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Abstract. Under the Bayesian Ying-Yang (BYY) harmony learning
theory, a harmony function has been developed for Gaussian mixture
model with an important feature that, via its maximization through a
gradient learning rule, model selection can be made automatically during
parameter learning on a set of sample data from a Gaussian mixture. This
paper proposes two further gradient learning rules, called conjugate and
natural gradient learning rules, respectively, to efficiently implement the
maximization of the harmony function on Gaussian mixture. It is demon-
strated by simulation experiments that these two new gradient learning
rules not only work well, but also converge more quickly than the general
gradient ones.

1 Introduction

As a powerful statistical model, Gaussian mixture has been widely applied
to data analysis and there have been several statistical methods for its mod-
elling(e.g., the expectation-maximization(EM) algorithm [1] and k-means algo-
rithm [2]). But it is usually assumed that the number of Gaussians in the mixture
is pre-known. However, in many instances this key information is not available
and the selection of an appropriate number of Gaussians must be made with the
estimation of the parameters, which is rather difficult [3].

The traditional approach is to choose a best number k∗ of Gaussians via some
selection criterion. Actually, many heuristic criteria have been proposed in the
statistical literature(e.g.,[4]-[5]). However, the process of evaluating a criterion
incurs a large computational cost since we need to repeat the entire parameter
estimating process at a number of different values of k.

Recently, a new approach has been developed from the Bayesian Ying-Yang
(BYY) harmony learning theory [6] with the feature that model selection can be
made automatically during the parameter learning. In fact, it was shown in [7]
that this Gaussian mixture modelling problem is equivalent to the maximization
of a harmony function on a specific architecture of the BYY system related
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to Gaussian mixture model and a gradient learning rule for maximization of
this harmony function was also established. The simulation experiments showed
that an appropriate number of Gaussians can be automatically allocated for the
sample data set, with the mixing proportions of the extra Gaussians attenuating
to zero. Moreover, an adaptive gradient learning rule was further proposed and
analyzed for the general finite mixture model, and demonstrated well on a sample
data set from Gaussian mixture [8].

In this paper, we propose two further gradient learning rules to efficiently
implement the maximization of the harmony function in a Gaussian mixture
setting. The first learning rule is constructed from the conjugate gradient of the
harmony function, while the second learning rule is derived from Amari and
Nagaoka’s natural gradient theory [9]. Moreover, it has been demonstrated by
simulation experiments that the two new gradient learning rules not only make
model selection automatically during the parameter learning, but also converge
more quickly than the general gradient ones.

In the sequel, the conjugate and natural gradient learning rules are derived in
Section 2. In Section 3, they are both demonstrated by simulation experiments,
and finally a brief conclusion is made in Section 4.

2 Conjugate and Natural Gradient Learning Rules

In this section, we first introduce the harmony function on the Gaussian mixture
model and then derive the conjugate and natural gradient learning rules from it.

2.1 The Harmony Function

Under the BYY harmony learning principle, we can get the following harmony
function on a sample data set Dx = {xt}N

t=1 from a Gaussian mixture model
(Refer to [6] or [7] for the derivation):

J(Θk) =
1
N

N∑

t=1

k∑

j=1

αjq(xt|mj, Σj)∑k
i=1 αiq(xt|mi, Σi)

ln[αjq(xt|mj , Σj)], (1)

where q(x|mj , Σj) is a Gaussian density given by

q(x|mj , Σj) =
1

(2π)
n
2 |Σj | 12

e−
1
2 (x−mj)

T Σ−1
j

(x−mj), (2)

where mj is the mean vector and Σj is the covariance matrix which is as-
sumed positive definite. αj is the mixing proportion, Θk = {αj , mj , Σj}k

j=1 and
q(x, Θk) =

∑k
j=1 αjq(x|mj , Σj) is just the Gaussian mixture density.

According to the best harmony learning principle of the BYY system [6]
as well as the experimental results obtained in [7]-[8], the maximization of
J(Θk) can realize the parameter learning with automated model selection on
a sample data set from a Gaussian mixture. For convenience of analysis, we
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let αj = eβj/
∑k

i=1 eβi and Σj = BjB
T
j for j = 1, 2, · · · , k, where −∞ <

β1, · · · , βk < +∞, and Bj is a nonsingular square matrix. By these transfor-
mations, the parameters in J(Θk) turn into {βj, mj , Bj}k

j=1.

2.2 Conjugate Gradient Learning Rule

We begin to give the derivatives of J(Θk) with respect to βj , mj and Bj as
follows. (Refer to [7] for the derivation.)

∂J(Θk)
∂βj

=
αj

N

k∑

i=1

N∑

t=1

h(i|xt)U(i|xt)(δij − αi), (3)

∂J(Θk)
∂mj

=
αj

N

N∑

t=1

h(j|xt)U(j|xt)Σ−1
j (xt − mj), (4)

∂J(Θk)
∂Bj

=
∂(BjB

T
j )

∂Bj

∂J(Θk)
∂Σj

, (5)

where δij is the Kronecker function, and

U(i|xt) =
k∑

r=1

(δri − p(r|xt)) ln[αrq(xt|mr, Σr)] + 1,

h(i|xt) =
q(xt|mi, Σi)∑k

r=1 αrq(xt|mr, Σr)
, p(i|xt) = αih(i|xt),

∂J(Θk)
∂Σj

=
αj

N

N∑

t=1

h(j|xt)U(j|xt)Σ−1
j [(xt − mj)(xt − mj)T − Σj ]Σ−1

j .

