
PHYSICS OF FLUIDS VOLUME 12, NUMBER 2 FEBRUARY 2000
Two-fluid Taylor-Couette flow with countercurrent axial flow:
Linear theory for immiscible liquids between corotating cylinders

Gretchen Baier and Michael D. Grahama)

Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691

~Received 7 July 1999; accepted 20 October 1999!

We computationally investigate the stability of a pair of radially stratified immiscible liquids
undergoing countercurrent axial flow in the annular gap between rapidly corotating coaxial
cylinders: two-fluid Taylor-Couette flow with counterflow. A simple analysis determines conditions
under which a nearly cylindrical interface is maintained in the presence of counterflow~i.e., axial
pressure gradients!. Stability analysis reveals that for small axial Reynolds numbers, the flow is
slightly stabilized against Taylor-Couette instability, consistent with results for a single phase. At
axial Reynolds numbers greater than about ten, however, the flow is susceptible to a~generally
nonaxisymmetric! Kelvin-Helmholtz instability, which precedes the Taylor-Couette mode.
Furthermore, new results are presented for the case without axial flow. A bifurcation to vortices that
corotatewith their counterparts in the other phase is found. Finally, limitations of the generalized
Rayleigh criterion developed in our earlier work are elucidated. In particular, we show how it fails
if one of the fluid layers is very thin. ©2000 American Institute of Physics.
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I. INTRODUCTION

Taylor-Couette flow is a centrifugally induced hydrod
namic instability that occurs in the flow between coaxial c
inders, when the inner cylinder is rotated faster than a crit
speed. Although this flow has attracted a great deal of st
since Taylor’s pioneering paper in 1923,1 the extension to
the flow of two liquid phases in the same geometry has
ceived relatively little attention. Here we extend our previo
analysis2 of two radially stratified immiscible fluids to in
clude countercurrent axial flow of the two phases.

The motivation underlying this study is the developme
of design principles for a novel liquid-liquid extracto
Taylor-Couette flow of a single fluid has already found a
plications that utilize the vortex motion to increase the p
formance of mass transfer operations and, in many instan
a several-fold increase in filtration and reactor performa
has been demonstrated.3–11 These successes suggest that
same may be expected of a two-fluid analog. Figure 1
schematic of a two-fluid Taylor-Couette liquid extractor.
this device, the two phases retain their individual integr
and contact each other only at a single well-defined interfa
Although the interfacial area is small, the vortex motion p
vides an active surface for mass transfer. In contrast, s
dard liquid-liquid extraction processes maximize a relativ
inactive surface area by dispersing one phase as small d
lets in the other phase. Such dispersion based system
often inadequate for liquid pairs that are easily emulsifiab
these arise, for example, in bioseparations that use aqu
two-phase or reverse micelle systems.12 In a companion pa-
per experimental and theoretical results for inter- and
traphase mass transfer are presented and indicate that

a!Corresponding author. Electronic mail: graham@engr.wisc.edu
2941070-6631/2000/12(2)/294/10/$17.00
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fluid Taylor-Couette flow with countercurrent axial flow is
very promising configuration for an extraction process.13

Josephet al. have investigated the stability of rigid rota
tion of two centrifugally stratified fluids between coaxial cy
inders, in the absence of gravity.14 They find that a rigid
interface is linearly stable whenJi.1 and is globally stable
whenJi.4, where

Ji52~r12r2!V2Ri
3/g

andg is the interfacial tension,r1 andr2 are the densities o
the inner and outer fluids, respectively,V is the rigid body
rotation rate, andRi is the interface position. For the cond
tions present in our extractor,Ji@4.

Renardy and Joseph also computationally explored
linear stability of two-fluid Couette flow with only inner cyl
inder rotation.15 The results they report are primarily for th
critical axial wave number of the one-fluid problem, which
not generally the critical wave number of the two-fluid pro
lem. They find that two-fluid Taylor-Couette flow may b
stabilized~destabilized! by placing the less~more! viscous
fluid in a layer near the inner cylinder. Also, the denser flu
may be stably located at the inner cylinder when the centr
gal effect is overcome by a favorable combination of surfa
tension and viscosity difference.

In related experimental work, Joseph and co-workers
port several modes for two-fluid flow in a horizontal Coue
cell with sealed ends and a stationary outer cylinder.16,17The
fluids investigated were viscous oils~silicone, STP, SAE40,
vegetable! and water, or two viscous oils. The fluid regime
observed include~1! an emulsion undergoing one flui
Taylor-Couette flow,~2! ‘‘rollers’’—axisymmetric blobs of
oil attached to the inner cylinder—and vortex motion of t
water phase, and~3! axially alternating bands of emulsio
© 2000 American Institute of Physics
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295Phys. Fluids, Vol. 12, No. 2, February 2000 Two-fluid Taylor-Couette flow with countercurrent axial flow . . .
and pure fluid. Campero and Vigil observed similar patte
in their experiments, which also probed axial flow effects18

Toya and Nakamura studied Taylor-Couette flow of tw
fluids in a vertical annulus where the fluids areaxially
stratified.19 They observe the counterintuitive result that t
bottom vortex in the less dense phase can co-rotate with
top vortex in the denser phase: i.e., the radial velocities h
opposite signs near the boundary between the two fluids
we describe below, an analogous result arises in the rad
stratified case.

