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Two-fluid Taylor-Couette flow with countercurrent axial flow:
Linear theory for immiscible liquids between corotating cylinders
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We computationally investigate the stability of a pair of radially stratified immiscible liquids
undergoing countercurrent axial flow in the annular gap between rapidly corotating coaxial
cylinders: two-fluid Taylor-Couette flow with counterflow. A simple analysis determines conditions
under which a nearly cylindrical interface is maintained in the presence of countéronaxial
pressure gradientsStability analysis reveals that for small axial Reynolds numbers, the flow is
slightly stabilized against Taylor-Couette instability, consistent with results for a single phase. At
axial Reynolds numbers greater than about ten, however, the flow is susceptiblgeaoeaally
nonaxisymmetric Kelvin-Helmholtz instability, which precedes the Taylor-Couette mode.
Furthermore, new results are presented for the case without axial flow. A bifurcation to vortices that
corotatewith their counterparts in the other phase is found. Finally, limitations of the generalized
Rayleigh criterion developed in our earlier work are elucidated. In particular, we show how it fails
if one of the fluid layers is very thin. @000 American Institute of Physics.
[S1070-663(100)00602-4

I. INTRODUCTION fluid Taylor-Couette flow with countercurrent axial flow is a
_ _ _ very promising configuration for an extraction proc&ss.
Taylor-Couette flow is a centrifugally induced hydrody-  joseptet al. have investigated the stability of rigid rota-

namic instability that occurs in the flow between coaxial cyl-tion of two centrifugally stratified fluids between coaxial cyl-
inders, when the inner cylinder is rotated faster than a criticajnders, in the absence of gravity.They find that a rigid
speed. Although this flow has attracted a great deal of studiterface is linearly stable wheh>1 and is globally stable
since Taylor's pioneering paper in 1923he extension to whenJ;>4, where

the flow of two liquid phases in the same geometry has re-

ceived relatively little attention. Here we extend our previous Ji=—(p1—p2) Q2R3 y

analysié of two radially stratified immiscible fluids to in-

clude countercurrent axial flow of the two phases. andy is the interfacial tensiom; andp, are the densities of
The motivation underlying this study is the developmenty,q inner and outer fluids, respectively, is the rigid body

of design principles for a novel liquid-liquid extractor. yiation rate, andR; is the interface position. For the condi-

Taylor-Couette flow of a single fluid has already found ap-4j present in our extractal,>4.

plications that utilize the vortex motion to increase the per- Renardy and Joseph als'o computationally explored the

formance of mass transfer operations and, in many instanceg,ear stability of two-fluid Couette flow with only inner cyl-

a several-fold increase in filtration and reactor performance,yer rotationt® The results they report are primarily for the

_ 1 .

has been demonstratéd.' These successes suggest that theyitica| axial wave number of the one-fluid problem, which is

same may be expected of a two-fluid analog. Figure 1is @ generally the critical wave number of the two-fluid prob-

schematic of a two-fluid Taylor-Couette liquid extractor. In o They find that two-fluid Taylor-Couette flow may be

this device, the two phases retai_n their indivit_jual _imegritystabilized(destabilize@d by placing the lesgmore viscous

and contact each other only at a single well-defined interfacgy,iq in a layer near the inner cylinder. Also, the denser fluid

Although the interfacial area is small, the vortex motion pro—may be stably located at the inner cylinder when the centrifu-

vides an active surface for mass transfer. In contrast, stalyy) effect is overcome by a favorable combination of surface
dard liquid-liquid extraction processes maximize a relatively;ansion and viscosity difference

inactive surface area by dispersing one phase as small drop- |, rg|ated experimental work, Joseph and co-workers re-
lets in the other phase. Such dispersion based systems a§g several modes for two-fluid flow in a horizontal Couette
often inadequate for liquid pairs that are easily emulsifiablecg| with sealed ends and a stationary outer cylif§éf.The
these arise, for example, in bioseparations that use aqueoy§iqs investigated were viscous oilsilicone, STP, SAE40,
two-phase or reverse micelle §yste’rﬁ$n a companion pa- - yegetable and water, or two viscous oils. The fluid regimes
per experimental and theoretical results fo_r |r_1ter- and iNypserved include(1) an emulsion undergoing one fluid
traphase mass transfer are presented and indicate that tWPéonr-Couette flow,(2) “rollers”—axisymmetric blobs of