In Eq. (5), Bj and ∂J(Θk)
∂Σj

are considered as their vector forms, i.e., vec[Bj ]

and vec[J(Θk)
∂Σj

], respectively. ∂(BjBT
j )

∂Bj
is an n2-order square matrix which can be

easily computed.
Combining these βj , mj , and Bj into a vector θk, we have the conjugate

gradient learning rule as follows:

θi+1
k = θi

k + ηŝi, (6)

where η is the learning rate, and the searching direction ŝi is computed from the
following iterations of conjugate vectors:

s1 = −∇J(θ1
k), ŝ1 =

−∇J(θ1
k)

‖∇J(θ1
k)‖

si = −∇J(θi
k) + vi−1si−1, ŝi =

si

‖si‖ , vi−1 =
‖∇J(θi

k)‖2

‖∇J(θi−1
k )‖2

,

where ∇J(θk) is the general gradient vector of J(θk) = J(Θk) and ‖ · ‖ is the
Euclidean norm.
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2.3 Natural Gradient Learning Rule

In order to get the natural gradient of J(Θk), we let θj = (mj , Bj) = (mj , Σj)
so that Θk = {αj , θj}k

j=1 which can be considered as a point in the Riemann
space. Then, we can construct a k(n2 + n + 1)-dimensional statistical model
S = {q(x, Θk) : Θk ∈ Ξ}. The Fisher information matrix of S at a point Θk is
G(Θk) = [gij(Θk)], where gij(Θk) is given by

gij(Θk) =
∫

∂il(x, Θk)∂j l(x, Θk)q(x, Θk)dx, (7)

where ∂i = ∂
∂Θi

k

and l(x, Θk) = lnq(x, Θk). According to the following deriva-
tives:

∂q(xt|Θk)
∂βj

= αjq(xt|θj)
k∑

i=1

(δij − αi), (8)

∂q(xt|Θk)
∂mj

= αjq(xt|θj)Σ−1
j (xt − mj), (9)

∂q(xt|Θk)
∂Bj

=
∂BT

j Bj

∂Bj
αjq(xt|θj)Σ−1

j [(xt − mj)(xt − mj)T − Σj ]Σ−1
j , (10)

we can easily estimate G(Θk) on a sample data set through the law of large
number. According to Amari and Nagaoka’s natural gradient theory [9], we have
the following natural gradient learning rule:

Θk(m + 1) = Θk(m) − ηG−1(Θk(m))
∂J(Θk(m))

∂Θk
, (11)

where η is the learning rate.

3 Simulation Experiments

We conducted experiments on seven sets (a)-(g) of samples drawn from a mix-
ture of four or three bivariate Gaussians densities (i.e., n = 2). As shown in
Figure 1, each data set of samples consists three or four Gaussians with certain
degree of overlap. Using k∗ to denote the number of Gaussians in the original
mixture, we implemented the conjugate and natural gradient learning rules on
those seven sample data sets always with k∗ ≤ k ≤ 3k∗ and η = 0.1. Moreover,
the other parameters were initialized randomly within certain intervals. In all
the experiments, the learning was stopped when |J(Θnew

k ) − J(Θold
k )| < 10−5.

The experimental results of the conjugate and natural gradient learning rules
on the data sets (c) and (d) are given in Figures 2 & 3, respectively, with case k =
8 and k∗ = 4. We can observe that four Gaussians are finally located accurately,
while the mixing proportions of the other four Gaussians were reduced to below
0.01, i.e, these Gaussians are extra and can be discarded. That is, the correct
number of the clusters have been detected on these data sets. Moreover, the
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Fig. 1. Seven sets of sample data used in
the experiments.

F i g. 2. The experimental result of the
conjugate gradient learning rule on the
data set (c) (stopped after 63 itera-
tions).

F i g. 3. The experimental result of the
natural gradient learning rule on the
data set (d) (stopped after 149 itera-
tions).

F i g. 4. The experimental result of the
natural gradient learning rule on the
data set (f) (stopped after 173 itera-
tions).

experiments of the two learning rules have been made on the other sample data
sets in different cases and show the similar results on automated model selection.
For example, the natural gradient learning rule was implemented on the data
set (f) with k = 8, k∗ = 4. As shown in Figure 4, even each cluster has a small
number of samples, the correct number of clusters can still be detected, with the
mixing proportions of other four extra Gaussians reduced below 0.01.

In addition to the correct number detection, we further compared the con-
verged values of parameters (discarding the extra Gaussians) with those param-
eters in the mixture from which the samples come from. We checked the results
in these experiments and found that the conjugate and natural gradient learning
rules converge with a lower average error between the estimated parameters and
the true parameters.
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In comparison with the simulation results of the batch and adaptive gradient
learning rules [7]-[8] on these seven sets of sample data, we have found that the
conjugate and natural gradient learning rules converge more quickly than the two
general gradient ones. Actually, for the most cases it had been demonstrated by
simulation experiments that the number of iterations required by each of these
two rules is only about one tenth to a quarter of the number of iterations required
by either the batch or adaptive gradient learning rule.

As compared with each other, the conjugate gradient learning rule converges
more quickly than the natural gradient learning rule, but the natural gradient
learning rule obtains a more accurate solution on the parameter estimation.

4 Conclusion

We have proposed the conjugate and natural gradient learning rules for the
BYY harmony learning on Gaussian mixture with automated model selection.
They are derived from the conjugate gradient method and Amari and Nagaoka’s
natural gradient theory for the maximization of the harmony function defined on
Gaussian mixture model. The simulation experiments have demonstrated that
both the conjugate and natural learning rules lead to the correct selection of
the number of actual Gaussians as well as a good estimate for the parameters of
the original Gaussian mixture. Moreover, they converge more quickly than the
general gradient ones.
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