenTFA

Security definition of SAS authentication. For the purpose of the proof
below we state the security property assumed of a SAS-MA scheme which was
informally described in Sect. 3. While [50] defines the security of SAS-MA using a
game-based formulation, here we do it via the following (universally composable)
functionality FSAS[t]: On input a message [SAS.SEND, sid , P ′,m] from an honest
party P , functionality FSAS[t] sends [SAS.SEND, sid , P, P ′,m] to A, and then, if
A’s response is [SAS.CONNECT, sid ], then FSAS[t] sends [SAS.SEND, sid , P,m] to
P ′, if A’s response is [SAS.ABORT, sid ], then FSAS[t] sends [SAS.SEND, sid , P,⊥]
to P ′, and if A’s response is [SAS.ATTACK, sid ,m′] then FSAS[t] throws a coin ρ
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which comes out 1 with probability 2−t and 0 with probability 1− 2−t, and if
ρ = 1 then FSAS[t] sends succ to A and [SAS.SEND, sid , P,m′] to P ′, and if ρ = 0
then FSAS[t] sends fail to A and [SAS.SEND, sid , P,⊥] to P ′.

In our main instantiation of the generic protocol GenTFA of Fig. 4, i.e. in
protocol OpTFA of Fig. 3, we instantiate SAS-MA with the scheme of [50], but
even though the original security argument given for it in [50] used the game-
based security notion, it is straightforward to adopt this argument to see that
this scheme securely realizes the above (universally composable) functionality.

Proof of Theorem 1. Let A be an adversary limited by time T playing the
TFA-KE security game, which we will denote G0, instantiated with the TFA-KE
scheme GenTFA. Let the security advantage defined in Definition 1 for adversary
A satisfy AdvTFA

A = ǫ. Let ΠS
i , ΠC

j , ΠD

l refer to respectively the i-th, j-th, and
l-th instances of S, C, and D entities which A starts up. Let t be the SAS channel
capacity, κ the security parameter, qS , qD, qC , q′

C the limits on the numbers of
rogue sessions of S, D, C when communicating with S, and C when communicat-
ing with D, and let qHbC be the number of GenTFA protocol sessions in which
A plays only a passive eavesdropper role except that we allow A to abort any of
these protocol executions at any step. Let nS = qS + qHbC , nD = qD + qHbC ,
nC = qC + q′

C + qHbC , and note that these are the ranges of indexes i, j, l for
instances ΠS

i , ΠC
j , and ΠD

l . We will use [n] to denote range {1, ..., n}.
The security proof goes by cases depending on the type of corrupt queries

A makes. In all cases the proof starts from the security-experiment game G0

and proceeds via a series of game changes, G1, G2, etc., until a modified game Gi

allows us to reduce an attack on the DE-PAKE with the same corruption pattern
(except in the case of corrupt client C) to the attack on Gi. In the case of the
corrupt client the argument is different because it does not rely on the underlying
DE-PAKE (note that DE-PAKE does not provide any security properties in the
case of client corruption). In some game changes we will consider a modified
adversary algorithm, for example an algorithm constructed from the original
adversary A interacting with a simulator of some higher-level procedure, e.g. the
SAS−MA simulator. Wlog, we use Ai for an adversary algorithm in game Gi.

We will use pi to denote the probability that Ai interacting with game Gi

outputs b′ s.t. b′ = b where b is the bit chosen by the game on the test session.
Recall that when A makes the test session query test(P, i), for P ∈ {S,C}, then,
assuming that instance ΠP

i produced a session key sk, game G0 outputs that
session key if b = 1 or produces a random string of equal size if b = 0 (and if
session ΠP

i did not produce the key then G0 outputs ⊥ regardless of bit b). Note
that by assumption AdvTFA

A = ǫ we have that p0 = 1/2+1/2 ·AdvTFA

A = 1/2+ǫ/2.

Case 1: No party is compromised. This is the case when A makes no corrupt

queries, i.e. it’s the default “network adversary” case. For lack of space we
describe below only the game changes in the proof, and we state what we claim
about the effects of that game change and what assumption we use. The full
details of the proof are included in the full version of the paper [38].

GameG1 : Let Z be a random function which maps onto κ-bit strings. If (zidi, zi)
dentes the KEM (ciphertext,key) pair generated by ΠS

i then in G1 we set
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zi = Z(zidi) instead of using KemE, and we abort if there is ever a collision
in zi values. Security of KEM implies that p1 ≤ p0 + ǫKEM(nS) + n2

S/2κ.