oil attached to the inner cylinder—and vortex motion of the
dCorresponding author. Electronic mail: graham@engr.wisc.edu water phase, an€3) axially alternating bands of emulsion
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Taylor vortices perimentally and argued to be a two-fluid analog of rimming
Dense fluid flow instability >3
outlet The effects of axial pressure-driven flow on Taylor-
Light Couette flow of a single fluid phase have been well studied
fluid inlet and provide a starting point for understanding the two-fluid
case. Some intuition about these effects may be gained from
a simple scaling argument. The centrifugal term in the radial
momentum balance scales as the Taylor nunibdhe axial
convection term scales as the axial Reynolds numbegg.Re
As Re, increases;T must increase accordingly to make a
leading order contribution to the radial momentum balance.
Outer cylinder Therefore, we expect the critical Taylor number to scale lin-
early with axial Reynolds number. This expectation is con-
firmed by detailed analysis and experiment. In an approxi-
mate axisymmetric analysis, Chandrasekhar found that axial
flow suppresses Taylor-Couette instability and the axial
and pure fluid. Campero and Vigil observed similar patternsvave number increases with increasing axial fféwg and
in their experiments, which also probed axial flow effééts. Turner computationally observed similar effects for axisym-
Toya and Nakamura studied Taylor-Couette flow of twometric patterns and, at very high axial Reynolds numbers,
fluids in a vertical annulus where the fluids asgially  reported the dominance of a Tollmien-Schlichting shear in-
stratified’® They observe the counterintuitive result that thestability in the boundary layer rather than a Taylor-Couette
bottom vortex in the less dense phase can co-rotate with thestability>®> Howes and Rudman showed numerically that
top vortex in the denser phase: i.e., the radial velocities havior axisymmetric flows, some streamlings a reference
opposite signs near the boundary between the two fluids. Aame traveling with the wave speeolypass the vortex cores
we describe below, an analogous result arises in the radiallgnd flow counter to the prevailing axial flow direction; the
stratified case. center of each vortex travels faster than the axial mean
In addition to the Taylor-Couette instability in two fluid velocity?® Giordano etal. also observed this
Couette flow, several studies have investigated the interfaciaxperimentally’’ At sufficiently high axial flowrates (Rg
shear instability of fluid layers with different viscosities first >20), the flow patterns observed experimentally and pre-
predicted by Yil?® Gallagheret al?! observed azimuthal dicted theoretically are nonaxisymmetfic®® In a nonaxi-
waves in a vertical Couette cell filled with two radially strati- symmetric analysis, Ng and Turner found that axial flow is
fied fluids of matched density, but different viscosity. Only still stabilizing and the axial wave number increases, but
the outer cylinder was rotated to eliminate the possibility ofboth effects are smaller than in the axisymmetric case. Also,
Taylor-Couette instability. The experimentally observednonaxisymmetric Tollmien-Schlichting instability was not
wavelength and onset of the instability agree well with theobserved. The nonaxisymmetric predictions of Ng and
linearized theory as represented by the Orr-Sommerfeld@urner agree well with the experimental observations of
equation for purely azimuthal viscous shear flows of twoSnyder and of Donnelly and Fult2*°A detailed experimen-
fluids. tal map of various flow regimes has been made by Lueptow
Earlier we showed that a special case of two-fluidet al,*! and the stabilizing effect of oscillatory axial motion
Taylor-Couette flow is an experimentally unobservable bi-of the inner cylinder has been demonstrated experimentally
furcation of single-fluid Couette flofRayleigh’s criterio®> by Weisberget al*? and computationally by Marques and
for centrifugal instability was applied to the two-fluid case Lopez®® Incidentally, axial flow also suppresses the vis-
and an axisymmetric linear stability analysis for viscous flu-coelastic analog of Taylor-Couette instability in an inertia-
ids introduced. Because in two-fluid Couette flow the lesdess Oldroyd-B model of a polymer solutidf® the axial
viscous phase always displays the larger angular momentustresses resist the radial deformations required for instability.
gradient, the inviscid analysis predicts that this phase is al- In the present work, we computationally investigate the
ways more susceptible to instability. Because of the interfastability of a pair of radially stratified immiscible liquids
cial boundary conditions, vortex motion will occur in both undergoing countercurrent axial flow in the annular gap be-
phases, but is driven by the “Rayleigh unstable” phase. Atween coaxial corotating cylinders. A simple analysis deter-
viscous analysis further showed that increasing the viscositynines conditions under which a nearly cylindrical interface
of the Rayleigh unstable phase is stabilizing, while increasis maintained in the presence of axial pressure gradients. In
ing the viscosity of the stable phase has little effect. Thethe absence of axial flow, the results from the present study
density ratio also has little effect on the instability. Underagree well with both our earlier wotland with the analysis
experimental conditions where gravity is unimportant, theof Renardy and Josepf Therefore, the assumptions of nar-
experimental and theoretical results agree quantitativelyrow gap, near rigid rotation, and axisymmetry were in fact
showing that the simple inviscid analysis is useful in under-~ery good for the conditions we studied previousKurther-
standing the viscous problem. In experiments where gravitynore, we find no evidence of azimuthal viscous shear insta-
was not negligible, another instability, characterized by ability, in agreement with the experimental observatidifar
longer wavelength “barber pole” pattern, was observed exthe axial counterflow case, at small axial Reynolds numbers,

