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that the best8-ary constellation is either the8-PSK, or 8-cross, or
(1; 7) depending on the desired spectral efficiency. As for the case
of 16-ary constellations, the most attractive signal set is rectangular
16-QAM for all spectral efficiencies of practical interest. These results
have been confirmed by computer simulations of BICM schemes com-
bining turbo codes and several signal sets. The study carried out in this
correspondence does not formally prove the optimality of these par-
ticular signal sets for BICM design. To the best of our knowledge, we
have, however, considered in this work the 11 signal sets that present
the best SER performance and/or the lowestNmin, among all possible
8- and16-ary constellations. Therefore, it is our belief that there is
no constellation that significantly outperforms8-PSK,8-cross,(1; 7),
or 16-QAM when combined with an error-correcting code in a BICM
system.

An important conclusion of this work is that signal sets having a
simple structure, such as8-PSK and16-QAM, are very attractive for
BICM. This result strongly suggests that some other higher order
constellations such as cross32-QAM, 64-QAM, cross 128-QAM,
256-QAM, etc., are also very much of interest for the design of
power-efficient BICM schemes. On the other hand, signal sets
displaying optimal error performance in the absence of coding are,
generally, not of interest for BICM design.
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Abstract—Space–time block codes from orthogonal designs have two
advantages, namely, fast maximum-likelihood (ML) decoding and full di-
versity. Rate 1 real (pulse amplitude modulation—PAM) space–time codes
(real orthogonal designs) for multiple transmit antennas have been con-
structed from the real Hurwitz–Radon families, which also provides the
rate 1 2 complex (quadrature amplitude modulation—QAM) space–time
codes (complex orthogonal designs) for any number of transmit antennas.
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Rate3 4 complex orthogonal designs (space–time codes) for three and four
transmit antennas have existed in the literature but no high rate( 1 2)
complex orthogonal designs for other numbers of transmit antennas exist.
In this correspondence, we present rate7 11 and rate 3 5 generalized
complex orthogonal designs for five and six transmit antennas, respectively.

Index Terms—Diversity, (generalized) complex orthogonal designs,
space–time block codes.

I. INTRODUCTION

Space–time coding for multiple transmit antenna systems in
broad-band wireless communications has attracted considerable atten-
tion lately, see for example [1], [2]–[11]. To design “good” space–time
block codes is a challenging problem. Since a space–time block code
is a collection of some matrices, even for a small block size and a
reasonable rate, the set of a space–time block code can be significantly
large and therefore, its maximum-likelihood (ML) decoding may have
a high complexity. On the other hand, the performance of a space–time
block code depends on the diversity of the code. Therefore, a “good”
space–time block code should possess two properties: i) the decoding
at the receiver is reasonably fast; and ii) the diversity of the code is
not small. Based on these two properties, space–time block codes
based on orthogonal designs have been first proposed in Alamouti [3]
for two transmit antennas and then generalized in Tarokh, Jafarkhani,
and Calderbank [4] forn � 2 transmit antennas by connecting the
space–time codes to orthogonal designs and the Hurwitz–Radon
theory, see, for example, [12], [13]. A similar scheme was suggested in
Ganesan and Stoica [6] from a maximum signal-to-noise ratio (SNR)
approach.

Consider a space–time block code from complex orthogonal design
G forn transmit antennas and block lengthp, i.e.,G is ap�n generator.
Consider a signal constellationS , for example the binary phase shift
keying (BPSK)f1; �1g or the quaternary phase shift keying (QPSK)
f1; �1; j; �jg. Let x1; x2; . . . ; xk be information symbols inS .
The entries of the complex orthogonal design ofG are formed from
complex linear combinations ofx1; x�1; x2; x

�
2; . . . ; xk; x

�

k such that
the columns ofG are orthogonal to each other, wherex� is the complex
conjugate ofx. More detailed definition is reviewed later. See [4] for
more about its encoding scheme and fast decoding algorithm. The rate
of the code isR = k=p, which means that each codeword with block
lengthp carriesk information symbols. For a fixedn and rateR, it is
desired to have the block lengthp as small as possible for decreasing
the time delay in decoding. It was shown in [2], [4] thatR � 1, i.e.,
p � k. Clearly, for a givenk, the smallest possible block lengthp is
k. When the signal constellationS has all real symbols, such as pulse
amplitude modulation (PAM), rateR = 1, i.e., p = k, real orthog-
onal designs for any fixed transmit antenna numbern have been given
in, for example, [4] from the real Hurwitz–Radon families [12]. These
real orthogonal designs also provide a method to construct complex
orthogonal designs of rateR = k=(2k) = 1=2 for any fixed transmit
antenna numbern [4] where the block lengthp = 2k andk depends on
n (see details later). Examples of rate3=4 complex orthogonal designs
for n = 3 andn = 4 transmit antennas have appeared in [4], [6]–[8]. It
was proved in [4] that4�4 complex orthogonal designs of rate1 do not
exist and a simpler proof was given in [6] by using the amicable design
theory [12], [13]. This implies that the only square complex orthogonal
design of rate1 is the2�2 complex orthogonal design proposed in [3].
To the best of our knowledge, there are no known high-rate(R > 1=2)
complex orthogonal designs for transmit antenna numbern � 5.