GameG2 : Here we replace the SAS-MA procedure with the simulator SIMSAS

implied by the UC security of the SAS-MA scheme of [50]. In other words, when-
ever ΠC

j and ΠD

l execute the SAS−MA sub-protocol, we replace this execution
with a simulator SIMSAS interacting with A and the ideal SAS−MA functionality
FSAS[t]. For example, ΠC

j , instead of sending MC = (pk, zid) to A1 and starting a

SAS−MA instance to authenticate MC to D, will send [SAS.SEND, sid ,ΠD

l ,MC]
to FSAS[t], which triggers SIMSAS to start simulating to A the SAS−MA protocol

on input MC between ΠC
j and ΠD

l . The rules of FSAS[t] imply that A can make

this connection either succeed, abort, or, if it attacks it then ΠD

l will abort with
probability 1 − 2−t, but with probability 2−t it will accept A’s message MC

∗

instead of MC. Security of SAS−MA implies that p2 ≤ p1 + min(nC , nD) · ǫSAS.

GameG3 : Here we re-name entities involved in game G2. Note that adversary
A2 interacts with G2 which internally runs algorithms SIMSAS and FSAS[t], and
that SIMSAS interacts only with FSAS[t] on one end and A2 on the other. We can
therefore draw the boundaries between the adversarial algorithm and the secu-
rity game slightly differently, by considering an adversary A3 which executes
the steps of A2 and SIMSAS, and a security game G3 which executes the rest
of game G2, including the operation of functionality FSAS[t]. In other words, G3

interacts with A3 using the FSAS[t] interface to SIMSAS, i.e. G3 sends to A3 mes-

sages of the type [SAS.SEND, sid ,ΠC
j ,ΠD

l ,MC], and A3’s response must be one
of [SAS.CONNECT, sid ], [SAS.ABORT, sid ], and [SAS.ATTACK, sid ,MC

∗]. Since
we are only re-drawing the boundaries between the adversarial algorithm and
the security game, we have that p3 = p2.

GameG4 : Here we change game G3 s.t. if A sends [SAS.CONNECT, sid ] to let
the SAS-MA instance go through between ΠC

j and ΠD

l with MC containing

ΠC
j ’s key pk, then we replace the ciphertext eD subsequently sent by ΠD

l by
encrypting a constant string instead of Enc(pk, (z,KCD)), and if A passes this
eD to ΠC

j then it decrypts it as (z,KCD) generated by ΠD

l . In other words, we
replace the encryption under SAS-authenticated key pk by a “magic” delivery
of the encrypted plaintext. The CCA security of PKE implies that p4 ≤ p3 +
min(nC , nD) · ǫPKE.

GameG5 : Here we abort if, assuming that key pk and ciphertext eD were
exchanged between ΠC

j and ΠD

l correctly, any party accepts wrong messages

in the subsequent DE-PAKE execution authenticated by KCD created by ΠD

l .
The authentic channel security implies that p5 ≤ p4 + min(nC , nD) · ǫAC.

GameG6 : We perform some necessary cleaning-up, and abort if the SAS-MA
instance between ΠC

j and ΠD

l ) sent MC correctly, but adversary did not deliver

ΠD

l ’s response eD back to ΠC
j and yet ΠD

l did not abort in subsequent DE-PAKE.

Since this way ΠC
j has no information about key KCD we get p6 ≤ p5 + qD · ǫAC.
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GameG7 : We replace the keys created by uKE for every ΠS
i -ΠC

j session in step
I.1 on which A was only an eavesdropper, with random keys. Security of uKE

implies that p7 ≤ p6 + min(nC , nS) · ǫuKE.
At this point the game has the following properties: If A is passive on the

C-S key exchange in step I then A is forced to be passive on the C-S link in the
DE-PAKE in step III. Also, if A does not attack the SAS−MA and delivers D’s
response to C then A is forced to be passive on the C-D link in the DE-PAKE
in step III (and if A does not deliver D’s response to C then this D instance will
abort too). The remaining cases are either (1) active attacks on the key exchange
in step I or (2) when A attacks the SAS−MA sub-protocol and gets D to accept
MC∗ �= MC or (3) A sends e∗

