
ESAIM: PROCEEDINGS AND SURVEYS, September 2014, Vol. 45, p. 349-358

J.-S. Dhersin, Editor

TWO-FLUID COMPRESSIBLE SIMULATIONS ON GPU CLUSTER

Philippe Helluy1 and Jonathan Jung2

Abstract. In this work we propose an efficient finite volume approximation of two-fluid flows. Our
scheme is based on three ingredients. We first construct a conservative scheme that removes the
pressure oscillations phenomenon at the interface. The construction relies on a random sampling at
the interface [5, 6]. Secondly, we replace the exact Riemann solver by a faster relaxation Riemann
solver with good stability properties [4]. Finally, we apply Strang directional splitting and optimized
memory transpositions in order to achieve high performance on Graphics Processing Unit (GPU) or
GPU cluster computations.

Résumé. Nous proposons une méthode de volumes finis efficace pour l’approximation d’écoulements
bifluides. Le schémas est basé sur trois ingrédients. Nous construisons d’abord un schéma conservatif
sans oscillations de pression. La construction repose sur un échantillonnage aléatoire à l’interface.
Ensuite, nous remplaçons le solveur de Riemann exact par un solveur approché de relaxation plus
rapide, et qui possède de bonnes propriétés de stabilité. Finalement, nous appliquons un splitting
directionnel de Strang et des techniques de transposition optimisées en mémoire pour atteindre de
bonnes performances sur GPU ou cluster de GPU.

1. Introduction

We are studying the numerical resolution of a two-fluid compressible fluid flow. The model is the Euler
equations with an additional transport equation of a color function ϕ. The function ϕ is equal to 1 in the gas
and 0 in the liquid. It allows locating the two-fluid interface. We consider the system

∂tW + ∂xF (W) + ∂yG(W) = 0, (1)

where

W = (ρ, ρu, ρv, ρE, ρϕ)T ,

F (W) = (ρu, ρu2 + p, ρuv, (ρE + p)u, ρuϕ)T ,

G(W) = (ρu, ρuv, ρv2 + p, (ρE + p)v, ρvϕ)T .

The pressure law p is a stiffened gas pressure law

p(ρ, e, ϕ) = (γ (ϕ)− 1) ρe− γ (ϕ) p∞ (ϕ) , (2)

1 IRMA, University of Strasbourg; helluy@math.unistra.fr
2 IRMA, University of Strasbourg; jonathan.jung@math.unistra.fr.

c© EDP Sciences, SMAI 2014

Article published online by EDP Sciences and available at http://www.esaim-proc.org or http://dx.doi.org/10.1051/proc/201445036

http://publications.edpsciences.org/
http://www.esaim-proc.org
http://dx.doi.org/10.1051/proc/201445036

350 ESAIM: PROCEEDINGS AND SURVEYS

where e = E − u2+v2

2 , and

(γ, p∞)(ϕ) =

{

(γgas, p∞,gas), if ϕ = 1,

(γliq, p∞,liq), if ϕ = 0.

Recall that the system (1) coupled with the pressure law (2) is hyperbolic on the domain

Ω : =

{

W = (ρ, ρu, ρv, ρE, ρϕ) ∈ R
5, ρ > 0,

ϕ ∈ [0; 1], p

(

ρ,E −
u2 + v2

2
, ϕ

)

+ p∞(ϕ) > 0

}

.

The main point is that the hyperbolic set Ω is generally not convex if p∞,1 6= p∞,2 (see [12]).
Classic conservative finite volume schemes generally produce an artificial diffusion of the mass fraction ϕ. In

the numerical approximation we may observe a mixture zone 1 > ϕ > 0. This artificial mixing zone implies
a loss of velocity and pressure equilibrium at the interface. It is possible to recover a better equilibrium by
relaxing the conservation property of the scheme as in [17].

Independently of the pressure oscillations, problem of stability appears for classic schemes. This comes from
the non-convexity of the hyperbolic set Ω [12]. In this paper, we use a random sampling projection at the
two-fluid interface. It allows preserving the non convex hyperbolic domain. The method was first proposed
in [6] for a particular traffic flow model. It does not introduce a mixture zone and extends the one-dimensional
method described in [2]. More precisely, we construct a numerical scheme that preserves the hyperbolic domain
without diffusion H,

H := Ω0 ∪ Ω1, (3)

where for all ϕ0 ∈ [0; 1], the convex set Ωϕ0
is

Ωϕ0
: =

{

W = (ρ, ρu, ρv, ρE, ρϕ) ∈ R
5, ρ > 0,

ϕ = ϕ0, p

(

ρ,E −
u2 + v2

2
, ϕ

)

+ p∞(ϕ) > 0

}

.