The main contribution of this correspondence is to present rate7=11
and rate3=5 generalized complex orthogonal designs forn = 5 and
n = 6 transmit antennas, respectively. We also present some construc-
tions of rate1=2 complex orthogonal designs with smaller block length
p than those presented in [4].

II. (GENERALIZED) COMPLEX ORTHOGONAL DESIGNS

This correspondence follows the terminologies of [4]. We first re-
view the concept of the (generalized) complex orthogonal design and
some known designs of rate greater than or equal to1=2[3], [4], [6]–[8].
We then present two generalized complex orthogonal designs of rate
7=11 and rate3=5 for n = 5 andn = 6 transmit antennas, respec-
tively. We also present some simpler complex orthogonal designs of
rate1=2 for n = 5; 6; 7; 8 transmit antennas.

Definition 1: A generalized complex orthogonal design (GCOD) in
variablesx1; x2; . . . ; xk is ap� n matrixG such that:

• the entries of G are complex linear combinations of
x1; x2; . . . ; xk and their complex conjugatesx�1; x

�
2; . . . ; x

�

k;

• GHG = D, whereGH is the complex conjugate and transpose
ofG, andD is ann�n diagonal matrix with the(i; i)th diagonal
element of the form

li; 1jx1j
2 + li; 2jx2j

2 + � � �+ li; kjxkj
2

where all the coefficientsli; 1; li; 2; . . . ; li; k are strictly positive
numbers.

The rate ofG is defined asR = k=p. If

GHG = (jx1j
2 + jx2j

2 + � � �+ jxkj
2)In�n

thenG is called a complex orthogonal design (COD).

Tarokh, Jafarkhani, and Calderbank [4] first mentioned that the rate
of space–time block codes from generalized complex orthogonal de-
signs cannot be greater than1, i.e.,R = k=p � 1. Later, it was proved
in [9] that this rate must be less than1 for more than two transmit an-
tennas. For a fixed number of transmit antennasn and rateR, it is
desired to have the block lengthp as small as possible.

The first space–time block code from complex orthogonal design
was proposed in Alamouti [3] for two transmit antennas. It is the fol-
lowing 2 � 2 COD in variablesx1 andx2

G2 =
x1 x2

�x�2 x�1
: (1)

Clearly, the rate ofG2 achieves the maximum rate1. For space–time
block codes from (generalized) complex orthogonal designs, rate1 is
achievable only for two transmit antennas.

Forn = 3 andn = 4 transmit antennas, there are complex orthog-
onal designs of rateR = 3=4 [4], [6]–[8], for example,

G3 =

x1 x2 x3
�x�2 x�1 0

x�3 0 �x�1
0 x�3 �x�2

(2)

for three transmit antennas, and

G4 =

x1 x2 x3 0

�x�2 x�1 0 x3
x�3 0 �x�1 x2
0 x�3 �x�2 �x1

(3)

for four transmit antennas. In fact,G3 is obtained by taking the first
three columns ofG4. Forn � 5, Tarokh, Jafarkhani, and Calderbank
[4] gave a general construction for complex orthogonal design of rate
R = 1=2. The block lengthp of this design is

p = 2 min (24c+d)

where the minimization is taken over the set

c; d: 0 � d < 4; c � 0; and8c+ 2d � n :

We observe that, when5 � n � 8, p is 16.
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By now, the existing designs of rate greater than1=2 are only
G2; G3; andG4 with rates1, 3=4, and3=4, respectively. It has been
proved in [4], [5] that if there exists ap � n GCOD in variables
x1; x2; . . . ; xk such thatli; 1 = li; 2 = � � � = li; k for eachi, then
there exists a COD in the same variables and of the same size. Notice
that all of the existing designs are CODs. However, the constraint of
CODs is not necessary to construct space–time block codes. GCODs
can also provide the advantages of the fast ML decoding and the
full diversity. In fact, the diagonal form ofD guarantees the fast
ML decoding, since the orthogonal columns ofG can separate the
transmitted symbolsx1; x2; . . . ; xk from each other at the decoder.
Also, the strictly positive coefficientsli; 1; li; 2; . . . ; li; k imply the
full rank of G. This guarantees the full diversity advantage of coding.
For more details about the coding scheme and the fast ML decoding,
we refer the reader to [4].