Dense fluid
inlet

-—C/L

Inner
cylinder

FIG. 1. Schematic of two-fluid Taylor-Couette flow with countercurrent
axial flow.
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we show that the flow is slightly stabilized against the  The azimuthal component of the base flow is two-fluid
Taylor-Couette instability, consistent with results for a singleCouette flow with boundary conditions of no-slip at the cyl-
phase. At axial Reynolds numbers greater than about teimder walls, and continuity of shear stress and velocity at the
however, the flow is susceptible to a Kelvin-Helmholtz in- interface. The resulting Couette solution has only an azi-

stability, which precedes the Taylor-Couette mode. muthal velocity component for each phage=(,2):

Furthermore, new results are presented for the case with-
out axial flow. A bifurcation to vortices thatorotate with _ Riz B

. : . ; Vi=Aj\y+— |+~ 7 1)
their counterparts in the other phase is found. Finally, the e € (y+ Ryale)
limitations of the generalized Rayleigh criterion developed in

. : : . where
our earlier work are elucidated. In particular, we show how it
fails if one of the fluid layers is very thin. A€ won(Qo1—1)€elRyy
=

Il. FORMULATION Riz  Ri— port REi(pmai—1)

The flow domain under consideration is the annular re- (R%—Qi1)€elRy,
gion between a pair of coaxial cylinders of lendth The = T
inner cylinder, with radiugk,, rotates with an angular veloc- 4
ity of Q4. Likewise, the outer cylinder, with radiuR,, ro- _ B
tates at(),. The aspect ratio of the devicelis=L/R;. The B,= ra(Qau~DRiple (i 1)R12/6,
inner (less densefluid contacts only the inner cylinder and Ri;— mor+ (o~ 1R Ryi—1
has densityp,, kinematic viscosityv;, and dynamic viscos-
ity w1=wvyp;. Fluid in this layer flows axially with an im- Al (Q21—1)€e/Ryp
posed volumetric flow rat@;. The base state flow field for 2 PRy 1y R2H+RE (ua—1)
the inner fluid is given byV;=V,(r)e,+W(r)e,. The
outer fluid is described similarly, but with subscripts 1 re- Qi1(R%,— Q5 €lRy,
placed with 2 and with the axial flow in the opposite direc- - Ri,—1 '
tion. The interfacial tension between the two fluidsyisAs
high rotation rates of both cylinders are required to radially 1 QilRizl(QZi— 1R,/ €
stratify the two fluids, gravity is neglected in the present BZZM_ZlBlz R,—1

analysis. We assume that absent any instabilities, the inter-

face is cylindrical, located at radial positid®), and rotates Here Ryi=Ry/Ri, Q2= Q5 / Q4,21 = o/ py, etc., andq)

with an angular velocity; that is determined from the Cou- IS determined from Eq(1).

ette solution shown below. In the presence of axial counter- ~ Similarly, the base axial velocity for each phase is

flow, the interface is actually slightly tapered rather than cy-

lindrical; we compute the extent of taper below, showing that W, =F;

it is negligible for the conditions of interest here. Except in

the calculation of this taper, the finite length of the device isynere

ignored and the computations performed for infinitely long

cylinders. E.o— AP,s (= APz2
The velocities are scaled witf};R,, spatial variables 17AT Oy Eke’ 2 AT Qo Ekoemn;’

with d=R,—R;, time with d*/v,, and pressure with

202R2p, /e, wheree=d/R,. The importance of interfacial

tension is measured by the quantily=(p,— p;) Q3R y.