D �= eD to C. In handling these cases the crucial issue
is what A does with the zid created by S. Consider any S instance ΠS

i in which
the adversary interferes with the key exchange protocol in step I.1. Without loss
of generality assume that the adversary learns key KCS output by ΠS

i in this
step. Note that D keeps a variable zidSet in which it stores all zid values it ever
receives, and that D aborts if it sees any zid more than once. Therefore each
game execution defines a 1-1 function L : [nS ] → [nD]∪{⊥} s.t. if L(i) �=⊥ then
L(i) is the unique index in [nD] s.t. ΠD

L(i) receives MC = (pk, zidi) in step II.1 for

some pk, and L(i) =⊥ if and only if no D session receives zidi. If L(i) �=⊥ then
we consider two cases: First, if MC = (pk, zidi) which contains zidi originates
with some session ΠC

j , and second if MC = (pk, zidi) is created by the adversary.

GameG9 : Let ΠS
i and ΠC

j be rogue sessions s.t. A sends zidi to ΠC
j in step I.2,

but then stop ΠC
j from getting the corresponding zi by either attacking SAS-

MA or misdelivering D’s response eD. In that case neither ΠC
j nor A have any

information about zi, and therefore ΠS
i should reject. Namely, if in G9 we set

ΠS
i ’s output to ⊥ in such cases then p9 ≤ p8 + qS · ǫAC.

GameG10 : Let ΠS
i and ΠC

j be rogue sessions and A send zidi to ΠC
j as above,

but now consider the case that A lets ΠC
j learn zi but A does not learn zi itself,

i.e. A lets SAS-MA and eD go through. In this case we will abort if in DE-
PAKE communication in Step III between ΠS

i and ΠC
j either party accepts a

message not sent by the other party. Since A has no information about zi the
authenticated channel security implies that p10 ≤ p9 + min(qC , qS) · ǫAC.

Note that at this point if A interferes with the KE in step I.1 with ses-
sion ΠS

i , sends zidi to some ΠC
j and does not send it to some ΠD

l by sending
[SAS.ATTACK, sid , (pk∗, zidi)] for any l then A is forced to be a passive eaves-
dropper on the DE-PAKE protocol in step III. Note that this holds when L(i) = l
s.t. the game issues [SAS.SEND, sid ,ΠC

j ,ΠD

l , (pk, zidi)] for some pk, i.e. if some

ΠD

l receives value zidi, it receives it as part of a message MC sent by some ΠC
j .

GameG11 : Finally consider the case when A itself sends zidi to D, i.e. when
L(i) = l s.t. A sends [SAS.ATTACK, sid ,MC

∗ = (pk∗, zidi)] in response to
[SAS.SEND, sid ,ΠC

j ,ΠD

l ,MC], but the FSAS[t] coin-toss comes out ρl = 0, i.e. A

fails in this SAS-MA attack. In that case we can let ΠS
i abort in step III because

if ρl = 0 then A has no information about zi = Z(zidi), hence p11 ≤ p10+qS ·ǫAC.
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After these game changes, we finally make a reduction from an attack on
underlying DE-PAKE to an attack on TFA-KE. Namely, we construct A∗ which
achieves advantage AdvDEPAKE

A∗ = 2 · (p11 − 1/2) against DE-PAKE, and makes
q∗
S , q∗

D, qC , qC rogue queries respectively to S, D, to C on its connection to S, and
to C on its connection with D, where q∗

S = q∗
D = q∗ where q∗ is a random variable

equal to the sum of q = min(qS , qD) coin tosses which come out 1 with probability
2−t and 0 with probability 1 − 2−t. Recall that AdvTFA

A = 2 · (p0 − 1/2) and that
by the game changes above we have that |p11 − p0| is a negligible quantity, and
hence AdvDEPAKE

A∗ is negligibly close to AdvTFA

A .
The reduction goes through because after the above game-changes A can

either essentially let a DE-PAKE instance go through undisturbed, or it can
attempt to actively attack the underlying DE-PAKE instance either via a rogue
C session or via rogue sessions with device S and server D. However, each rogue
D session is bound to a unique rogue S session, because of the uKE and (zid, z)
mechanism, and for each such D,S session pair, the probability that an active
attack is not aborted is only 2−t. This implies that the (qS , qD, qC) parameters
characterizing the TFA-KE attacker A scale-down to (qS/2t, qD/2t, qC) parame-
ters for the resulting DE-PAKE attacker A∗, which leads to the claimed security
bounds by the security of DE-PAKE. The details of construction for A∗ and the
above argument are included in the full version of this paper [38].