In addition to the Taylor-Couette instability in two flui
Couette flow, several studies have investigated the interfa
shear instability of fluid layers with different viscosities fir
predicted by Yih.20 Gallagheret al.21 observed azimutha
waves in a vertical Couette cell filled with two radially stra
fied fluids of matched density, but different viscosity. On
the outer cylinder was rotated to eliminate the possibility
Taylor-Couette instability. The experimentally observ
wavelength and onset of the instability agree well with t
linearized theory as represented by the Orr-Sommer
equation for purely azimuthal viscous shear flows of t
fluids.

Earlier we showed that a special case of two-flu
Taylor-Couette flow is an experimentally unobservable
furcation of single-fluid Couette flow.2 Rayleigh’s criterion22

for centrifugal instability was applied to the two-fluid ca
and an axisymmetric linear stability analysis for viscous fl
ids introduced. Because in two-fluid Couette flow the le
viscous phase always displays the larger angular momen
gradient, the inviscid analysis predicts that this phase is
ways more susceptible to instability. Because of the inte
cial boundary conditions, vortex motion will occur in bo
phases, but is driven by the ‘‘Rayleigh unstable’’ phase
viscous analysis further showed that increasing the visco
of the Rayleigh unstable phase is stabilizing, while incre
ing the viscosity of the stable phase has little effect. T
density ratio also has little effect on the instability. Und
experimental conditions where gravity is unimportant, t
experimental and theoretical results agree quantitativ
showing that the simple inviscid analysis is useful in und
standing the viscous problem. In experiments where gra
was not negligible, another instability, characterized by
longer wavelength ‘‘barber pole’’ pattern, was observed

FIG. 1. Schematic of two-fluid Taylor-Couette flow with countercurre
axial flow.
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perimentally and argued to be a two-fluid analog of rimmi
flow instability.2,23

The effects of axial pressure-driven flow on Taylo
Couette flow of a single fluid phase have been well stud
and provide a starting point for understanding the two-flu
case. Some intuition about these effects may be gained f
a simple scaling argument. The centrifugal term in the rad
momentum balance scales as the Taylor numberT. The axial
convection term scales as the axial Reynolds number Rax.
As Reax increases,T must increase accordingly to make
leading order contribution to the radial momentum balan
Therefore, we expect the critical Taylor number to scale l
early with axial Reynolds number. This expectation is co
firmed by detailed analysis and experiment. In an appro
mate axisymmetric analysis, Chandrasekhar found that a
flow suppresses Taylor-Couette instability and the ax
wave number increases with increasing axial flow.24 Ng and
Turner computationally observed similar effects for axisy
metric patterns and, at very high axial Reynolds numbe
reported the dominance of a Tollmien-Schlichting shear
stability in the boundary layer rather than a Taylor-Coue
instability.25 Howes and Rudman showed numerically th
for axisymmetric flows, some streamlines~in a reference
frame traveling with the wave speed! bypass the vortex core
and flow counter to the prevailing axial flow direction; th
center of each vortex travels faster than the axial m
velocity.26 Giordano et al. also observed this
experimentally.27 At sufficiently high axial flowrates (Reax

.20), the flow patterns observed experimentally and p
dicted theoretically are nonaxisymmetric.25,28 In a nonaxi-
symmetric analysis, Ng and Turner found that axial flow
still stabilizing and the axial wave number increases,
both effects are smaller than in the axisymmetric case. A
nonaxisymmetric Tollmien-Schlichting instability was n
observed. The nonaxisymmetric predictions of Ng a
Turner agree well with the experimental observations
Snyder and of Donnelly and Fultz.29,30A detailed experimen-
tal map of various flow regimes has been made by Luep
et al.,31 and the stabilizing effect of oscillatory axial motio
of the inner cylinder has been demonstrated experiment
by Weisberget al.32 and computationally by Marques an
Lopez.33 Incidentally, axial flow also suppresses the v
coelastic analog of Taylor-Couette instability in an inert
less Oldroyd-B model of a polymer solution;34,35 the axial
stresses resist the radial deformations required for instabi

In the present work, we computationally investigate t
stability of a pair of radially stratified immiscible liquid
undergoing countercurrent axial flow in the annular gap
tween coaxial corotating cylinders. A simple analysis det
mines conditions under which a nearly cylindrical interfa
is maintained in the presence of axial pressure gradients
the absence of axial flow, the results from the present st
agree well with both our earlier work2 and with the analysis
of Renardy and Joseph.15 Therefore, the assumptions of na
row gap, near rigid rotation, and axisymmetry were in fa
very good for the conditions we studied previously.2 Further-
more, we find no evidence of azimuthal viscous shear in
bility, in agreement with the experimental observations.2 For
the axial counterflow case, at small axial Reynolds numb
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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296 Phys. Fluids, Vol. 12, No. 2, February 2000 G. Baier and M. D. Graham
we show that the flow is slightly stabilized against t
Taylor-Couette instability, consistent with results for a sing
phase. At axial Reynolds numbers greater than about
however, the flow is susceptible to a Kelvin-Helmholtz i
stability, which precedes the Taylor-Couette mode.