2. An ALE-projection scheme with a random numerical method

2.1. Introduction

In order to compute the two-dimensional numerical solution, we use dimensional splitting. It means that
each time step is split into two stages. In the first stage we solve ∂tW + ∂xF (W) = 0 and in the second stage
we solve ∂tW + ∂yG(W) = 0. In addition, in our application, thanks to the rotational invariance of the Euler
equations, the two resolutions are equivalent if we simply exchange the space variables x and y and the velocity
components u and v. It is thus enough to construct a scheme for solving the one dimensional system

∂tW + ∂xF (W) = 0. (4)

We generalize the Lagrange-projection scheme. We replace the Lagrange step by an Arbitrary Lagrangian
Eulerian step (ALE step). It allows us to switch between a Lagrangian approach at the liquid-gas interface and
a Eulerian approach in the pure phases.

We want solve (4) on [a; b] × R
+. We consider a sequence of times tn, n ∈ N such that the time step

∆tn := tn+1 − tn > 0. We consider also a space step h = b−a
N

, where N is a positive integer. We define the cell

centers by xi = a+
(

i+ 1
2

)

h, i = 0 · · ·N +1. The cell Ci is the interval
]

xi− 1
2
;xi+ 1

2

[

, where xi+ 1
2
= xi+

h
2 . We

ESAIM: PROCEEDINGS AND SURVEYS 351

ALE step:

h

Remapping step:

Figure 1. Structure of the ALE-projection scheme.

now focus on an approximation Wn
i ≈ W (xi; tn). The boundary cell x

i+ 1
2

moves at speed ξn
i+ 1

2

between time tn

and t−n+1

x
n+1,−

i+ 1
2

= xi+ 1
2
+∆tnξ

n
i+ 1

2

.

A time iteration of the ALE-projection scheme includes two steps (see Figure 1):

• the ALE step: with Wn
i on Ci, we obtain W

n+1,−
i on the cell Cn+1,−

i =
]

x
n+1,−

i− 1
2

;xn+1,−

i+ 1
2

[

,

• a projection step to obtain the Euler variables at time tn+1 on the original cell Ci.

We use the notation ·n+1,− to characterize the value of · at time t−n+1, just before the projection step.

2.2. ALE step

2.2.1. Finite volume scheme

Integrating the conservation law (4) on the space-time trapezoid

{

(x, t), x
i− 1

2

+ (t− tn)ξ
n
i− 1

2

< x < x
i+ 1

2

+ (t− tn)ξ
n
i+ 1

2

, tn < t < t−n+1

}

,

we obtain the finite volume scheme

h
n+1,−
i W

n+1,−
i = hWn

i −∆tn

(

F (Wn
i ,W

n
i+1, ξ

n
i+ 1

2

)− F (Wn
i−1,W

n
i , ξ

n
i− 1

2

)
)

, (5)

where h
n+1,−
i = x

n+1,−

i+ 1
2

−x
n+1,−

i− 1
2

= h+∆tn(ξ
n
i+ 1

2

− ξn
i− 1

2

) and F (WL,WR, ξ) is the conservative ALE numerical

flux.

2.2.2. Choice for the velocity ξi+ 1
2

of the boundary xi+ 1
2

The choice consists to move the boundary at the speed of the fluid only at the liquid-gas interface (see Figure
1). It means that

ξn
i+ 1

2

=

{

un
i+ 1

2

if
(

ϕn
i − 1

2

) (

ϕn
i+1 −

1
2

)

< 0,

0 otherwise,

352 ESAIM: PROCEEDINGS AND SURVEYS

where un
i+ 1

2

is the velocity of the contact discontinuity obtained in the resolution of the Riemann problem

∂tW + ∂xF (W) = 0,

W (x, 0) =

{

Wn
i , if x < 0,

Wn
i+1, otherwise.