The radial coordinater,, is transformed into a new variable, )

y=(r—Ry)/d, which is zero at the inner cylinder and oneat |, _ _ (R_lz) G In(R—lz)

the outer. The position of the interfaceyis. 1 1 1 ’

R12

y+T +H

2
R
+Gjln(y+712

i )

2
(F1=m21F2) + 121Gy,

[(F1—F2)(Ryz/€ +Yi)?—F1(Ryo/ €)*+ Fo(1+ Ryp/ €)?— 2(F1— uaF2) (Riz/ € +Yi) [ IN(Ryo/ € +yi) — IN(Ryz/ €)]]

G,=— '
2 IN(1+ Ryp/€)+ (21— 1)IN(Ryz/ € +Yi) = paaln(Rya/ €)
|
Ri2|? R .
€ € ZPjQZdZ
The Ekman number for phageas defined as The axial pressure dropaP,,; andAP,,, are determined
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R, The interface deforms from the flat unperturbed interface at
Heavy fluid y; ash=he@ e+t c ¢ pressure also has the fopn
Hy, Oy =p(y)e'*zcV*tinfyc ¢ The governing equations and
Backil boundary conditions for the disturbance quantities are linear-
ac OW& ized and domain perturbation is used to apply the interfacial
boundary conditions at the unperturbed interface position,
yi, rather than at the actual unknown interface position.

The linearized governing equations are
radial momentum:

Light fluid
ul’ pl
52 1 J
N + S
ay?  (Y+Rule) dy

R, [—iac—l’«jlplj

FIG. 2. Velocity profile for the countercurrent axial base flow. HRi@
_ _ _ _ (1+n?) R V;
=0.826,Q,,=1, u»,=0.22, andy;=0.5. 2 . 12 j
T | tingg o ]
(Yy+Ry,/e€) 2Eki Q1€ (Y+Ry2/€)

by the volumetric flow rates. The flow rate rat@,, is the +iaLWj Vet —2 Riz Vi
(absolute value of theratio between the volumetric flow 2Bk o€ ’ 2Bk 216 (Y+Ryzl€)
rates of the outer and inner phases. 2in 5 R P
Since the axial counterflow is driven by the axial pres- ;. —]Ve i 12 ﬂ:(),
sure drop for the respective phase, the interface is slightly P y+Rple2] ™ T e 2Bk Qg€ gy

tapered rather than cylindrical, as was assumed in the above .
solutions for the base velocities. A perturbation analysis ofZimuthal momentum:
the normal stress boundary condition, neglecting surface ten-

sion, reveals that at rigid rotation in the narrow gap limit: V[—iac—,ujlplj

wfmmﬁ&a%gg 3Py

92 . 1 d
ay?  (Y+Rule) dy

(P Pa)ly-y= ] Far

)Z:O, B (1+n2) ~ 2) - R12 VJ

2
where s+ R; is the maximum radius of the tapered interface. (y+Riole) 2Bk g€ (y+Ruol€)

The maximum taper is then
fiae2 i ly, oA N2
8 A4TRpRe, £K5( ,  Reyy ) 2Ek Qe |0 12Ek Q€
d° 7 (Ap  \MPRey, )
2in
where Rg, ;=|W;|d/v; andW; is the radially averaged base ~ H1P1j (y+Ry,/€)? Vi
axial velocity. The taper increases with increasing axial flow 12
or an increasing difference in the flow rates, but decreases i 2 R

with increasing centrifugal force or increasing density differ- P g TR 7€) 2Bk Qe P =0,
ence. Whery is small, the above solutions using a cylindri-

cal interface aty; are good approximations. For the results axial momentum:

presented in this papef/d<0.04 with['=6.