Furthermore, new results are presented for the case w
out axial flow. A bifurcation to vortices thatcorotatewith
their counterparts in the other phase is found. Finally,
limitations of the generalized Rayleigh criterion developed
our earlier work are elucidated. In particular, we show how
fails if one of the fluid layers is very thin.

II. FORMULATION

The flow domain under consideration is the annular
gion between a pair of coaxial cylinders of lengthL. The
inner cylinder, with radiusR1, rotates with an angular veloc
ity of V1. Likewise, the outer cylinder, with radiusR2, ro-
tates atV2. The aspect ratio of the device isG5L/R1. The
inner ~less dense! fluid contacts only the inner cylinder an
has densityr1, kinematic viscosityn1, and dynamic viscos-
ity m15n1r1. Fluid in this layer flows axially with an im-
posed volumetric flow rateQ1. The base state flow field fo
the inner fluid is given byV15V1(r )eu1W1(r )ez . The
outer fluid is described similarly, but with subscripts 1 r
placed with 2 and with the axial flow in the opposite dire
tion. The interfacial tension between the two fluids isg. As
high rotation rates of both cylinders are required to radia
stratify the two fluids, gravity is neglected in the prese
analysis. We assume that absent any instabilities, the in
face is cylindrical, located at radial positionRi , and rotates
with an angular velocityV i that is determined from the Cou
ette solution shown below. In the presence of axial coun
flow, the interface is actually slightly tapered rather than
lindrical; we compute the extent of taper below, showing t
it is negligible for the conditions of interest here. Except
the calculation of this taper, the finite length of the device
ignored and the computations performed for infinitely lo
cylinders.

The velocities are scaled withV1R1, spatial variables
with d5R22R1, time with d2/n1, and pressure with
2V1

2R1
2r1 /e, wheree5d/R2. The importance of interfacia

tension is measured by the quantityJ5(r22r1)V2
2R2

3/g.
The radial coordinate,r, is transformed into a new variable
y5(r 2R1)/d, which is zero at the inner cylinder and one
the outer. The position of the interface isyi .
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The azimuthal component of the base flow is two-flu
Couette flow with boundary conditions of no-slip at the cy
inder walls, and continuity of shear stress and velocity at
interface. The resulting Couette solution has only an a
muthal velocity component for each phase (j 51,2):

Vj5Aj S y1
R12

e D1
Bj

~y1 R12/e!
, ~1!

where

A15
e

R12
2

m21~V2121!e/R12

R12
2 2m211R1i

2 ~m2121!

5
~R1i

2 2V i1!e/R12

R1i
2 21

,

B15
m21~V2121!R12/e

R12
2 2m211~m2121!R1i

2
5

~V i121!R12/e

R1i21
,

A25V21

e

R12
2

~V2121!e/R12

12m21R21
2 1R2i

2 ~m2121!

5
V i1~Ri2

2 2V2i !e/R12

Ri221
,

B25
1

m21
B15

V i1Ri1
2 ~V2i21!R12/e

Ri221
.

Here R1i5R1 /Ri ,V215V2 /V1 ,m215m2 /m1, etc., andV i

is determined from Eq.~1!.
Similarly, the base axial velocity for each phase is

Wj5F j S y1
R12

e D 2

1Gj lnS y1
R12

e D1H j , ~2!

where

F15
DPz,1

4GV21Ek1e
, F25

DPz,2

4GV21Ek2em21
,

G1522S R12

e
1yi D 2

~F12m21F2!1m21G2 ,

H152F1S R12

e D 2

2G1lnS R12

e D ,
G252
@~F12F2!~R12/e 1yi !

22F1~R12/e!21F2~11R12/e!222~F12m21F2!~R12/e 1yi !
2@ ln~R12/e 1yi !2 ln~R12/e!##

ln~11 R12/e!1~m2121!ln~R12/e 1yi !2m21ln~R12/e!
,

H252F2S 11
R12

e D 2

2G2lnS 11
R12

e D .

The Ekman number for phasej is defined as
Ekj5
m j

2r jV2d2
.

The axial pressure drops,DPz,1 and DPz,2 , are determined
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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297Phys. Fluids, Vol. 12, No. 2, February 2000 Two-fluid Taylor-Couette flow with countercurrent axial flow . . .
by the volumetric flow rates. The flow rate ratioQ21 is the
~absolute value of the! ratio between the volumetric flow
rates of the outer and inner phases.

Since the axial counterflow is driven by the axial pre
sure drop for the respective phase, the interface is slig
tapered rather than cylindrical, as was assumed in the ab
solutions for the base velocities. A perturbation analysis
the normal stress boundary condition, neglecting surface
sion, reveals that at rigid rotation in the narrow gap limit:

~P12P2!uy5yi
5S ~r22r1!V2

2R2d

L
1S ]P2

]z
2

]P1

]z D D z50,

whered1Ri is the maximum radius of the tapered interfac
The maximum taper is then

d

d
5

4GR12Reax,2Ek2
2

~12r12!
S m12

2 r21

Reax,1

Reax,2
11D ,

where Reax,j5uWj̄ ud/n j andWj̄ is the radially averaged bas
axial velocity. The taper increases with increasing axial fl
or an increasing difference in the flow rates, but decrea
with increasing centrifugal force or increasing density diffe
ence. Whend is small, the above solutions using a cylindr
cal interface atyi are good approximations. For the resu
presented in this paper,d/d,0.04 withG56.