2.2.3. Numerical flux

In order to compute the numerical fluxes we could use an exact Riemann solver, but it is not adapted
to GPU computations. Indeed, the exact solver algorithm relies on many branch tests, which are not treated
efficiently on GPU compute units. We prefer to use a two-fluid Lagrangian relaxation Riemann solver developed
in [10,12]. It is an adaptation of the entropic one-fluid Eulerian relaxation solver proposed in [4]. The numerical
flux F (WL,WR, ξ) can be written as

F (WL,WR, ξ) =

F (WL)− ξWL, if ξ < uL − aL

ρL

,

F1 − ξW1, if uL − aL

ρL

≤ ξ < u1 = u2,

F2 − ξW2, if u1 = u2 ≤ ξ < uR + aR

ρR

,

F (WR)− ξWR, if uR + aR

ρR

≤ ξ,

, where

W1 = (ρ1, ρ1u1, ρ1v1, ρ1E1, ρ1ϕ1)
T ,

W2 = (ρ2, ρ2u2, ρ2v2, ρ2E2, ρ2ϕ2)
T ,

F1 = u1W1 + (0, π1, 0, π1u1, 0)
T ,

F2 = u2W2 + (0, π2, 0, π2u2, 0)
T ,

with

1
ρ1

= 1
ρL

+ aR(uR−uL)+πL−πR

aL(aL+aR) , 1
ρ2

= 1
ρR

+ aL(uR−uL)+πR−πL

aR(aL+aR) ,

u1 = u2 = πL−πR+aLuL+aRuR

aR+aL

, π1 = π2 = aLπR+aRπL+aLaR(uL−uR)
aL+aR

,

v1 = vL, v2 = vR,

e1 = eL −
π2
L
−π2

1

2a2
L

, e2 = eR −
π2
R
−π2

2

2a2
R

,

E1 = e1 +
u2
1+v2

1

2 , E2 = e2 +
u2
2+v2

2

2 ,

ϕ1 = ϕL, ϕ2 = ϕR,

where aL and aR are defined by

if pR − pL ≥ 0,

aL

ρL

= cL + αmax
(

pR−pL

ρRcR
+ uL − uR, 0

)

,

aR

ρR

= cR + αmax
(

pL−pR

aL

+ uL − uR, 0
)

,
(6)

if pR − pL ≤ 0,

aR

ρR

= cR + αmax
(

pL−pR

ρLcL
+ uL − uR, 0

)

,

aL

ρL

= cL + αmax
(

pR−pL

aR

+ uL − uR, 0
)

,
(7)

with α = 1
2 max

(

γ(ϕL) + 1, γ(ϕR) + 1
)

and where pL, pR, cL et cR are given by

pL = p(ρL, eL, ϕL), cL = c (ρL, eL, ϕL) =
√

γ(ϕL)
pL+p∞(ϕL)

ρL

,

pR = p(ρR, eR, ϕR), cR = c (ρR, eR, ϕR) =
√

γ(ϕR)
pR+p∞(ϕR)

ρR

.

Remark 2.1. Generally, π1 6= p(ρ1, e1, ϕ1) and π2 6= p(ρ2, e2, ϕ2) and it is not possible to write F (WL,WR, ξ) =
F (W∗)− ξW∗ for some W∗ ∈ R

5.

2.3. Projection step

The second part of the time step is needed for returning to the initial mesh. We have to average on the cells

Ci the solution W
n+1,−
i , which is naturally defined on the moved cell Cn+1,−

i =
]

x
n+1,−

i− 1
2

;xn+1,−

i+ 1
2

[

.

ESAIM: PROCEEDINGS AND SURVEYS 353

We consider a pseudo random sequence ωn ∈]0; 1[and we perform a pseudo-random averaging

Wn+1
i =

W
n+1,−
i−1 , si ωn <

ξn
i−

1
2

∆tn

h
,

W
n+1,−
i , si

ξn
i−

1
2

∆tn

h
≤ ωn ≤ 1 +

ξn
i+1

2

∆tn

h
,

W
n+1,−
i+1 , si ωn > 1 +

ξn
i+1

2

∆tn

h
.