A. Two GCODs of Rates7=11 and3=5 for n = 5 andn = 6
Transmit Antennas

We present here two generalized complex orthogonal designs of rate
greater than1=2. The first one is an11� 5 matrix given by

G5 =

x1 x2 x3 0 x4
�x�2 x�1 0 x3 x5
x�3 0 �x�1 x2 x6
0 x�3 �x�2 �x1 x7
x�4 0 0 �x�7 �x�1
0 x�4 0 x�6 �x�2
0 0 x�4 x�5 �x�3
0 �x�5 x�6 0 x1
x�5 0 x�7 0 x2

�x�6 �x�7 0 0 x3
x7 �x6 �x5 x4 0

(4)

for n = 5 transmit antennas.G5 is constructed fromG4 as follows.
At first, we keepG4 as a4 � 4 submatrix ofG5 and add symbols
x4; x5; x6; x7 into the fifth column ofG5. Then, we arrange the en-
tries ofG5 from the fifth row to the end such that all of the five columns
are orthogonal to each other and the number of the total rows should
be as small as possible. From the resulting matrix in (4), we can check
thatGH5 G5 = D, whereD is a5� 5 diagonal matrix with the(i; i)th
diagonal elementD(i; i) of the form

D(1; 1) =D(2; 2) = D(3; 3) = D(4; 4) =

7

m=1

jxmj
2

and

D(5; 5) =2

3

m=1

jxmj
2 +

7

m=4

jxmj
2:

Notice that the symbolsx1; x2; x3 and their complex conjugates
x�1; x

�
2; x

�
3 appear in the fifth column ofG5. Clearly, the rate ofG5 is

R = 7=11 = 0:6364, and the block length(p = 11) of G5 is smaller
than that(p = 16) of rate1=2 complex orthogonal design given in [4]
for n = 5 transmit antennas. A by-product of constructingG5 is a
7 � 4 complex orthogonal design as follows:

x�1 0 0 �x�4
0 x�1 0 x�3
0 0 x�1 x�2
0 �x�2 x�3 0

x�2 0 x�4 0

�x�3 �x�4 0 0

x4 �x3 �x2 x1

(5)

where rateR = 4=7 = 0:5714, and the block lengthp (=7) in this
example is not a power of2 as appeared in the previous examples of
COD.

The second one is a30� 6 matrix given by

G6 =

x1 x2 x3 0 x4 x8
�x�2 x�1 0 x3 x5 x9
x�3 0 �x�1 x2 x6 x10
0 x�3 �x�2 �x1 x7 x11
x�4 0 0 �x�7 �x�1 x12
0 x�4 0 x�6 �x�2 x13
0 0 x�4 x�5 �x�3 x14
0 x�5 �x�6 0 �x1 x15
x�5 0 x�7 0 x2 x16
x�6 x�7 0 0 �x3 x17
x7 �x6 �x5 x4 0 x18
x�8 0 0 �x�11 �x�15 �x�1
0 x�8 0 x�10 x�16 �x�2
0 0 x�8 x�9 �x�17 �x�3
0 0 0 x�18 x�8 �x�4
0 0 �x�18 0 x�9 �x�5
0 �x�18 0 0 x�10 �x�6
x�18 0 0 0 x�11 �x�7
0 �x�9 x�10 0 x�12 x1
x�9 0 x�11 0 x�13 x2

�x�10 �x�11 0 0 x�14 x3
�x�12 �x�13 �x�14 0 0 x4
�x�16 �x�15 0 �x�14 0 x5
�x�17 0 x�15 �x�13 0 x6

0 �x�17 �x�16 x�12 0 x7
0 x14 �x13 �x15 x11 0

x14 0 �x12 �x16 x10 0

�x13 x12 0 x17 x9 0

x15 �x16 x17 0 x8 0

�x11 x10 x9 �x8 x18 0

(6)

for n = 6 transmit antennas. Actually,G6 is constructed formG5

as follows. At first, we keepG5 as an11 � 5 submatrix ofG6 and
add symbolsx8; x9; . . . ; x18 into the sixth column ofG6. Then, we
arrange the entries ofG6 from the twelfth row to the end such that all
of the six columns ofG6 are orthogonal to each other and the number
of the total rows should be as small as possible. The resulting matrix in
(6) is of size30� 6. By a tedious check, we haveGH6 G6 = D, where
D is a6�6 diagonal matrix with the(i; i)th diagonal elementD(i; i)
of the form

D(1; 1) =D(2; 2) = D(3; 3) = D(4; 4) =

18

m=1

jxmj
2

and

D(5; 5) =

18

m=1

jxmj
2 +

3

m=1

jxmj
2 +

11

m=8

jxmj
2

D(6; 6) =2

7

m=1

jxmj
2 +

18

m=8

jxmj
2:

Notice that the symbolsx1; x2; . . . ; x7 and their conjugates
x�1; x

�
2; . . . ; x

�
7 appear in the sixth column ofG6. Clearly, the rate of

G6 is R = 18=30 = 0:6.
The same procedure may be used to construct generalized complex

orthogonal designs for other numbers of transmit antennas. However,
it is hard to obtain other designs with rate greater than1=2. For ex-
ample,G6 may be used to constructG7 for seven transmit antennas
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as follow. We keepG6 as a30 � 6 submatrix ofG7 and add sym-
bolsx19; x20; . . . ; x48 into the seventh column ofG7. However, it is
hard to arrange the entries ofG7 from the thirty-first row to the end
such that all of the seven columns are orthogonal to each other and the
number of the total rows should be as small as possible. Notice that in
this case, the symbolsx1; x2; . . . ; x18 and their complex conjugates
x�1; x

�

2; . . . ; x
�

18 should appear in the seventh column ofG7. There-
fore, the block length ofG7 will be at least30 + 18 + 18 = 66.

B. Simpler CODs of Rate1=2 for n = 5; 6; 7; 8 Transmit Antennas

For ap� n complex orthogonal design forn transmit antennas, the
block lengthp is related to the time delay in decoding. Clearly, for a
fixed transmit antenna numbern and rateR, it is desired to have the
block lengthp as small as possible.

In [4], the constructions of rate1=2 complex orthogonal designs for
n � 5 take advantage of the real orthogonal designs of full rate1
which are available for anyn � 2. Forn (n = 5; 6; 7; 8) transmit
antennas, the complex orthogonal design in [4] is given by taking the
first n columns of the following16� 8 matrix:

x1 x2 x3 x4 x5 x6 x7 x8
�x2 x1 x4 �x3 x6 �x5 �x8 x7
�x3 �x4 x1 x2 x7 x8 �x5 �x6
�x4 x3 �x2 x1 x8 �x7 x6 �x5
�x5 �x6 �x7 �x8 x1 x2 x3 x4
�x6 x5 �x8 x7 �x2 x1 �x4 x3
�x7 x8 x5 �x6 �x3 x4 x1 �x2
�x8 �x7 x6 x5 �x4 �x3 x2 x1
x�1 x�2 x�3 x�4 x�5 x�6 x�7 x�8

�x�2 x�1 x�4 �x�3 x�6 �x�5 �x�8 x�7
�x�3 �x�4 x�1 x�2 x�7 x�8 �x�5 �x�6
�x�4 x�3 �x�2 x�1 x�8 �x�7 x�6 �x�5
�x�5 �x�6 �x�7 �x�8 x�1 x�2 x�3 x�4
�x�6 x�5 �x�8 x�7 �x�2 x�1 �x�4 x�3
�x�7 x�8 x�5 �x�6 �x�3 x�4 x�1 �x�2
�x�8 �x�7 x�6 x�5 �x�4 �x�3 x�2 x�1

(7)

where the block lengthp = 16.
Forn (n = 5; 6; 7; 8) transmit antennas, we have a simpler design

of rate1=2 by taking the firstn columns of the following8�8 matrix:

x1 x2 x3 0 x4 0 0 0

�x�2 x�1 0 x3 0 x4 0 0

x�3 0 �x�1 x2 0 0 x4 0

0 x�3 �x�2 �x1 0 0 0 x4
x�4 0 0 0 �x�1 x2 �x3 0

0 x�4 0 0 �x�2 �x1 0 �x3
0 0 x�4 0 �x�3 0 x1 x2
0 0 0 x�4 0 �x�3 �x�2 x�1

(8)

where the block lengthp = 8 which is smaller than that in (7).

III. CONCLUSION AND SOME COMMENTS

Space–time block codes from (generalized) complex orthogonal de-
signs have two advantages: fast ML decoding and full diversity. It has
been proved in [9] that the rate of these space–time block codes must
be less than1 except for the case of wo transmit antennas. There is a

systematic construction of complex orthogonal designs of rate1=2 for
any number of transmit antennas based on the Hurwitz–Radon theory.
The previously known designs of rate larger than1=2 and less than1
were given only for three and four transmit antennas with rate3=4. In
this correspondence, we presented two generalized complex orthogonal
designs of rate7=11 and rate3=5 for five and six transmit antennas,
respectively. Although the construction method may be used for other
numbers of transmit antennas, it is hard to obtain other designs with
rate larger than1=2.

As pointed out in [4], what we have known about orthogonal de-
signs is only a tip of the iceberg. We hope that the two designs we
presented will stimulate future work. Recently, it was proved in [10]
that for more than two transmit antennas, the rate of CODs cannot be
greater than3=4; and the rate of GCODs cannot be greater than4=5.
A tutorial on space–time block codes from (generalized) complex or-
thogonal designs can be found in [11].
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