A typical axial velocity profile for countercurrent axia
flow is shown in Fig. 2. In general the axial velocity at th
interface is nonzero and the result is backflow in one of
fluid phases. Furthermore, Rayleigh’s theorem for invis
flow profiles with inflection points suggests that the flo
might become unstable at sufficiently high axial Reyno
numbers.22

A. Stability analysis

We now consider the evolution of perturbations to t
base flow; the velocity field isvj5V j1 v̂j , j 51,2. The dis-
turbance flow is assumed to have the following normal mo
form:

v̂j5S v r , j~y!

vu, j~y!

vz, j~y!
D eia(z2ct)1 inu1c.c. ~3!

FIG. 2. Velocity profile for the countercurrent axial base flow. HereR12

50.826,Q2151, m2150.22, andyi50.5.
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The interface deforms from the flat unperturbed interface
yi as ĥ5heia(z2ct)1 inu1c.c. Pressure also has the formp̂
5p(y)eia(z2ct)1 inu1c. c. The governing equations an
boundary conditions for the disturbance quantities are line
ized and domain perturbation is used to apply the interfa
boundary conditions at the unperturbed interface positi
yi , rather than at the actual unknown interface position.

The linearized governing equations are
radial momentum:

F2 iac2m j 1r1 j S ]2

]y2
1

1

~y1R12/e!

]

]y

2
~11n2!

~y1R12/e!2
2a2D 1 in

R12

2Ek1V21e

Vj

~y1R12/e!

1 ia
R12

2Ek1V21e
Wj Gv r , j1F22

R12

2Ek1V21e

Vj

~y1R12/e!

1m j 1r1 j

2in

~y1R12/e!2Gvu, j1r1 j

2

e

R12

2Ek1V21e

]pj

]y
50,

azimuthal momentum:

F2 iac2m j 1r1 j S ]2

]y2
1

1

~y1R12/e!

]

]y

2
~11n2!

~y1R12/e!2
2a2D 1 in

R12

2Ek1V21e

Vj

~y1R12/e!

1 ia
R12

2Ek1V21e
Wj Gvu, j1F2Aj

R12

2Ek1V21e

2m j 1r1 j

2in

~y1R12/e!2Gv r , j

1 inr1 j

2

e~y1R12/e!

R12

2Ek1V21e
pj50,

axial momentum:

F2 iac2m j 1r1 j S ]2

]y2
1

1

~y1R12/e!

]

]y
2

n2

~y1R12/e!2
2a2D

1 in
R12

2Ek1V21e

Vj

~y1R12/e!
1 ia

R12

2Ek1V21e
Wj Gvz, j

1
R12

2Ek1V21e

]Wj

]y
v r , j1 iar1 j

2

e

R12

2Ek1V21e
pj50,

continuity:

v r , j

~y1R12/e!
1

]v r , j

]y
1

in

~y1R12/e!
vu, j1 iavz, j50.

The linearized interfacial boundary conditions require tha
y5yi ,

v r ,15v r ,2 ,
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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vu,12vu,22hF 2~B12B2!

~y1R12/e!2G50,

vz,12vz,21hF2S y1
R12

e D ~F12F2!1
~G12G2!

~y1 R12/e!G50,

]vz,1

]y
2m21

]vz,1

]y
1 ia~12m21!v r ,2

1hF2~F12m21F2!2
~G12m21G2!

~y1R12/e!2 G50,

]vu,1

]y
2

vu,1

~y1R12/e!
2m21

]vu,2

]y
1m21

vu,2

~y1R12/e!

1
in~12m21!

~y1 R12/e!
v r ,250,

1

12r21
F ~p12p2!~12e!22V21Ek1e2S ]v r ,1

]y
2m21

]v r ,2

]y D G
1hF d

2Ri
~12e!eV2

22
V21

4Ek1Je S a22S d

Ri
D 2

~12n2! D G
50,

with the linearized kinematic condition

hS 2 iac

Re1
1

d

Ri
inV21 iaW2D5v r ,2 .

No-slip conditions apply aty50 andy51. The equations
were discretized using Chebyshev collocation: Chebysh
Gauss-Lobatto integration points were used for the veloci
and Chebyshev-Gauss points for pressure.36 Results here
were performed with 16 collocation points in each pha
this was found to be more than sufficient for convergen
The resulting algebraic generalized eigenvalue problem
solved with a public-domain subroutine that uses Q
factorization.37 Instability occurs when Im(c) becomes posi-
tive.

III. RESULTS

A. Two-fluid Taylor-Couette flow without axial
countercurrent flow

We begin by reviewing and extending our earlier resu2

in the absence of axial flow. Without countercurrent flow
simple stability criterion can be derived by considering ea
layer to be inviscid but with the viscous Couette flow velo
ity profile. Each phase is then subject to a Rayleigh criter
similar to that for the one fluid case,22,2 where instability
occurs whenV21,R12

2 . We find that instability occurs in the
inner fluid when

V21,V21,c,15
R12

2 1~m2121!R1i
2

m21
~4!

and in the outer fluid when
Downloaded 08 Mar 2007 to 128.104.198.190. Redistribution subject to A
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V21,V21,c,25
R12

2

m212~m2121!R1i
2

. ~5!