Case 2: Party corruptions. In the full version of the paper [38] we include the
cases of client corruption and of device and/or server corruption, showing that
our scheme achieves all the bounds from Definition 1. Here we just comment on
how these bounds are derived. For the case of device corruption, the value z is
learned by the attacker hence it is equivalent to setting t = 0. Also, rogue queries
to D are free for the attacker hence qD is virtually unbounded (can think of it as
“infinity”). Setting these values in the bound of Case 1, one obtains the claimed
bound (qC + qS)/2d for the case of device corruption. Similarly, in case of server
corruption one sets qS to “infinity”. In addition, and in spite of the attacker
learning z in this case, one obtains a bound involving 2−t thanks to the fact that
we run the PTR protocol over the SAS channel, hence reducing the probability
of the attacker successfully testing a candidate password pwd′ by 2−t. In the
case of client compromise where the attacker learns the user’s password pwd, we
set d = 0 (a dictionary of size 1) and set qC = q′

C = 0 since C is corrupted and
the attacker cannot choose a test session at C. Finally, when both D and S (but
not C) are corrupted one gets the same security as plain DE-PAKE, namely,
requiring a full offline dictionary attack to recover pwd.

6 System Development and Testing

Here we report on an experimental prototype of protocol OpTFA from Fig. 3
on page 12 and present novel designs for the SAS channel implementation.
We experiment with OpTFA using two different instantiations of the password
protocol between C and S. One is PKI-based that runs OpTFA over a server-
authenticated TLS connection; in particular, it uses this connection in lieu of the
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Table 1. Average execution time of OpTFA and its components (10,000 iterations)

Protocol Purpose Parties Average Time in
ms (std. dev.)

SAS (excluding
user’s checksum
validation)

Authenticate
C-D Channel

C and D 128.59 (0.48)

PTR Reconstruct rwd C and D 160.46 (3.71)

PKI-free PAKE PAKE C and S 182.27 (3.67)

PKI PAKE
(TLS)

C-S link
encryption

C and S 32.54 (1.38)

Overall in

PKI-free model

C, D and S 410.77 ms

Overall in PKI

model

C, D and S 263.27 ms

uKE in step I and implements step III by simply transmitting the concatenation
of password rwd and the value z under the TLS authenticated encryption. The
second protocol we experimented with is a PKI-free asymmetric PAKE borrowed
from [27,36]. Roughly, it runs the same PTR protocol as described in Sect. 3 but
this time between C and S. C’s input is rwd and the result Fk(rwd) serves as a
user’s private key for the execution of an authenticated key-exchange between C

and S. We implement the latter with HMQV [41] (as an optimization, the DH
exchange used to implement uKE in step I of OpTFA is “reused” in HMQV).

In Table 1 we provide execution times for the various protocol components,
including times for the TLS-based protocol and the PKI-free one with some
elements borrowed from the implementation work from [37]. We build on the
following platform. The webserver S is a Virtual Machine running Debian 8.0
with 2 Intel Xeon 3.20 GHz and 3.87 GB of memory. Client terminal C is a Mac-
Book Air with 1.3 GHz Intel Core i5 and 4 GB of memory. Device D is a Samsung
Galaxy S5 smartphone running Android 6.0.1. C and D are connected to the same
WiFi network with the speed of 100 Mbps and S has Internet connection speed
of 1 Gbps. The server side code is implemented in HTML5, PHP and JavaScipt.
On the client terminal, the protocol is implemented in JavaScript as an extension
for the Chrome browser and the smartphone app in Java for Android phones.

All DH-based operations (PTR, key exchange and SAS-SMT encryption) use
elliptic curve NIST P-256, and hashing and PRF use HMAC-SHA256. Hashing
into the curve is implemented with simple iterated hashing till an abscissa x on
the curve is found (it will be replaced with a secure mechanism such as [26]).

Communication between C and S uses a regular internet connection between
the browser C and web server S. Communication between C and D (except for
checksum comparison) goes over the internet using a bidirectional Google Cloud
Messaging (GCM) [5], in which D acts as the GCM server and C acts as the
GCM client. GCM involves a registration phase during which GCM client (here
C) registers with the GCM generated client ID to the GCM server (here D), to
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assure that D only responds to the registered clients. In case that the PAKE
protocol in OpTFA is implemented with password-over-TLS, [37] specifies the
need for D to authenticate the PTR value b sent to C (see Sect. 3). In this case,
during the GCM registration we install at C a signature public key of D.