A typical axial velocity profile for countercurrent axial
flow is shown in Fig. 2. In general the axial velocity at the
interface is nonzero and the result is backflow in one of the
fluid phases. Furthermore, Rayleigh’s theorem for inviscid P \ P

—laC—pj1py;

52 1 d n? )
—+ — —a
ay? (Y+Ride) dy (y+Rye)?

flow profiles with inflection points suggests that the flow +in 2Ek; Q€ (Y+ R12/6)+i“25k1921ewi Vai
might become unstable at sufficiently high axial Reynolds
numbers? Riz W, . 2 Ry

Ve jtiapy— 520 5—P;=0,

+ 2Ek1921€ W ! € 2Ek10216 pJ

A. Stability analysis
. . . continuity:
We now consider the evolution of perturbations to the
base flow; the velocity field isj=Vj+\7] , J=1,2. The dis- Vi IVy in
i ; + Vy
turbance flow is assumed to have the following normal modeéy+R,,/e) dy  (y+Ryle) *
form:

j‘f’iCYVZ’j:O.

The linearized interfacial boundary conditions require that at

Vr,j(y) Y=Yi,
vi=| Voily) | gla@co+ing ¢ o @) vii=vi,,
Vz,j(y)
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2(B1—By)
Vo1~ Vg2 N ——— =
(y+ Ryl €)?
Ri2 (G1—G2)
—V, +—|(F1—Fp)+ ——|=
Vz1— Vgt hi 2|y p )(Fl F2) (y+ Rple)
Nyy Nyy
Ty HaTy +|a(1 M21)Vy 2
(G1—u21G2)
h 2(F1_M21F2)_—2 =
(Yt R/ €)
Ng1 Vo1 3Vaz Vg2
By (ytRple) oy THARGTR )
in(1—puz)

(y+ Rygle) /2

! [( )(1— €)— 20 Eky 2| ot dE:
e €2 a2
1-py P1—P2 21EKg o7y M21 ay
d Q d\?
— (1— 2_ 21 2_ | 2 _n2
+h 2Ri(1 €)eVs 4Ek1Je<a (Ri) (1—n ))
:0,

with the linearized kinematic condition

{

No-slip conditions apply ay=0 andy=1. The equations

—iac
Re

d
+ EiﬂVz‘i‘ia’Wz) :Vr,2-
i

were discretized using Chebyshev collocation: Chebyshev-
Gauss-Lobatto integration points were used for the velocities

and Chebyshev-Gauss points for pressfir@esults here
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1.0
—e— Ek, =8.4*10°

09 —m- EK=26*10"
..A- Ek =5.0*10 STABLE
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Rotation Rate Ratio, Q,
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L4 &
Rayleigh line . A - :
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Interface Position, y,

FIG. 3. The effect of interface position on the critical rotation rate ratio.
Here u,;,=0.69, p,;=1.35; Rg,;=Rey,=0. The numbers represent the
critical axial wave numberg,, to the nearest integer.

RZ
12 (5)

05,<Q = .
e o= (o= DRE,

These criteria predict that independent of interface position,
the less viscous fluid is always the one more susceptible to
instability in inviscid limit. Based on the Rayleigh criterion
[Egs.(4) and(5)], a phase becomes unstable when its Taylor
number becomes positive, as can be seen from the bracketed
terms in the definitions of the Taylor numbers for the two
phases:

[REi— Q] O,

1= (1-R%) EK

were performed with 16 collocation points in each phasegpg
this was found to be more than sufficient for convergence.

The resulting algebraic generalized eigenvalue problem is
solved with a public-domain subroutine that uses QZ

factorization®” Instability occurs when Inf) becomes posi-
tive.