(8)

A good choice for the pseudo-random sequence ωn is the (5; 3) van der Corput sequence [7]. Note that the
averaging step has simpler expression if the cell does not touch the liquid gas interface. More precisely, if the
cell is not at the interface, i.e. if

(

ϕ
n+1,−
i −

1

2

)(

ϕ
n+1,−
i+1 −

1

2

)

> 0 and

(

ϕ
n+1,−
i−1 −

1

2

)(

ϕ
n+1,−
i −

1

2

)

> 0,

as the velocities ξn
i− 1

2

and ξn
i+ 1

2

of the boundaries xi− 1
2

and xi+ 1
2

are zero, Cn+1,−
i = Ci and we obtain

Wn+1
i = W

n+1,−
i .

2.4. Properties

Proposition 2.2. Assume that ω follows a uniform law on]0; 1[and that the time step ∆tn satisfies the CFL
condition

∆tn max
i

(

max

(∣

∣

∣

∣

un
i −

ai+ 1
2
,L

ρni

∣

∣

∣

∣

,

∣

∣

∣

∣

un
i+1 +

ai+ 1
2
,R

ρni+1

∣

∣

∣

∣

))

≤
1

2
h,

where ai+ 1
2
,L and ai+ 1

2
,R are given by (6)-(7) with WL = Wn

i and WR = Wn
i+1. The ALE-projection scheme

described above has the following properties:

• it is conservative on Ω0 and Ω1,
• it is statistically conservative on H,

• it is Ω0-stable and satisfies a discrete entropy inequality on Ω0,

• it is Ω1-stable and satisfies a discrete entropy inequality on Ω1,

• it is H-stable and satisfies a statistically discrete entropy inequality on H,

• it preserves constant u and p states at the two-fluid interface.

For precisions or a proof, we refer to [12]. Remark that generally we have ai− 1
2
,R 6= ai+ 1

2
,L. An extension to

second order is proposed in [12].

3. GPU and MPI implementations

3.1. OpenCL and GPU implementation

For performance reasons, we decided to implement the 2D scheme on recent multicore processor architectures,
such as a Graphic Processing Unit (GPU). A modern GPU is made of a global memory (≈ 1 GB) and compute
units (≈ 27). Each compute unit (or work-group in the OpenCL terminology) is made of processing elements
(≈ 8, also called work-items) and a local cache memory (≈16 kB). The same program (a kernel) can be executed
on all the processing elements at the same time. There are some rules to respect. All the processing elements
have access to the global memory but have only access to the local memory of their compute unit. The access
to the global memory is slow while the access to the local memory is fast. The access to global memory is much
faster if two neighboring processing elements read (or write) into two neighboring memory locations, in this
case we speak about "coalescent memory access".

Our OpenCL implementation is described in [10, 12]. We recall only the most important steps of a time
iteration.

354 ESAIM: PROCEEDINGS AND SURVEYS

Hardware Time (s) Speedup

AMD A8 3850 (one core) 527 1
AMD A8 3850 (4 cores) 205 2.6
NVIDIA GeForce 320M 56 9.4
AMD Radeon HD 5850 3 175
AMD Radeon HD 7970 2 263

Table 1. Simulations times on different hardware with single precisions. We observe interest-
ing speedups for the GPU simulations compared to the one-core simulation. We also observe
that OpenCL is still efficient on standard multicore CPU. The test case corresponds to the
computation of 300 time steps of the algorithm on a 1024×512 grid. One numerical flux evalu-
ation corresponds approximately to 500 floating point operations (flop). Four flux evaluations
are needed per cell and per time step. The amount of computations for this test is thus of the
order of 300 Gflop.

• Computation of the CFL time step ∆tn. We compute a local time step (∆tn)i,j on each cell and we use
a reduction algorithm (see [3]) in order to compute ∆tn = min

i,j
(∆tn)i,j .

• We perform the ALE-projection update in x-direction. We compute the fluxes balance in the x-direction
for each cell of each row of the grid: a row or a part of a row is associated to one compute unit and
one cell to one processor. As of October 2012, the OpenCL implementations generally impose a limit
(typically 1024) for the number of work-items inside a work-group [8]. This forces us to split the rows
for some large computations. The values in the cells are then loaded into the local cache memory of
the compute unit. It is then possible to perform the ALE-projection algorithm with all the data into
the cache memory in order to achieve the highest performance. The memory access is coalescent for
reading and writing.