6.1 Checksum Validation Design

An essential component in our approach and solutions (in particular in protocol
OpTFA) is the use of a SAS channel implemented via the user-assisted equal-
ity verification of checksums displayed by both C and D (denoted hereafter as
checksumC and checksumD, resp.). Here we discuss different implementations of
such user-assisted verification which we have designed and experimented with.

Manual Checksum Validation. In the simplest approach, the user compares
the checksums displayed on D and C and taps the Confirm button on D in
case the two match [49]. Although, this type of code comparison has recently
been deployed in TFA systems, e.g., [8], it carries the danger of neglectful users
pressing the confirm button without comparing the checksum strings. Another
common solution for checksum validation is “Copy-Confirm” [49] where the user
types the checksum displayed on C into D, and only if this matches D’s checksum
does D proceeds with the protocol. We implemented this scheme using a 6 digit
number. We stress that in spite of the similarity between this mechanism and
PIN copying in traditional TFA schemes, there is an essential security difference:
Stealing the PIN in traditional schemes suffices to authenticate instead of the
user (for an attacker that holds the user’s password) while stealing the checksum
value entered by the user in OpTFA is worthless to the attacker (the checksum
is a validation code, not the OTK value needed for authentication).

The above methods using human visual examination and/or copying limit the
SAS channel capacity (typically to 4–6 digits) and may degrade usability [46].
As an alternative we consider the following designs (however one may fallback
to the manual schemes when the more secure schemes below cannot be used,
e.g., missing camera or noisy environments).

QR Code Checksum Validation. In this checksum validation model, we
encode the full, 256-bit checksum computed in protocol OpTFA into a hexstring
and show it as a 230×230 pixel QR Code on the web-page. We used ZXing library
to encode the QR code and display it on the web page and read and decode it
D. To send the checksum to D, the user opens the app on D and captures the
QR code. D decodes the QR code and compares checksums, and proceeds with
the protocol if the match happens. In this setting, the user does not need to
enter the checksum but only needs to hold her phone and capture a picture
of the browser’s screen. With the larger checksum (t = 256) active attacks on
SAS-SMT turn infeasible and the expressions 2−t in Definition 1) negligible.

Voice-based Checksum Validation. We implement a voice-based checksum
validation approach that assumes a microphone-equipped device (typically a
smartphone) where the user speaks a numerical checksum displayed by the client
into the device. The device D receives this audio, recognizes and transcribes it
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using a speech recognition tool, and then compares the result with the checksum
computed by D itself. The client side uses a Chrome extension as in the manual
checksum validation case while on the device we developed a transcriber applica-
tion using Android.Speech API. The user clicks on a “Speak” button added to the
app and speaks out loud the displayed number (6-digit in our implementation).
The transcriber application in D recognizes the speech and convert it to text
that is then compared to D’s checksum. To further improve the usability of this
approach one can incorporate a text-to-speech tool that would speak the check-
sum automatically (i.e., replacing the user). The transcription approach would
perhaps be easy for the users to employ compared to the QR-based approach,
but would only be suitable if the user is in an environment that is non-noisy
and allows her to speak out-loud. We note that the QR-code and audio-based
approaches do not require a browser plugin or add-on and can be deployed on
any browser with HTML5 support.

Performance Evaluation. As preliminary information, we report on 30 check-
sum validation iterations performed by one experimenter. The time taken by
manual checksum validation was 8.50 s on average (standard deviation 2.84 s).
The time taken by QR-Coded validation was 4.87 s on average for capturing
the code (standard deviation 1.32s) and 0.02 s on average for decoding the code
(standard deviation 0.00s). The time taken by audio-based validation was 4.08 s
on average for speaking the checksum (standard deviation 0.34 s) and 1.18 s on
average for transcribing the spoken checksum (standard deviation 0.42 s). The
average time for these tasks may vary between different users. The time taken
by the device to perform the checksum comparison is negligible. Our preliminary
testing of these two channels shows virtually-0 error rate.