Ill. RESULTS

A. Two-fluid Taylor-Couette flow without axial
countercurrent flow

We begin by reviewing and extending our earlier reults

in the absence of axial flow. Without countercurrent flow, a ) .
tpecome important and can cause ithereviscous layer to be

simple stability criterion can be derived by considering eac

layer to be inviscid but with the viscous Couette flow veloc-

ity profile. Each phase is then subject to a Rayleigh criterio
similar to that for the one fluid caé? where instability
occurs wher),;<R3,. We find that instability occurs in the
inner fluid when

Rit (a1 DR,
M21

(4)

051<Qp1c1=
and in the outer fluid when
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[R%,—Qy] QF
(1-R%) Ek2

It should be noted that for a given geometry and pair of
fluids, the two Taylor numbers are not independent. Further-
more, since(),, is the relevant experimentally tunable pa-
rameter and is the natural bifurcation parameter of the invis-
cid analysis, it is used to represent most of our results.
When the fluids are of equal depth, a full viscous analy-
sis predicts no qualitative differences from the inviscid
analysis? However, when the less viscous fluid layer is suf-
ficiently thin (i.e., wherey; or 1—y; is smal), viscous effects

2=

the less stable phase, contradicting the predictions of the in-
viscid theory. Figure 3 shows the effect of interface position
or u,1=0.69 and several Ekman numbers. Unless otherwise
specified, the results are for operating conditions representa-
tive of our current experimental apparafdsR,=5.05 cm,
R,=0.826, y;=0.5, Q,=8 rev/sec, u,=7.52 cp, p,
=1.15 g/ml, 0.2 ©»,<4.85, 1.26<p,;<1.5, andy~50
dyne/cm, givingl=1939. The Rayleigh criteria for the inner
and outer fluids and the critical axial wave numbeg, are

also shown. From this figure, it is observed tkBtincreas-
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1.0 is valid only at the onset of two-fluid Taylor-Couette flow, it
091 o ggljgf’;j;% - outer phase cannot directly determine supercritical fl.ow behavior. HO\-N.-
e E“zf?ﬁi}gii ever, t_he seco_nd mode t.o go unstable in the linear stability
g 0.8 1 :v' Ekk22;8:4*10-3 analysis can give an |nd|'cat|on of othgr |mpqrtant flow pgt-
S 074 terns. When the two fluids are identical, with equal fluid
2 depths, negligible curvature, and no countercurrent axial
§ 06 1 flow, the linear stability analysis predicts counterrotating
£ o5 . vortices as the primary unstable mode. A corotating vortex
§ *5 state is the second mode to bifurcate and may become stable
04 1 UNSTABLE g 3 at finite amplitude due to mode interacticfidgdowever, this
03 4 \-.v mode is significantly affected by counterflow, as shown for
3 Q,1=1 in Fig. 5. Once Re 3, the first and second modes
0.2 - - , , ' look similar, the difference being which phase has stronger
0.4 0.5 06 0.7 038 0.9 10

vortices. This suggests that countercurrent axial flow suffi-
Radius Ratio, R, ciently affects the problem symmetry that it eliminates coro-
FIG. 4. The effect of radius ratio on the critical rotation rate ratio. Here tating \_lomces‘ From the m_ass transfer point of view, thIS_
1121=0.69, py,=1.35; Rg, ;= Rey, ;= 0. The numbers represent the critical result is fortunate, as the interphase mass transfer rate is
axial wave numberg., to the nearest integer. expected to be highdiO(P€"?), for Pelet number Pe1]
between counterrotating vortices than between corotating
ones[O(P€"3)]. The difference arises because in the latter
ing the Ekman number is stabilizing, as found in our earliercase, there is, roughly speaking, an effective no-slip condi-

work,” and (2) the less viscous phase is the unstable phasgon at the interface, so convective transport is less
until a critical thinness of that layer. The vortices remain gffective3?

approximately square and the axial wave number indicates
which phase is unstable. The abrupt change in wave numbgy Two-fluid Taylor-Couette flow with counterflow
identifies the critical thinness where the switch occurs from _ .
one phase being the unstable phase to the other. Interest- "€ main effects of countercurrent axial flow are sum-
ingly, after the switch the stability is given to a good ap- marized in Figs. 6 and 7. For comparison the single fluid
proximation by the Rayleigh criterion for the thicker, more results of Ng and Tumét are also shown. From these
viscous layer. As the effective viscositfkman number  9raphs the following observations may be madg:At low
increases, the critical thinness required approagie®.5. flow rates there is no effect on the onset of the vortex flow or