• We transpose the data matrix (exchange x and y) with an optimized memory transfer algorithm [16].
The optimized algorithm includes four steps:

– the data matrix is split into smaller tiles of size 32× 32. Each tile is associated to a compute unit,
– each tile is copied line by line from the global memory to the local memory of the compute unit.

Memory access is coalescent because two successive processors read in two neighboring memory
locations,

– we transpose each 32× 32 tile in the local memory,
– each tile is copied line by line from the local memory to the global memory. The memory access is

coalescent for writing.
• We perform the ALE-projection update in y-direction. The memory access is coalescent because of the

previous transposition,
• We transpose again the data matrix for the next time step.

The repartition of the computational time on each kernel is the following: the ALE-projection steps represents
80%, the transposition 11% and the time step computation 9% of the global time computation.

We observe high efficiency (see Table 1) of the GPU implementation. The efficiency is explained by two
important points.

• We used an optimized transposition algorithm to have coalescent access in x and y directions. Without
this transposition, the computation would be 10 times slower.

• We use a relaxation solver. With this solver, fluxes have a simpler expression than the exact Godunov’s
flux. Indeed, with the relaxation solver fluxes are directly given from the left and right states (see
Section 2.2.3). The exact solver would require solving a non linear equation. This computation involves
many tests and then is not efficient on GPU. We also experiment our scheme with the exact solver on
GPU. The computation with the exact solver is 50 times slower than with the relaxation solver.

ESAIM: PROCEEDINGS AND SURVEYS 355

d-c

GPU 1 GPU 2 GPU 3 GPU 4

Hôte

GPU l-1

GPU l

GPU l+1

Figure 2. On the left: the computational domain is split into 4 subdomains. GPU l performs
the computations for the domain [al−1; al]× [c; d]. On the right: MPI transfers. Between each
iteration, GPU l has to exchange the values on the left and right boundaries with GPUs l − 1
and l+1. On the picture we consider an overlap of 2 cells but for a second order implementation
we need 5 cells.

3.2. MPI

The memory of a GPU is limited, typically to 1 gigabyte (GB), which limits us to a number of cells of the
order of 25, 000, 000. We will couple the parallelization on GPU (using OpenCL) with a subdomain paralleliza-
tion, which uses the Message Passing Interface (MPI) standard. This allows a computation on several GPUs
simultaneously. It will allow us to consider finer meshes and also reduce the computation time [1, 11,13].

We use a standard subdomain decomposition, a GPU is associated to each subdomain. Thanks to MPI
messages, we exchange the values at the subdomains boundaries. As we want a compatible decomposition with
the matrix transpose algorithm, we split the initial domain only along the x-direction (see Figure 2). The
exchanges between two GPUs will occur at each iteration. The GPU number l will exchange information with
GPUs l − 1 and l + 1.

Assume that we have a cluster of L GPUs and consider a two-dimensional computation on the domain
[a; b]× [c; d]. We split the interval [a; b] as

a = a0 < a1 < a2 < · · · < aL = b,

with al = a+ l b−a
L

, for l = 0, · · · , L.

• the computational domain [al; al+1]× [c; d] is associated to the GPU number l + 1,
• each subdomain [al; al+1]× [c; d] is split into (Nx − gap)×Ny cells, where gap ∈ {2; 5} corresponds to

the number of cells in the overlap between subdomains.
– For a one-order computation, we use gap = 2 cells in the overlap: one cell for the fluxes computa-

tions and another one for the Glimm projection (8).
– For a second order computation, we use gap = 5 cells. Indeed, in the ALE step, we couple a

MUSCL method to a Heun’s time integrator, then we need a two-cell overlap (one for the slopes of
the MUSCL method and one for the flux) for each of the two steps of the Heun’s time integration.
We need an additional one-cell overlap for the Glimm projection (8).

• We add gap ∈ {2; 5} columns on the left and right boundaries of each domain (see Figure 2). The GPU
number l performs computations on Nx ×Ny cells.