7 Discussion of Related Work

Device-enhanced password-authentication with security against offline
dictionary attacks (ODA). There are several proposals in cryptographic lit-
erature for password authentication schemes that utilize an auxiliary computing
component to protect against ODA in case of server compromise. This was a
context of the Password Hardening proposal of Ford-Kaliski [31], which was
generalized as Hidden Credential Retrieval by Boyen [27], and then formalized
as (Cloud) Single Password Authentication (SPA) by Acar et al. [23] and as a
Device-Enhanced PAKE (DE-PAKE) by Jarecki et al. [37]. These schemes are
functionally similar to a TFA scheme if the role of the auxiliary component is
played by the user’s device D, but they are insecure in case of password leakage
e.g. via client compromise.3 The threat of an ODA attack on compromise of an

3 We note that [23] also show a Mobile Device SPA, which provides client-compromise
resistance, but it requires the user to type the password onto the device D, and to
copy a high-entropy key from D to C, thus increasing manually transmitted data
even in comparison to traditional TFAs. By contrast, OpTFA dispenses entirely with
manual transmission of information to and from D.
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authentication server also motivated the notion of Threshold Password Authenti-
cated Key Exchange (T-PAKE) [44], i.e. a PAKE in which the password-holding
server is replaced by n servers so that a corruption of up to t < n of them leaks
no information about the password. In addition to general T-PAKE’s, several
solutions were also given for the specific case of n= 2 servers tolerating t = 1 cor-
ruption, known as 2-PAKE [28,40], and every 2-PAKE, with the user’s device D

playing the role of the second server, is a password authentication scheme that
protects against ODA in case of server compromise. However, as in the case of
[23,27,31,37], if a password is leaked then 2-PAKE offers no security against an
active attacker who engages with a single 2-PAKE session.

TFA with ODA security. Shirvanian et al. [47] proposed a TFA scheme which
extends the security of traditional PIN-based TFAs against ODA in case of server
compromise. However, OpTFA offers several advantages compared to [47]: First,
[47] relies on PKI (the client sends the password and the one-time key, OTK, to
the PKI-authenticated server) while OpTFA has both a PKI-model and a PKI-
free instantiation. Second, [47] assumes full security of the t-bit D-C channel
for OTK transmission while we reduce this assumption to a t-bit authenticated
channel between C and D. Consequently, we improve user experience by replacing
the read-and-copy action with simpler and easier compare-and-confirm. On the
other hand, [47] can use only the t-bit secure D-C link while OpTFA requires
transmission of full-entropy values between D and C.

TFA with the 2nd factor as a local cryptographic component. Some
Two-Factor Authentication schemes consider a scenario where the 2nd factor is
a device D capable of storing cryptographic keys and performing cryptographic
algorithms, but unlike in our model, D is connected directly to client C, i.e. it
effectively communicates with C over secure links. (However, security must hold
assuming the adversary can stage a lunch-time attack on device D, so D cannot
simply hand off its private keys to C.) The primary example is a USB stick, like
YubiKey [13], implementing e.g. the FIDO U2F authentication protocol [2,42].
A generalized version of this problem, including biometric authentication, was
formalized by Pointcheval and Zimmer as Multi-Factor Authentication [45], but
the difference between that model and our TFA-KE notion is that we consider
device D which has no pre-set secure channel with client C. Moreover, to the
best of our knowledge, all existing MFA/TFA schemes even in the secure-channel
D-C model are still insecure against ODA on server compromise, except for the
aforementioned TFA of Shirvanian et al. [47].

Alternatives to PIN-based TFA with remote auxiliary device. Many
TFA schemes improve on PIN-based TFAs by either reducing user involvement,
by not requiring the user to copy a PIN from D to C, or by improving on its online
security, but none of them protect against ODA in case of server compromise,
and their usability and online security properties also have downsides.

PhoneAuth [30] and Authy [11] replace PINs with S-to-D challenge-response
communication channeled by C, but they require a pre-paired Bluetooth con-
nection to secure the C-D channel. A full-bandwidth secure C-D channel reduces
the three-party TFA notion to a two-party setting, where device D is a local
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component of client C, but requiring an establishment of such secure connec-
tion between a browser C and a cell phone D makes a TFA scheme harder to
use. TFA schemes like SlickLogin (acquired by Google) [3], Sound-Login [9], and
Sound-Proof [39] in essence attempt to implement such secure C-to-D channel
using physical security assumptions on physical media e.g. near-ultrasounds [3],
audible sounds [9], or ambient sounds detecting proximity of D to C [39], but
they are subject to eavesdropping attacks and co-located attackers.