These criteria predict that independent of interface positi
the less viscous fluid is always the one more susceptibl
instability in inviscid limit. Based on the Rayleigh criterio
@Eqs.~4! and~5!#, a phase becomes unstable when its Tay
number becomes positive, as can be seen from the brack
terms in the definitions of the Taylor numbers for the tw
phases:

T15
@R1i

2 2V i1#

~12R1i
2 !

V12
2

Ek1
2

and

T25
@Ri2

2 2V2i #

~12Ri2
2 !

V i2
2

Ek2
2

.

It should be noted that for a given geometry and pair
fluids, the two Taylor numbers are not independent. Furth
more, sinceV21 is the relevant experimentally tunable p
rameter and is the natural bifurcation parameter of the in
cid analysis, it is used to represent most of our results.

When the fluids are of equal depth, a full viscous ana
sis predicts no qualitative differences from the invisc
analysis.2 However, when the less viscous fluid layer is su
ficiently thin ~i.e., whereyi or 12yi is small!, viscous effects
become important and can cause themoreviscous layer to be
the less stable phase, contradicting the predictions of the
viscid theory. Figure 3 shows the effect of interface positi
for m2150.69 and several Ekman numbers. Unless otherw
specified, the results are for operating conditions represe
tive of our current experimental apparatus:13 R255.05 cm,
R1250.826, yi50.5, V258 rev/sec, m257.52 cp, r2

51.15 g/ml, 0.22,m21,4.85, 1.20,r21,1.5, andg'50
dyne/cm, givingJ51939. The Rayleigh criteria for the inne
and outer fluids and the critical axial wave number,ac , are
also shown. From this figure, it is observed that~1! increas-

FIG. 3. The effect of interface position on the critical rotation rate rat
Here m2150.69, r2151.35; Reax,15Reax,250. The numbers represent th
critical axial wave number,ac , to the nearest integer.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ing the Ekman number is stabilizing, as found in our ear
work,2 and ~2! the less viscous phase is the unstable ph
until a critical thinness of that layer. The vortices rema
approximately square and the axial wave number indica
which phase is unstable. The abrupt change in wave num
identifies the critical thinness where the switch occurs fr
one phase being the unstable phase to the other. Inte
ingly, after the switch the stability is given to a good a
proximation by the Rayleigh criterion for the thicker, mo
viscous layer. As the effective viscosity~Ekman number!
increases, the critical thinness required approachesyi50.5.

As the radius ratio approaches unity, the Rayleigh cr
rion predicts that the rotation rate ratio for instability al
approaches unity. However, viscous effects again bec
more important as the layers become thinner. The flow
stabilized as the Ekman number increases, which oc
when the viscosity increases, the rotation rate (V2) de-
creases or the gap width decreases (R12→1). Figure 4 shows
the stabilizing effects of narrowing the gap on increas
Ekman number.

In addition to the stabilizing effects of Ekman numbe
increasing surface tension slightly stabilizes the system. S
face tension has a greater effect at higher Ekman numb
although the effect remains small; for Ek258.431023,
V21/V21,J5`→0.982 asJ→0. The dimensionless grou
measuring the surface tension term in the normal st
boundary condition is small for the conditions studied h
@V21/4JEk1e(12r21),1#.

For all of the cases studied, when the Taylor-Coue
instability first appears, vortices paired across the interf
counterrotate; i.e., points just across the interface from
another have very similar velocities. However, at finite a
plitude, two commercial computational fluid dynamics cod
~FLUENT and FIDAP, Fluent, Inc., Lebanon, NH! predict that
the vortex pattern can change to a stable corotation state
the sign of the axial velocity~relative to the velocity of the
interface! changes across the interface.13 Recall that Toya
and Nakamura19 observed a similar behavior in axially strat
fied two-fluid Couette flow. Since our linear stability analys

FIG. 4. The effect of radius ratio on the critical rotation rate ratio. He
m2150.69, r2151.35; Reax,15Reax,250. The numbers represent the critic
axial wave number,ac , to the nearest integer.
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is valid only at the onset of two-fluid Taylor-Couette flow,
cannot directly determine supercritical flow behavior. Ho
ever, the second mode to go unstable in the linear stab
analysis can give an indication of other important flow p
terns. When the two fluids are identical, with equal flu
depths, negligible curvature, and no countercurrent a
flow, the linear stability analysis predicts counterrotati
vortices as the primary unstable mode. A corotating vor
state is the second mode to bifurcate and may become s
at finite amplitude due to mode interactions.38 However, this
mode is significantly affected by counterflow, as shown
Q2151 in Fig. 5. Once Re.3, the first and second mode
look similar, the difference being which phase has stron
vortices. This suggests that countercurrent axial flow su
ciently affects the problem symmetry that it eliminates co
tating vortices. From the mass transfer point of view, t
result is fortunate, as the interphase mass transfer rat
expected to be higher@O(Pe1/2), for Péclet number Pe@1]
between counterrotating vortices than between corota
ones@O(Pe1/3)#. The difference arises because in the lat
case, there is, roughly speaking, an effective no-slip con
tion at the interface, so convective transport is le
effective.39