356 ESAIM: PROCEEDINGS AND SURVEYS

Grid 1 GPU 4 GPUs Speedup

2048 × 2048 14 s 14 s 1
4096 × 2048 22 s 16 s 1.4
4096 × 4096 77 s 60 s 1.3
8192 × 4096 150 s ? 61 s 2.5
16384 × 4096 600 s ? 230 s 2.6

Table 2. Simulations times for the MPI implementation on a cluster of 4 GPUs AMD Radeon
HD7970. The computational domain is [0; 2]× [0; 1]. If the GPU is not fully occupied (meshes
smaller than 4096 × 4096), the computation times on one and on four GPUs are comparable.
However if the GPU is fully occupied, for example for a grid of 16384× 4096, the MPI imple-
mentation goes 2.6 times faster. This computation can not be done on only one GPU, thus
some computation times are only estimated from a simple complexity analysis and marked by
"?".

• we compute the stability condition. We compute the time step ∆tln on each subdomain l and we take

∆tn = min
1≤l≤L

∆tln.

• on each subdomain l = 1, · · · , L
– we associate a processor to each cell,
– we perform the time update under x-direction using the ALE- projection scheme,
– we transpose the data table,
– we perform the y-direction update.

For more details, see [12].
• We perform transfers between subdomains: each domain l sends the gap columns inside the left edge of

the subdomain to the GPU number l−1 and the gap columns inside the right edge of the subdomain to
the GPU number l+1 (see Figure 2). The GPU number l receives the gap columns from GPU number
l − 1 and the gap columns from GPU number l + 1 (see Figure 2).

• On each subdomain l = 1, · · · , L, we transpose the data table so that the data are aligned in memory
according to the x-direction for the next time step.

Remark 3.1. For MPI communications, we need firstly to copy data from each GPU to its host (CPU).
Secondly we send MPI communications between hosts (CPUs). Finally, we copy data from CPU to GPU. As we
perform the MPI communications before the data matrix transposition, memory access is coalescent for reading
and writing.

The MPI implementation allows considering L times finer mesh but is it faster? We test the method on a
cluster of four AMD Radeon HD 7970 GPUs. The MPI communications represents globally 5% of the total
time computation. The speedups are presented in the Table 2. The MPI implementation is faster with a factor
2.6.

4. Numerical result

We now present a two-dimensional test that consists in simulating the impact of a Mach 1.22 shock traveling
through air onto a (cylindrical) bubble of R22 gas. The shock speed is σ = 415 m.s−1. This test aims at
simulating the experiment of [9] and has been considered by several authors [14, 15, 18]. The initial conditions
are depicted in Figure 3: a bubble of R22 is surrounded by air within a Lx ×Ly rectangular domain. At t = 0,
the bubble is at rest and its center is located at (X1, Y1). We denote by r the initial radius of the bubble. The

ESAIM: PROCEEDINGS AND SURVEYS 357

Shock

Post-

shock

Pre-

shock

R22 gas

r

y

x

Quantities Air (post-shock) Air (pre-shock) R22

ρ (kg.m−3) 1.686 1.225 3.863

u (m.s−1) −113.5 0 0

v (m.s−1) 0 0 0

p (Pa) 1.59 × 105 1.01325 × 105 1.01325 × 105

ϕ 0 0 1
γ 1.4 1.4 1.249
p∞ 0 0 0

Figure 3. Air-R22 shock/cylinder interaction test. Description of the initial conditions on the
left and initial data on the right.

planar shock is initially located at x = Ls and moves from right to left towards the bubble. The parameters for
this test are

Lx = 445 mm, Ly = 89 mm, Ls = 275 mm, X1 = 225 mm, Y1 = 44.5 mm, r = 25 mm.

Both R22 and air are modeled by two perfect gases whose coefficients γ and initial states are given in the table
of Figure 3.

The domain is discretized with a 20 000× 5 000 regular mesh. Top and bottom boundary conditions are set
to solid walls while we use constant state boundary conditions for the left and right boundaries. In Figure 4,
we plot the density ρ at the final time t1 = 600µs on the domain [0; 0.445]× [0; 0.089]. The computation needs
3 hours on the four AMD Radeon HD 7970 GPUs cluster. The shocks are well resolved in the air and in the
bubble. We can localize the position of the shock wave that impinges the bubble on the left side of the domain.
On the second figure we zoom on the bubble. On the third one we zoom on the Rayleigh-Taylor instabilities that
appears at the bubble interface. With a coarser mesh, we could not see these instabilities. For other pictures
or for applications to liquid-gas flows, we refer to [10,12].