Several TFA proposals, including Google Prompt [8] and Duo [1], follow
a one-click approach to minimize user’s involvement if D is a data-connected
device like a smartphone. In [1,8] S communicates directly over data-network to
D, which prompts the user to approve (or deny) an authentication session, where
the approve action prompts D to respond in an entity authentication protocol
with S, e.g. following the U2F standard [2]. This takes even less user’s involve-
ment than the compare-and-confirm action of our TFA-KE, but it does not
establish a strong binding between the C-S login session and the D-S interaction.
E.g., if the adversary knows the user’s password, and hence the TFA security
depends entirely on D-S interaction, a man-in-the-middle adversary who detects
C’s attempt to establish a session with S, and succeeds in establishing a session
with S before C does, will authenticate as that user to S because the honest user’s
approval on D’s prompt will result in S authenticating the adversarial session.

A PAKE and DE-PAKE Security Models

We recall the Device-Enhanced PAKE (DE-PAKE) security model of [37], which
forms a basis of our TFA model, and which extends the the Password Authen-
tication Key Exchange (PAKE) model [24] to the case where the user controls
an auxiliary device which constitutes the user’s second authentication token in
addition to the password. We refer to the full version [38] for a more detailed
and modular presentation of DE-PAKE as an extension of the PAKE model.

Protocol participants. There are three types of protocol participants in DE-
PAKE, client C, server S, and device D. We assume that client C is controlled by
a user U. The role of D can be played by any data-connected entity, including
a hand-held device owned by user U or an auxiliary web service which has an
account for U. (The definition in [37] identifies C with U, but in the TFA context
U and C are separate entities, and U is assumed to operate both client C and
device D.) We assume that C interacts with a unique server S and device D,
but server S interacts with multiple users. For notational convenience we take a
simplifying assumption that in a DE-PAKE protocol both D and S interact only
with client C, and not with each other directly.

Protocol execution. A DE-PAKE protocol has two phases: initialization and
key exchange. In the initialization phase user U chooses a random password
pwd from a given dictionary Dict and interacts with its associated server S and
device D. Initialization produces state σS(U) for server S, which S stores in an
account associated with user U, and state σD for device D, while client C has
no permanent storage except for public parameters. Initialization is assumed to
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be executed securely, e.g., over secure channels. In the key exchange phase, user
types her password pwd into the client C, and the three parties, C on input pwd, D

on input σD, and S on input σS(U), interact over insecure (adversary-controlled)
channels. Parties C and S terminate by outputing a session key or a rejection
symbol, while D has no local output. All parties may execute the protocol mul-
tiple times in a concurrent fashion. Protocol execution by any party defines a
protocol instance, also referred to as a protocol session, denoted respectively
ΠC

i , ΠD
i , or ΠS

i , where integer pointer i serves to differentiates between multiple
protocol instances executed by a given party. Each protocol session by C and S

is associated with a peer identity pid, a session identifier sid which we equate
with the transcript of exchanges with its peer observed by this instance, and
a session key sk. The output of C or S protocol instance consists of the above
three variables, which can be set to ⊥ if the party aborts the session (e.g., when
authentication fails, a misformed message is received, etc.). When a session ΠC

i

or ΠS
i outputs sk �=⊥ we say that it accepts.

Security. To define security we consider a probabilistic attacker A which sched-
ules all actions in the protocol and controls all communication channels with
full ability to transport, modify, inject, delay or drop messages. In addition,
the attacker knows (or even chooses) the dictionaries used by users. The model
defines the following queries or activations through which the adversary interacts
with, and learns information from, the protocol’s participants.

send(P, i, P ′,M): Delivers message M to instance ΠP
i purportedly coming from

P ′. In response to a send query the instance takes the actions specified by the
protocol and outputs a message given to A. When a session accepts, a message
indicating acceptance is given to A. A send message with a new value i (possibly
with null M) creates a new instance at P with pid P ′ (if P �= D).

reveal(P, i): If instance ΠP
i for P ∈ {C,S} has accepted, outputs its session key

sk; otherwise outputs ⊥.

corrupt(P ): Outputs all data held by party P ∈ {D,S}. The state includes σD if
P = D and σS(U) if P = S, but it also includes all temporary session information.
Adversary A gains full control of P , and we say that P is corrupted.

compromise(S,U): Outputs state σS(U) of S. We say that S is U-compromised.

test(P, i): If instance ΠP
i has accepted, for P ∈ {C,S}, this query causes ΠP

i to
flip a random bit b. If b = 1 the instance’s session key sk is output and if b = 0
a string drawn uniformly from the space of session keys is output. A test query
may be asked at any time during the execution of the protocol, but may only be
asked once. We will refer to the party P against which a test query was issued
and to its peer as the target parties.