As the radius ratio approaches unity, the Rayleigh crite®n the structure of the vortices as described by the axial and
rion predicts that the rotation rate ratio for instability alsoazimuthal wave numberg2) At moderate flow rates the flow
approaches unity. However, viscous effects again becomié slightly stabilized and both wave numbers increase; the
more important as the layers become thinner. The flow igortices become thinner and helical. These results agree
stabilized as the Ekman number increases, which occurdualitatively with similar observations for one-fluid Taylor-
when the viscosity increases, the rotation rafe,X de-  Couette flow’*?>**For both the one- and two-fluid cases the
creases or the gap width decreasRs,{>1). Figure 4 shows relationT.xRe,, holds for the axisymmetric case at moder-
the stabilizing effects of narrowing the gap on increasingate flow rates, in agreement with the scaling argument pre-
Ekman number. sented in the Introductior{3) At higher flow rates, the flow

In addition to the stabilizing effects of Ekman number, is strongly destabilized, particularly with respect to nonaxi-
increasing surface tension slightly stabilizes the system. Susymmetric disturbances, indicating the appearance of another
face tension has a greater effect at higher Ekman numberistability. In the two-fluid problem, this instability is a
although the effect remains small; for Ek8.4x10 3, Kelvin-Helmholtz mode, as we discuss below, and appears
051/Q515-,.—0.982 asJ—0. The dimensionless group When Rg, ~10-100. At sufficiently high Rg, this insta-
measuring the surface tension term in the normal stresBility will occur even at rigid rotation. In contrast, the single
boundary condition is small for the conditions studied herefluid problem is stable to much higher axial Reynolds num-
[Q1/4JEk €(1—pypy) <1]. bers (=7000), where a Tollmien-Schlichting mode appar-

For all of the cases studied, when the Taylor-Couetteently appear$?
instability first appears, vortices paired across the interface Several disturbance stream functions for axisymmetric
counterrotate; i.e., points just across the interface from onlow with Q,;=1 andu,;=0.69 are illustrated in Fig. 8, in
another have very similar velocities. However, at finite am-the reference frame traveling with the wave speedcRe(
plitude, two commercial computational fluid dynamics codesThe stream functions shown are a sum of the disturbance and
(FLUENT andFIDAP, Fluent, Inc., Lebanon, NHpredict that  base state stream functions, with the amplitude of the distur-
the vortex pattern can change to a stable corotation state; i.dance velocities chosen to be comparable with the base state
the sign of the axial velocityrelative to the velocity of the axial velocities. The direction of wave propagation generally
interfacé changes across the interfdceRecall that Toya corresponds to the flow direction in the fluid where the vor-
and Nakamur® observed a similar behavior in axially strati- tices are stronger. The vortices in both phases travel in that
fied two-fluid Couette flow. Since our linear stability analysis same direction, although the flow overall is countercurrent.
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FIG. 5. The stream function, in a ref-
erence frame traveling with the wave
speed, Ref), for the first and second
unstable modes(as (),; decreases
with increasing countercurrent axial
flow. Here «=5.365,n=0, Ek,=8.4
X107%, pp=1, pn=1.0145 Qy
=1, and ), ,=0.679. Positive and
negative values are solid and dashed,
respectively.

<)
o
i
n
™)

As seen in the figures, some streamlines “bypass” the vorteyletely different pattern appears corresponding to the
structure, and a characteristic pattern of stagnation pointstrongly destabilizing mode mentioned above. The stagna-
develops. With increasing axial Reynolds numbers, the vortion point pattern shifts to that characteristic of the Kelvin's
tices become thinner and one vortex appears to be drawn

under its neighbor. At higher Reynolds numbers, a com-
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FIG. 6. The critical Taylor number for one-fluid Taylor-Couette flow with FIG. 7. The critical axial wave number for one-fluid Taylor-Couette flow
axial flow and two-fluid Taylor-Couette flow with countercurrent axial flow. with axial flow and two-fluid Taylor-Couette flow with countercurrent axial
For the two-fluid case,;=1.35, Q,;=1, andu,,=1.0. For the nonaxi- flow. For the two fluid cas@,;=1.35,Q,;=1, andu,;=1.0. For the non-
symmetric cases, the numbers represent the critical azimuthal wave numbexxisymmetric cases, the numbers represent the azimuthal wave number,
n.. Ng and Turner’s one fluid results are fBf,=0.95, 2,=0. Ng and Turner’s one fluid results are fB;,=0.95, Q,=0.
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FIG. 8. Stream functions, in a reference frame traveling with the wave