5. Conclusion

We have proposed a method for computing two-dimensional compressible flows with interface. Our approach
is based on a robust relaxation Riemann solver, coupled with a very simple random choice sampling projection
at the interface. The resulting scheme has properties that are not observed in other conservative schemes of the
literature: it preserves velocity and pressure equilibrium at the two-fluid interface, it is conservative in mean,
it does not diffuse the mass fraction ϕ, it preserves the non convex hyperbolic domain H.

In addition, the algorithm is easy to parallelize on recent multicore architectures. We have implemented the
scheme in the OpenCL environment. Compared to a standard CPU implementation, we observed that the GPU
computations are more than hundred times faster. This factor is essentially due to the optimized transposition
that we perform between x and y update and to the relaxation solver that gives a robust but simple expression
of the numerical fluxes. As the computation is very fast, the limiting factor becomes the memory size of a GPU.
The MPI version permits to treat very fine meshes. We test the code on R22/Air shock bubble interaction,
thanks to a very fine mesh we can observe Rayleigh-Taylor instabilities at the bubble interface.

References

[1] D. Aubert and R. Teyssier. Reionization simulations powered by graphics processing units. i. on the structure of the ultraviolet

radiation field. The Astrophysical Journal, 724:244–266, 2010.
[2] M. Bachmann, P. Helluy, J. Jung, H. Mathis, and S. Müller. Random sampling remap for compressible two-phase flows.

Computers and Fluids, 86:275–283, 2013.
[3] G.E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers, 38(11):1526–1538, 1989.

[4] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for

Sources. Frontiers in Mathematics series, Birkhäuser, 2004.

358 ESAIM: PROCEEDINGS AND SURVEYS

Figure 4. Density at final time t1 = 600µs. On the first picture we represent all the domain,
on the second one we do a zoom on the bubble and on the third we zoom on the Rayleigh-Taylor
instability. On this picture, we can observe the precision of the computation.

[5] C. Chalons and F. Coquel. Computing material fronts with a lagrange-projection approach. HYP2010 Proc., http://hal.

archives-ouvertes.fr/docs/00/54/89/38/PDF/chalons_coquel_hyp2010.pdf, 2010.
[6] C. Chalons and P. Goatin. Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling.

Interfaces and Free Boundaries, 10(2):197–221, 2008.
[7] P. Colella. Glimm’s method for gas dynamics. SIAM, J. Sci. Stat. Comput., 3(1), 1982.

[8] Khronos Group. Opencl online documentation. http://www.khronos.org/opencl/.
[9] J. F. Haas and B Sturtevant. Interaction of weak shock waves with cylindrical ans spherical gas inhomogeneities. J. Fluid

Mechanics, 181:41–71, 1987.

[10] P. Helluy and J. Jung. Opencl simulations of two-fluid compressible flows with a random choice method. IJFV International

Journal On Finite Volumes, 10:1–38, 2013.
[11] D. A. Jacobsen, J.-C. Thibault, and I Senocak. An mpi-cuda implementation for massively parallel incompressible flow com-

putations on multi-gpu clusters. 48th AIAA Aerospace Sciences Meeting and Exhibit, 2010.

[12] J. Jung. Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides. PhD thesis, University of
Strasbourg, 2013.

[13] V. V. Kindratenko, J. Enos, M. T. Showerman, G. W. Arnold, J. E. Stone, J. C. Phillips, and W.-M. Hwu. Gpu clusters for

high- performance computing. Proc. Workshop on Parallel Programming on Accelerator Clusters, IEEE Cluster 2009, pages
1–8, 2009.

[14] S. Kokh and F. Lagoutière. An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by
means of the five-equation model. J. Computational Physics, 229:2773–2809, 2010.

[15] J. J. Quirk and S. Karni. On the dynamics of a shock-bubble interaction. J. Fluid Mechanics, 318:129–163, 1996.
[16] G. Ruetsch and P. Micikevicius. Optimizing matrix transpose in cuda. NVIDIA GPU Computing SDK, pages 1–24, 2009.
[17] R. Saurel and R. Abgrall. A simple method for compressible multifluid flows. SIAM J. Sci. Comput., 21(3):1115–1145, 1999.

[18] K. M. Shyue. A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimen-
sions. J. Comput. Phy., 215:219–244, 2006.