The following notion taken from [35] is used in the security definition below
to ensure that legitimate messages exchanged between honest parties do not help
the attacker in online password guessing attempts (only adversarially-generated
messages count towards such online attacks). It has similar motivation as the
execute query in [24], but the latter fails to capture the ability of the attacker to
delay and interleave messages from different sessions.
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Rogue send queries: We say that a send(P, i, P ′,M) query is rogue if it was not
generated and/or delivered according to the specification of the protocol, i.e.
message M has been changed or injected by the attacker, or the delivery order
differs from what is stipulated by the protocol (delaying message delivery or
interleaving messages from different sessions is not considered a rogue operation
as long as internal session ordering is preserved). We also consider as rogue any
send(P, i, P ′,M) query where P is uncorrupted and P ′ is corrupted. We call
messages delivered through rogue send queries rogue activations by A, and we
call session which receives rogue mesages rogue session. We denote the number
of rogue sessions of D as qD, of S as qS , the number of rogue sessions of C where
rogue send queries come with the server as the sender as qC , and those where
rogue send queries come with the device as the sender as q′

C .

Matching sessions. Session instances ΠP
i and ΠP ′

j for {P, P ′} = {C,S} are said
to be matching if both have the same session identifier sid (i.e., their transcripts
match), the first has pid = P ′, the second has pid = P , and both have accepted.

Fresh sessions. Session ΠC
i with pid = S is called fresh if none of the queries

corrupt(C), corrupt(S), compromise(S,U), reveal(C, i) or reveal(S, i′) were issued,
where ΠS

i′ is an instance whose session matches ΠC
i . Session ΠS

i with pid = C

is called fresh if none of the queries corrupt(C), reveal(S, i) or reveal(C, i′) were
issued, where ΠC

i′ is an instance whose session matches ΠS
i . Note that ΠS

i can
be fresh even after if query compromise(S,U) or corrupt(S) are issued, as long as
adversary has no access to local information of session ΠS

i .

Correctness. If the adversary forwards all protocol messages then matching ses-
sions between uncorrupted peers output the same session key.

Let DEPAKE be a DE-PAKE protocol and A be an attacker with the above
capabilities running against DEPAKE. Assume that A issues a single test query
against some C or S session and ends its run by outputing bit b′. We say that A

wins if b′ = b where b is the bit chosen by the test session. We define the advantage
of A against DEPAKE as AdvDEPAKE

A = 2 · Pr [A wins against DEPAKE] − 1.

Definition 2. A DE-PAKE protocol is called (qS , qC , q′
C , qD, T, ǫ)-secure if it is

correct, and for any password dictionary Dict of size 2d and any attacker that
runs in time T , the following properties hold:

1. If S and D are uncorrupted, the following bound holds:

AdvDEPAKE

A ≤
min{qC + qS , q′

C + qD}

2d
+ ǫ. (1)

2. If D is corrupted then AdvDEPAKE

A ≤ (qC + qS)/2d + ǫ.
3. If S is corrupted then AdvDEPAKE

A ≤ (q′
C + qD)/2d + ǫ.

4. When both D and S are corrupted, expression (1) holds but qD and qS are
replaced by the number of offline operations performed based on D’s and S’s
state, respectively.
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Strong KCI Resistance: Discussion. DE-PAKE is intended to provide
stronger notion of security in case of server compromise than PAKE. In PAKE
the adversary can authenticate to S in case of U-compromise through an offline
dictionary attack, but in DE-PAKE this is prohibited. To formalize this require-
ment we follow the treatment of KCI resistance from [41] and we strengthen the
attacker capabilities through a more liberal notion of fresh sessions at a server S.
This is why all sessions considered fresh in the PAKE model are also considered
fresh in the DE-PAKE model, but in addition, in the DE-PAKE model a ses-
sion ΠS

i at server S with peer U is considered fresh even if queries corrupt(S) or
compromise(S,U) were issued as long as all other requirements for freshness are
satisfied and the attacker A does not have access to the temporary state informa-
tion created by session ΠS

i . This relaxation of the notion of freshness captures
the case where the attacker A might have corrupted S and gained access to S’s
secrets (including long-term ones), yet A is not actively controlling S during the
generation of session ΠS

i . In this case we would still want to prevent A from
authenticating as U to S on that session. Definition 2 (item 2) ensures that this
is the case for DE-PAKE secure protocols even when unbounded offline attacks
against S are allowed.
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