B. Two-fluid Taylor-Couette flow with counterflow

The main effects of countercurrent axial flow are su
marized in Figs. 6 and 7. For comparison the single fl
results of Ng and Turner25 are also shown. From thes
graphs the following observations may be made:~1! At low
flow rates there is no effect on the onset of the vortex flow
on the structure of the vortices as described by the axial
azimuthal wave numbers.~2! At moderate flow rates the flow
is slightly stabilized and both wave numbers increase;
vortices become thinner and helical. These results ag
qualitatively with similar observations for one-fluid Taylo
Couette flow.24,25,28For both the one- and two-fluid cases th
relationTc}Reax holds for the axisymmetric case at mode
ate flow rates, in agreement with the scaling argument p
sented in the Introduction.~3! At higher flow rates, the flow
is strongly destabilized, particularly with respect to nona
symmetric disturbances, indicating the appearance of ano
instability. In the two-fluid problem, this instability is a
Kelvin-Helmholtz mode, as we discuss below, and appe
when Reax,2'10–100. At sufficiently high Reax, this insta-
bility will occur even at rigid rotation. In contrast, the sing
fluid problem is stable to much higher axial Reynolds nu
bers ('7000), where a Tollmien-Schlichting mode appa
ently appears.25

Several disturbance stream functions for axisymme
flow with Q2151 andm2150.69 are illustrated in Fig. 8, in
the reference frame traveling with the wave speed Re(c).
The stream functions shown are a sum of the disturbance
base state stream functions, with the amplitude of the dis
bance velocities chosen to be comparable with the base
axial velocities. The direction of wave propagation genera
corresponds to the flow direction in the fluid where the v
tices are stronger. The vortices in both phases travel in
same direction, although the flow overall is countercurre
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 5. The stream function, in a ref
erence frame traveling with the wav
speed, Re(c), for the first and second
unstable modes~as V21 decreases!
with increasing countercurrent axia
flow. Herea55.365, n50, Ek258.4
31024, m2151, r2151.0145, Q21

51, and V21,c50.679. Positive and
negative values are solid and dashe
respectively.
te
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As seen in the figures, some streamlines ‘‘bypass’’ the vor
structure, and a characteristic pattern of stagnation po
develops. With increasing axial Reynolds numbers, the v
tices become thinner and one vortex appears to be dr
under its neighbor. At higher Reynolds numbers, a co

FIG. 6. The critical Taylor number for one-fluid Taylor-Couette flow wi
axial flow and two-fluid Taylor-Couette flow with countercurrent axial flo
For the two-fluid caser2151.35, Q2151, andm2151.0. For the nonaxi-
symmetric cases, the numbers represent the critical azimuthal wave nu
nc . Ng and Turner’s one fluid results are forR1250.95, V250.
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pletely different pattern appears corresponding to
strongly destabilizing mode mentioned above. The stag
tion point pattern shifts to that characteristic of the Kelvin

er,

FIG. 7. The critical axial wave number for one-fluid Taylor-Couette flo
with axial flow and two-fluid Taylor-Couette flow with countercurrent axi
flow. For the two fluid caser2151.35, Q2151, andm2151.0. For the non-
axisymmetric cases, the numbers represent the azimuthal wave numbenc .
Ng and Turner’s one fluid results are forR1250.95, V250.
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‘‘cat’s eye’’ pattern of the Kelvin-Helmholtz instability.
In general, the first derivative of the base state axial fl

is discontinuous at the interface and the flow profile does
have an inflection point elsewhere. However, the chang
concavity may be measured by the jump in the second
rivative (d2W1 /dy22d2W2 /dy2)uy5yi

. Alternately, this
quantity measures how sharply peaked the vorticity is.
Q21 decreases withm21 fixed, or asm21 increases withQ21

fixed, this jump increases and the flow is expected to
destabilized, consistent with Rayleigh’s and Fjo”rtoft’s
theorems.22 In agreement with this argument, Fig. 9 show

FIG. 8. Stream functions, in a reference frame traveling with the w
speed, Re(c), for axisymmetric two-fluid Taylor-Couette flow with counte
current axial flow. Positive and negative values are solid and dashed, re
tively. The dark line is the interface. Herer2151.35, Ek258.431024, n
50, Q2151, and m2150.69. ~a! Reax,250.33, a54.5, V215V21c

50.7206, ~b! Reax,2533, a55.5, V215V21c50.7181, ~c! Reax,25100, a
57.5, V215V21c50.7081, and ~d! Reax,25232, a58, V215V21c

50.7335.
Downloaded 08 Mar 2007 to 128.104.198.190. Redistribution subject to A
ot
in
e-

s

e

the destabilizing effect of decreasingQ21 for matched vis-
cosity fluids (m2151) and Fig. 10 shows the same effe
with increasingm21 for matched flow rates (Q2151). We
note that, as axial Reynolds number increases, the ne
curves become extremely flat, and it becomes difficult
accurately determine the critical wave numbers. This di
culty is reflected in the figures, where significant variatio
in the critical azimuthal wave number can be seen.

The effect of Ekman number is shown in Figs. 11 a
12. Note the normalization ofV21 with the values for zero
counterflow,V21,Reax,250. With increasing viscosity, the sec
ond instability occurs at a higher average axial velocity, b
at a lower axial Reynolds number~the average axial velocity

e

ec-

FIG. 9. The effect of unmatched countercurrent flowrates. Herem2151.0,
r2151.35, Ek255.0431023, andV21Reax,25050.6024. The numbers repre
sent the critical axial and azimuthal wave numbersac andnc to the nearest
integer.