speed, Rex), for axisymmetric two-fluid Taylor-Couette flow with counter-

current axial flow. Positive and negative values are solid and dashed, respec

tively. The dark line is the interface. Hegs,=1.35, Ek=8.4x10"%, n
=0, Qxu=1, and u,;=0.69. (8 Rey,=0.33, a=4.5, O;=0y
=0.7206, (b) Rey =33, a=5.5, Q=0,,,=0.7181,(c) Re,,=100, a
=75, 0,3=0,,=0.7081, and (d) Rey,=232, a=8, 0,;=0y
=0.7335.

“cat’'s eye” pattern of the Kelvin-Helmholtz instability.

In general, the first derivative of the base state axial flow

Two-fluid Taylor-Couette flow with countercurrent axial flow . . .
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FIG. 9. The effect of unmatched countercurrent flowrates. Hexre= 1.0,
p21=1.35, Ek=5.04x10"%, andQyp, ,-o=0.6024. The numbers repre-
sent the critical axial and azimuthal wave numbegsandn, to the nearest
integer.

the destabilizing effect of decreasin@,; for matched vis-
cosity fluids (u,;=1) and Fig. 10 shows the same effect
with increasingu,, for matched flow rates@,;=1). We
note that, as axial Reynolds number increases, the neutral
curves become extremely flat, and it becomes difficult to
accurately determine the critical wave numbers. This diffi-
culty is reflected in the figures, where significant variations
in the critical azimuthal wave number can be seen.

The effect of Ekman number is shown in Figs. 11 and
12. Note the normalization df},; with the values for zero
counterflow,QZI,R%x’zzo. With increasing viscosity, the sec-
ond instability occurs at a higher average axial velocity, but
at a lower axial Reynolds numbéhe average axial velocity
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is discontinuous at the interface and the flow profile does not

have an inflection point elsewhere. However, the change in
concavity may be measured by the jump in the second de:

rivative  (d°W,/dy*—d*W,/dy?)|,_,. Alternately, this

guantity measures how sharply peaked the vorticity is. As

Q,; decreases withu,, fixed, or asu,; increases withQ,,

fixed, this jump increases and the flow is expected to b

destabilized, consistent with Rayleigh's and /rgdt’s

—_—— e, =0.225Q, 5 =0.7267
—_— ;=069 =0.6473
W, =10 ;Q

—_——y, = L

21Reax.2=0

T =0.6648

> 2971 Reax2=0
—ly, =225 Qpp 5 = 0.7313
=0.7844
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IG. 10. The effect of viscosity ratio on the critical rotation rate with coun-
ercurrent flow.p,=1.35, Ek=5.04x10 3, and Q,;=1. The numbers
represent the critical axial and azimuthal wave numbersandn, to the

theorems? In agreement with this argument, Fig. 9 shows nearest integer.
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FIG. 11. The eff f vi i n the critical rotation r ith nter- . .
cu(rBrent fl ower: e:;tj rc; dVE;O:)I(?;IOR etys Oletlﬁsmg;?;IOsz;iglgg counte FIG. 13. The effect of surface tension on the onset of the Kelvin-Helmholtz
; 2% P instability. Hereu,;=0.69, p,;=1.35, andQ,;=1. The numbers represent

=1.35, andQ,,=1. The numbers represent the critical axial and azimuthal ", . .
: the critical axial and azimuthal wave numbegs and n. to the nearest
wave numbersy, andn, to the nearest integer. integer

S.C""IEd .by wscosﬂ)y.The. flow IS alsp more axisymmetric o cyrrent flow rates, the axial flow is stabilizing and the

(ie., N IS smglle} with higher viscosity f|UIdS.' pattern is axisymmetric; at higher rates both the axial and
Finally, Fig. 13 shows that surface tension SUPPresseg, i ihal wave numbers increase. At higher countercurrent

the _Kelvm-HeImhoItz instability as expegted frpm Other fow rates a Kelvin-Helmholtz instability appears, preceding

studies’®** Also apparent from the values in the figure leg- ;o Taylor-Couette instability

end is the very slight stabilizing effect of surface tension in '

. asl;
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