FIG. 10. The effect of viscosity ratio on the critical rotation rate with cou
tercurrent flow.r2151.35, Ek255.0431023, and Q2151. The numbers
represent the critical axial and azimuthal wave numbersac and nc to the
nearest integer.
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scaled by viscosity!. The flow is also more axisymmetri
~i.e., nc is smaller! with higher viscosity fluids.

Finally, Fig. 13 shows that surface tension suppres
the Kelvin-Helmholtz instability as expected from oth
studies.22,24 Also apparent from the values in the figure le
end is the very slight stabilizing effect of surface tension
the absence of counterflow: asJ21 increases,V21,c decreases
very slightly.

IV. CONCLUSIONS

In this paper, our previous stability analysis for two-flu
Taylor-Couette flow is extended to include pressure-driv
countercurrent axial flow. As in the case without axial flo
a row of counterrotating vortices develops in each pha
Except in the case of one very thin layer or a very small g
the vortex motion is stronger in the less viscous phase
predicted by a generalized Rayleigh criterion. At low cou

FIG. 11. The effect of viscosity on the critical rotation rate with count
current flow measured by axial Reynold numbers. Herem2150.69, r21

51.35, andQ2151. The numbers represent the critical axial and azimut
wave numbersac andnc to the nearest integer.

FIG. 12. The effect of viscosity on the critical rotation rate with count
current flow as measured by scaled axial velocity. Herem2150.69, r21

51.35, andQ2151. The numbers represent the critical axial and azimut
wave numbersac andnc to the nearest integer.
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tercurrent flow rates, the axial flow is stabilizing and t
pattern is axisymmetric; at higher rates both the axial a
azimuthal wave numbers increase. At higher countercur
flow rates a Kelvin-Helmholtz instability appears, precedi
the Taylor-Couette instability.

ACKNOWLEDGMENTS

We are indebted to E. N. Lightfoot, who first suggest
that the Taylor-Couette instability might be useful for liqui
liquid extraction. This work was supported by NSF CA
REER award CTS-9502677 and a Shell Faculty Fellowsh

1G. I. Taylor, ‘‘Stability of a viscous liquid contained between two rotatin
cylinders,’’ Philos. Trans. R. Soc. London, Ser. A223, 289 ~1923!.

2G. Baier and M. D. Graham, ‘‘Two-fluid Taylor-Couette flow: Exper
ments and linear theory for immiscible liquids between corotating cy
ders,’’ Phys. Fluids10, 3045~1998!.

3S. Cohen and D. M. Marom, ‘‘Experimental and theoretical study o
rotating annular flow reactor,’’ Chem. Eng. J.27, 87 ~1983!.

4U. B. Holeschovsky and C. L. Cooney, ‘‘Quantitative description of ultr
filtration in a rotational filtration device,’’ AIChE. J.37, 1219~1991!.

5G. Iosilevskii, H. Brenner, C. M. V. Moore, and C. L. Cooney, ‘‘Mas
transport and chemical reaction in Taylor vortex flows with entrained ca
lyst particles: applications to a novel class of immobilized enzyme b
chemical reactors,’’ Philos. Trans. R. Soc. London, Ser. A345, 259
~1993!.

6D. A. Janes, N. H. Thomas, and J. A. Callow, ‘‘Demonstration of a bub
free annular vortex membrane bioreactor for batch culture of red b
cells,’’ Biotechnol. Tech.1, 257 ~1987!.

7K. H. Kroner, V. Nissinen, and H. Ziegler, ‘‘Improved dynamic filtratio
of microbial suspensions,’’ Bio/Technology5, 921 ~1987!.

8K. H. Kroner and V. Nissinen, ‘‘Dynamic filtration of microbial suspen
sions using and axially rotating filter,’’ J. Membr. Sci.36, 85 ~1988!.

9T. Murase, E. Iritani, P. Chidphong, K. Kano, K. Atsumi, and M. Shira
‘‘High-speed microfiltration using a rotating cylindrical ceramic mem
brane,’’ Int. Chem. Eng.31, 370 ~1991!.

10J. G. Schechowskii, C. A. Koval, and R. D. Noble, ‘‘A Taylor vorte
reactor for heterogeneous photocatalysis,’’ Chem. Eng. Sci.50, 3163
~1995!.

11H. Winzeler and G. Belfort, ‘‘Enhanced performance for pressure-driv
membrane processes: the argument for fluid instabilities,’’ J. Membr.
80, 35 ~1993!.

12N. L. Abbott and T. A. Hatton, ‘‘Liquid-liquid extraction for protein sepa
rations,’’ Chem. Eng. Prog.Aug, 31 ~1988!.

l

l

FIG. 13. The effect of surface tension on the onset of the Kelvin-Helmh
instability. Herem2150.69, r2151.35, andQ2151. The numbers represen
the critical axial and azimuthal wave numbersac and nc to the nearest
integer.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp



e

id
id

on

s
-

.

-

’

tal
tte

nt

en

for

ey

d

tal

l

w

in
d

ns
h.

-

s-
luid

ed

es

303Phys. Fluids, Vol. 12, No. 2, February 2000 Two-fluid Taylor-Couette flow with countercurrent axial flow . . .
13G. Baier, M. D. Graham, and E. N. Lightfoot, ‘‘Mass transport in a nov
two-fluid Taylor vortex extractor,’’ to appear in AIChE. J.

14D. D. Joseph, Y. Renardy, M. Renardy, and K. Nguyen, ‘‘Stability of rig
motions and rollers in bicomponent flows of immiscible liquids,’’ J. Flu
Mech.153, 151 ~1985!.

15Y. Renardy and D. D. Joseph, ‘‘Couette flow of two fluids between c
centric cylinders,’’ J. Fluid Mech.150, 381 ~1985!.

16D. D. Joseph, K. Nguyen, and G. S. Beavers, ‘‘Non-uniqueness and
bility of the configuration of flow of immiscible fluids with different vis
cosities,’’ J. Fluid Mech.141, 319 ~1984!.

17D. D. Joseph, and Y. Y. Renardy,Fundamentals of Two-Fluid Dynamics
Part 1: Mathematical Theory and Applications~Springer-Verlag, New
York, 1993!.

18R. J. Campero and R. D. Vigil, ‘‘Flow patterns in liquid-liquid Taylor
Couette-Poiseuille flow,’’ Ind. Eng. Chem. Res.38, 1094~1999!.

19Y. Toya and I. Nakamura, ‘‘Instability of two-fluid Taylor vortex flow,’
Trans. Jpn. Soc. Mech. Eng., Ser. B63, 35 ~1997!.

20C. S. Yih, ‘‘Instability due to viscosity stratification,’’ J. Fluid Mech.27,
337 ~1962!.

21C. T. Gallagher, D. T. Leighton, and M. J. McCready, ‘‘Experimen
investigation of a two-layer shearing instability in a cylindrical Coue
cell,’’ Phys. Fluids8, 2385~1996!.

22P. G. Drazin and W. H. Reid,Hydrodynamic Stability~Cambridge U.P.,
Cambridge, 1981!.

23A. E. Hosoi and L. Mahadevan, ‘‘Axial instability of a free-surface fro
in a partially filled horizontal rotating cylinder,’’ Phys. Fluids11, 97
~1999!.

24S. Chandrasekhar,Hydrodynamic and Hydromagnetic Stability~Dover,
New York, 1981!.

25B. S. Ng and E. R. Turner, ‘‘On the linear stability of spiral flow betwe
rotating cylinders,’’ Proc. R. Soc. London, Ser. A382, 83 ~1982!.

26T. Howes and M. Rudman, ‘‘Flow and axial dispersion simulation
travelling axisymmetric Taylor vortices,’’ AIChE. J.44, 255 ~1998!.

27R. C. Giordano, R. L. C. Giordano, D. M. F. Prazeres, and C. L. Coon
Downloaded 08 Mar 2007 to 128.104.198.190. Redistribution subject to A
l

-

ta-

,

‘‘Analysis of a Taylor-Poiseuille vortex flow reactor- I: Flow patterns an
mass transfer characteristics,’’ Chem. Eng. Sci.53, 3635~1998!.

28D. I. Takeuchi and D. F. Jankowski, ‘‘A numerical and experimen
investigation of the stability of spiral Poiseuille flow,’’ J. Fluid Mech.102,
101 ~1981!.

29H. A. Snyder, ‘‘Experiments on the stability of spiral flow at low axia
Reynolds numbers,’’ Proc. R. Soc. London, Ser. A265, 198 ~1962!.

30R. J. Donnelly and D. Fultz, ‘‘Experiments on the stability of spiral flo
between corotating cylinders,’’ Proc. Natl. Acad. Sci. USA46, 1150
~1960!.

31R. M. Lueptow, A. Docter, and K. Min, ‘‘Stability of axial flow in an
annulus with a rotating inner cylinder,’’ Phys. Fluids A4, 2446~1992!.

32A. Y. Weisberg, I. G. Kevrekidis, and A. J. Smits, ‘‘Delaying transition
Taylor-Couette flow with axial motion of the inner cylinder,’’ J. Flui
Mech.348, 141 ~1997!.

33F. Marques and J. M. Lopez, ‘‘Taylor-Couette flow with axial oscillatio
of the inner cylinder: Floquet analysis of the basic flow,’’ J. Fluid Mec
348, 153 ~1997!.

34M. D. Graham, ‘‘Effect of axial flow on viscoelastic Taylor-Couette in
stability,’’ J. Fluid Mech.360, 341 ~1998!.

35V. V. Ramanan, K. A. Kumar, and M. D. Graham, ‘‘Stability of viscoela
tic shear flows subjected to steady or oscillatory transverse flow,’’ J. F
Mech.379, 255 ~1999!.

36C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang,Spectral Meth-
ods in Fluid Dynamics~Springer-Verlag, New York, 1988!.

37B. S. Garbow, ‘‘Algorithm 535: the QZ algorithm to solve the generaliz
eigenvalue problem for complex matrices,’’ ACM Trans. Math. Softw.4,
404 ~1978!.

38J. Guckenheimer and P. J. Holmes,Nonlinear Oscillations, Dynamical
Systems and Bifurcations of Vector Fields~corrected second printing
~Springer-Verlag, New York, 1986!.

39L. G. Leal, Laminar Flow and Convective Transport Process
~Butterworth-Heinemann, Boston, 1992!.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp


