
C O L L O Q U I U M M A T H E M A T I C U M
VOL. 90 2001 NO. 1

TWO-GENERATED IDEMPOTENT GROUPOIDS

WITH SMALL CLONES

BY

J. GAŁUSZKA (Gliwice)

Abstract. A characterization of all classes of idempotent groupoids having no more
than two essentially binary term operations with respect to small finite models is given.

1. Introduction. In [6] J. Dudek described all varieties of idempotent
groupoids having no more than two essentially binary term operations. In
this paper we characterize these varieties with respect to small finite models.
To investigate the varietes described in [6] we use a technique analogous to
the methods used for example in [4], [7] and [9]. The notations and notions
used in this paper are standard (see [10] and [11]).

Let G = (G, · ) be a groupoid. We denote by pn(G) the number of essen-
tially n-ary term operations over G and by p0(G) the number of unary
constant term operations over G. Moreover, p(G) denotes the sequence
(p0(G), p1(G), p2(G), . . .).

For the class G of groupoids we use the following notations: we write xy
instead of x·y, xyn instead of (. . . (xy) . . .)y and nyx instead of y(. . . (yx) . . .)
where y appears n times. Recall that a groupoid G is nontrivial if card(G) ≥
2, and proper if the operation xy in G depends on both its variables. The
dual groupoid Gd = (G, ◦) is defined by x◦y = yx. If C is a class of groupoids,
then Cd denotes the class of all groupoids Gd for G ∈ C.

We say that a groupoid G is idempotent if it satisfies x2 = x. In the
whole paper we are dealing with idempotent groupoids only. We say that
G is medial (or entropic) if it satisfies (xy)(zt) = (xz)(yt). An idempotent
commutative groupoid satisfying xy2 = x is called a Steiner quasigroup;
an idempotent commutative groupoid satisfying xy2 = xy is called a near-
semilattice, and an idempotent associative groupoid satisfying (xy)z = xz is
called a diagonal semigroup (for details see [12]). We also use the following
notation:

• GI denotes the class of all idempotent groupoids,
• GC denotes the class of all commutative groupoids,
• GIM denotes the class of all idempotent medial groupoids.
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In general C(r(x1,...,xn)) denotes the subclass of the class C (⊆ G) satisfying
the condition r.

Let us recall the results of J. Dudek summarized in [6] and [3].

Theorem 1.1 ([6]). G ∈ GI(p2(G)≤ 1) if and only if G belongs to one of

the following varieties:

G11 : xy = yx, xy2 = x (the variety of Steiner quasigroups);

G12 : xy = yx, xy2 = xy (the variety of near-semilattices).

Theorem 1.2 ([6]). G ∈ GI(p2(G)≤2) if and only if G belongs to one of

the following varieties:

G21 : xy2 = x, xy = (xy)x = x(yx), 2xy = (xy)(yx) = x;

G22 : xy2 = y, (xy)(yx) = (xy)x = x, xy = 2xy = y(xy);

G23 : xy2 = y, (xy)x = x, xy = 2xy = y(xy) = (yx)(xy);

G24 : xy2 = y, xy = (yx)y = y(xy) = 2xy = (yx)(xy);

G25 : xy2 = xy, (xy)x = x(yx) = (xy)(yx) = x;

G26 : xy2 = xy = (xy)x = x(yx) = 2xy = (xy)(yx);

G27 : xy2 = yx, (xy)x = x(yx) = y, 2xy = yx, (xy)(yx) = x;

G28 : xy2 = x, xy = yx (the variety of Steiner quasigroups);

G29 : xy2 = yx2, xy = yx, xy2 = xy3 (the variety N2)

or to one of the varieties G2di (i = 1, . . . , 9).

Let us recall that the variety N2 was described by J. Dudek in [4]. By
Theorem 1.2, GI(p2(G)≤ 2) = G21 ∪ G

2d
1 ∪ . . . ∪ G

2
9 ∪ G

2d
9 .

Theorem 1.3 ([3]). Let G ∈ GIM. Then

(i) p2(G) = 1 if and only if G is either a semilattice or an affine space
over GF (3).

(ii) p2(G) = 2 if and only if either G is a diagonal semigroup, or G

represents the sequence ω, or G is an affine space over GF (4).

(The definition of a groupoid representing a sequence is recalled in the
next section.)

2. Theorems. Using Cayley’s tables we define groupoids needed in the
next theorems. In what follows, Sl2 denotes a two-element semilattice, and
Sl3 a three-element semilattice which is not a chain. Some of the groupoids
G
j
i and Ĝ

j
i defined below are described in [1] and [2].
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Sl2 0 1

0 0 0
1 0 1

P0 0 1

0 0 0
1 1 1

P1 0 1

0 0 1
1 0 1

G21 0 1 2 3

0 0 2 0 2
1 3 1 3 1
2 2 0 2 0
3 1 3 1 3

Ĝ21 0 1 2

0 0 2 0
1 1 1 1
2 2 0 2

G22 0 1 2 3

0 0 2 2 3
1 3 1 2 3
2 0 1 2 0
3 0 1 1 3

G23 0 1 2 3

0 0 2 2 3
1 3 1 2 3
2 0 1 2 3
3 0 1 2 3

Ĝ23 0 1 2

0 0 2 2
1 2 1 2
2 0 1 2

G24 0 1 2 3

0 0 2 2 3
1 3 1 2 3
2 3 1 2 3
3 0 2 2 3

Ĝ24 0 1 2

0 0 1 2
1 2 1 2
2 0 1 2

G25 0 1 2 3

0 0 2 2 0
1 3 1 1 3
2 0 2 2 0
3 3 1 1 3

G26 0 1 2 3

0 0 2 2 2
1 3 1 3 3
2 2 2 2 2
3 3 3 3 3

Ĝ26 0 1 2

0 0 2 2
1 1 1 1
2 2 2 2

Sl3 0 1 2

0 0 2 2
1 2 1 2
2 2 2 2

G27 0 1 2 3

0 0 2 3 1
1 3 1 0 2
2 1 3 2 0
3 2 0 1 3

G28 0 1 2

0 0 2 1
1 2 1 0
2 1 0 2

G29 0 1 2 3

0 0 2 3 3
1 2 1 3 3
2 3 3 2 3
3 3 3 3 3

Let C ⊆ G. We denote by Sn(C) the following class of groupoids: G ∈
Sn(C) if and only if G is isomorphic to an n-generated subgroupoid of some
H ∈ C.

We use the following conventions:

• any two isomorphic groupoids are treated as identical,
• “n-generated” means that the groupoid is generated by a set of cardi-

nality n and it is not generated by any set of cardinality less than n.

For C = {G} we write Sn(G) instead of Sn({G}).

Theorem 2.1. For the class GI(p2(G)≤2) = G21 ∪ G
2d
1 ∪ . . . ∪ G

2
9 ∪ G

2d
9 we

have:

(1) S2(G21) = {P0, Ĝ21,G
2
1}.

(2) S2(G22) = {P1,G22}.
(3) S2(G23) = {P1, Ĝ23,G

2
3}.
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(4) S2(G24) = {P1, Ĝ24,G
2
4}.

(5) S2(G25) = {P0,P1,G25}.
(6) S2(G26) = {P0,Sl2,Sl3, Ĝ

2
6,G

2
6}.

(7) S2(G27) = {G27}.
(8) S2(G28) = {G28}.
(9) S2(G29) = {Sl2,Sl3,G

2
9}.

Here G2i is a free 2-generated groupoid in the variety G2i for i = 1, . . . , 9.
The dual versions of (1)–(9) for the classes G2d1 , . . . ,G

2d
9 are analogous.

Theorem 2.2. Let G ∈ GI(p2(G)≤2). Then:

(1) G ∈ G21(p2(G)=2) if and only if S2(G) ⊆ {P0, Ĝ21,G
2
1} and either Ĝ21

or G21 can be embedded in G.

(2) G ∈ G22(p2(G)=2) if and only if S2(G) ⊆ {P1,G22} and G22 can be

embedded in G.

(3) G ∈ G23(p2(G)=2) if and only if S2(G) ⊆ {P1, Ĝ23,G
2
3} and either Ĝ23

or G23 can be embedded in G.

(4) G ∈ G24(p2(G)=2) if and only if S2(G) ⊆ {P1, Ĝ24,G
2
4} and Ĝ24 can be

embedded in G.

(5) G ∈ G25(p2(G)=2) if and only if S2(G) ⊆ {P0,P1,G25} and both P0
and P1 can be embedded in G.

(5) G ∈ G26(p2(G)=2) if and only if S2(G) ⊆ {P0,Sl2,Sl3, Ĝ
2
6,G

2
6} and

both P0 and Sl2 can be embedded in G.

(6) G ∈ G27(p2(G)=2) if and only if S2(G) ⊆ {G27} and G27 can be embedded

in G.

(7) If p2(G) = 2 then G 6∈ G28.
(8) G ∈ G29(p2(G)=2) if and only if S2(G) ⊆ {Sl2,Sl3,G

2
9} and G29 can be

embedded in G.

The dual versions of (1)–(9) are also true.

We say that a groupoid G represents a sequence a = (a0, a1, a2, . . .)
(finite or not) if a is a subsequence of p(G) (written a ⊆ p(G)). A sequence a
is representable (resp. representable in a class C) if there exists a groupoid G

(resp. G ∈ C) such that G represents a. If a is a finite sequence representable
by a given groupoid G (resp. G ∈ C) then p(G) is called an extension of a
(resp. extension of a in C). On the class of sequences of cardinal numbers

we have a natural partial order: a ≤ b def
⇐⇒ ∀i ∈ N, ai ≤ bi. Take a (finite)

sequence a and consider the set {p(G) |a ⊆ p(G)} (resp. {p(G) |G ∈ C, a ⊆
p(G)}) of all extensions of a ordered by ≤. A least element in this set is called
the minimal extension of a (resp. minimal extension of a in C). Combining
the results of [1], [5] and [8] with Theorem 2.2 we obtain the simple but
interesting observations presented below. We use the standard notations
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Σ1, Σ2, Σ3 for the varieties of groupoids representing the sequence ω =
(0, 1, 2, . . .) described by J. P lonka. Recall that these varieties are defined
by the following identities:

Σ1 : x2 = x, (xy)z = x(yz), x(yz) = x(zy);

Σ2 : x2 = x, (xy)z = (xz)y, x(yz) = xy, xy2 = xy;

Σ3 : x2 = x, (xy)z = (xz)y, x(yz) = xy, xy2 = x

(for details see [10], pp. 394–395 and [13]).

(1) Ĝ21 and G21 are both medial proper groupoids in Σ3 having exactly
two essentially binary term operations; p(Ĝ21) is a minimal extension of the
sequence (0, 1, 2) in G21; p(Ĝ

2
1) = ω.

(2) G22 is a nonmedial groupoid having exactly two essentially binary
term operations; it is neither a diagonal semigroup nor a member of Σ1 ∪
Σ2∪Σ3 nor an affine space over GF (4); p(G22) is a minimal extension of the
sequence (0, 1, 2) in G22; p3(G

2
2) ≥ 6.

(3) Ĝ23 and G23 are both nonmedial groupoids having exactly two es-
sentially binary term operations; they are neither diagonal semigroups nor
members of Σ1 ∪Σ2 ∪Σ3 nor affine spaces over GF (4); p(Ĝ23) is a minimal
extension of the sequence (0, 1, 2) in G23; p3(Ĝ

2
3) = 21.

(4) Ĝ24 and G24 are both medial proper groupoids in Σd2 having exactly
two essentially binary term operations; p(Ĝ24) = ω is a minimal extension of
the sequence (0, 1, 2) in G24.

(5) G25 is a diagonal semigroup having exactly two essentially binary term
operations; p(G25) = (0, 1, 2, 0, 0, . . .) is a minimal extension of the sequence
(0, 1, 2) in G25.

(6) Ĝ26 and G26 are both medial proper two-generated groupoids in Σ1;
p(Ĝ26) = ω is a minimal extension of the sequence (0, 1, 2) in G26.

(7) G27 is an affine space over GF (4) having exactly two essentially binary
term operations; p(G27) is a minimal extension of the sequence (0, 1) in G27;
G27 represents the sequence (0, 1, 2, 7) (cf. [8]).

(8) G28 is an affine space over GF (3) and a medial Steiner quasigroup; it
can be embedded in every nontrivial groupoid G from G28; p(G

2
8) is a minimal

extension of the sequence (0, 1) in G28; G28 represents the sequence (0, 1, 1, 3).
(9) G29 = N2 so evidently G29 is Dudek’s groupoid and hence it is a free

two-generated groupoid in N2; p(G29) is a minimal extension of the sequence
(0, 1, 2) in G29 (and in GC); G29 represents the sequence (0, 1, 2, 10).

Analogously we can formulate the dual versions of (1)–(9).

Theorem 2.2 also yields the following remark:
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Remark. The assumption G ∈ GIM in Theorem 1.3(ii) cannot be omit-
ted. For example p2(Ĝ23) = 2 but Ĝ23 is neither a diagonal semigroup nor a
member of Σ1 ∪Σd1 ∪Σ2 ∪Σ

d
2 ∪Σ3 ∪Σ

d
3 nor an affine space over GF (4).

3. Proofs of theorems. We say that term operations p(xi1 , . . . , xim)
and q(xj1 , . . . , xjn) (built from the binary operation “·”) are left-uniform if
the variables xi1 and xj1 really occur in p and q respectively and xi1 = xj1 .
Analogously p and q are right-uniform if xim = xjn . We say that the identity
p = q is left-uniform (resp. right-uniform) if the term operations p and q are
left-uniform (resp. right-uniform). We say that a variety V is left-uniform
(resp. right-uniform) if the identities defining it are all left-uniform (resp.
right-uniform). Evidently if a variety V in the class of groupoids is left-
uniform (resp. right-uniform) then P0 (resp. P1) is a nontrivial groupoid
in V.

Proof of Theorem 2.1. We present the steps of the proof for the classes
G21, . . . ,G

2
9 only. The proof for the dual classes proceeds analogously and is

omitted. We leave it to the reader to check that the models of groupoids
presented are members of the given classes. The author has checked it using
an unpublished program written by Marek Żabka. We present the details of
the proof of the first item only. The parts of the proofs of (2)–(9) which are
analogous to the proof of (1) are omitted.

(1) Consider the class G21 and take a free groupoid F generated by two
free variables x, y. The Cayley table of this groupoid is

F x y xy yx

x x xy x xy

y yx y yx y

xy xy x xy x

yx y yx y yx

The function f defined on the set {x, y, xy, yx} as follows: f(x)=0, f(y)=1,
f(xy) = 2, f(yx) = 3 is an isomorphism from F onto G21. The variety
G21 is left-uniform so clearly P0 is a member of G21. Assume that G is a
nontrivial member of G21. So there exist a, b ∈ G such that a 6= b. Con-
sider the subgroupoid G(a, b) = (G(a, b), ·) of G generated by {a, b}. Then
G(a, b) = {a, b, ab, ba} and card(G(a, b)) ≤ 4. Evidently a 6= ba. Indeed,
suppose that a = ba. Then a = a2 = ba2 = b, a contradiction. Assume that
a = ab and b = ba. Then card(G(a, b)) = 2 and the Cayley table of G(a, b)
is

G(a, b) a b

a a a

b b b
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so G(a, b) = P0. Assume now that G is a proper groupoid. Then the term
operation xy is not a projection. Thus there exist a, b ∈ G such that a 6= ab.
Then evidently a 6= b. Suppose that a = ba. Then a = a2 = ba2 = b, a
contradiction. Thus a 6= ba. Analogously b 6= ab. Suppose now that ab = ba.
Then a = ab2 = (ba)b = ba, a contradiction. So we have two possibilities
only: b = ba or b 6= ba. Assume that b = ba. Then card(G(a, b)) = 3 and the
Cayley table of G(a, b) is

G(a, b) a b ab

a a ab a

b b b b

ab ab a ab

so G(a, b) = Ĝ21. Assume now that b 6= ba. Then card(G(a, b)) = 4 and the
Cayley table of G(a, b) is

G(a, b) a b ab ba

a b ab a ab

b ba b ba b

ab ab a ab a

ba b ba b ba

so G(a, b) = G21. Evidently Ĝ21 is a homomorphic image of G21.

(2) The variety G22 is right-uniform so P1 ∈ G
2
2. Let G ∈ G22 be nontrivial.

Then there exist a, b ∈ G such that a 6= b. Evidently ab 6= ba. Suppose
that a = ab. Then a = ab = ab2 = b, a contradiction. If a = ba, then
ab = (ba)b = b and G(a, b) = P1. Assume now that G is a proper groupoid.
Then there exist a, b ∈ G such that a 6= ba. Then G(a, b) = {a, b, ab, ba} is a
four-element set and G(a, b) = G22.

(3) The variety G23 is right-uniform so P1 ∈ G
2
3. Let G ∈ G23 be nontrivial.

Then there exist a, b ∈ G such that a 6= b. Hence G(a, b) = {a, b, ab, ba}
where a 6= ab. If a = ba then ab = b and G(a, b) = P1. Assume that G is
proper. Then there exist a, b ∈ G such that a 6= ba. Hence a 6= b, a 6= ab,
a 6= ba, b 6= ba, b 6= ab. If ab = ba then G(a, b) = Ĝ23. If ab 6= ba then
G(a, b) = G23.

(4) The variety G24 is right-uniform so P1 ∈ G
2
4. Let G ∈ G24 be nontrivial.

Let a, b ∈ G be such that a 6= b. If a = ba and b = ab then G(a, b) = P1.
Assume that G is proper. Take a, b ∈ G such that a 6= ba. Then a, b, ba are
all distinct. Moreover a 6= ab. Suppose that ab = ba. Then ba = (ab)a =
ba2 = a, a contradiction. Assume that ab = b. Then G(a, b) = Ĝ24. If ab 6= b
then G(a, b) = G24.
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(5) The variety G25 is left-uniform and right-uniform simultaneously. Thus
P0,P1 ∈ G

2
5. Let G ∈ G25 be nontrivial. Let a, b ∈ G, a 6= b. Consider the

groupoid G(a, b). We have G(a, b) = {a, b, ab, ba}. Evidently ab 6= ba. If
a = ab, b = ba then G(a, b) = P0. If a = ba, b = ab then G(a, b) = P1. If G

is proper then (a) there exist a, b ∈ G such that a 6= ab and (b) there exist
a, b ∈ G such that b 6= ab. (a) Assume that a 6= ab. Then b 6= ba. Thus we
have two possibilities only: either b = ab and G(a, b) = P1, or b 6= ab and
G(a, b) = G25. (b) For the case b 6= ab we analogously conclude that either
G(a, b) = P0 or G(a, b) = G25.

(6) The variety G26 is left-uniform. Thus P0 ∈ G
2
6. Also Sl2 ∈ G

2
6. Let

G ∈ G26 be nontrivial. Let a, b ∈ G, a 6= b. If a = ab and b = ba then
G(a, b) = P0. Assume that G is proper. Let a, b ∈ G, a 6= ab. Suppose that
b = ab. Then ba = b and G(a, b) = Sl2. Assume that b 6= ab. Then either
ba = b and G(a, b) = Ĝ26, or ba = ab and G(a, b) = Sl3, or ba 6= ab and
G(a, b) = G26.

(7) Consider a nontrivial groupoid G ∈ G27. Let a, b ∈ G, a 6= b. Then
a, b, ab, ba are all distinct. Hence G(a, b) = G27.

(8) Let G ∈ G28 be nontrivial. Then G(a, b) = G28.

(9) This item is a consequence of the results presented in [4].

Proof of Theorem 2.2. (1) Let G ∈ G21 and p2(G) = 2. Then by Theo-
rem 2.1(1), S2(G) ⊆ {P0, Ĝ21,G

2
1}. Since p2(G) = 2, G is a proper groupoid.

As in the proof of Theorem 2.1(1) we find that either Ĝ21 or G21 can be em-
bedded in G. Conversely, if S2(G) ⊆ {P0, Ĝ21,G

2
1} then by Theorem 2.1(1),

G ∈ G21. Assume that either Ĝ21 or G21 can be embedded in G. Then 2 =
p2(Ĝ21) = p2(G21) ≤ p2(G) ≤ 2. So p2(G) = 2.

(2)–(3) and (7). The proofs are analogous to the proof of (1) and are
omitted.

(4) The proof is similar to that of (1). Moreover Ĝ24 can be embedded
in G24.

(5) Let G ∈ G25 and p2(G) = 2. Then by Theorem 2.1(5), S2(G) ⊆
{P0,P1,G

2
5}. As G is a proper groupoid, as in Theorem 2.1(5) we conclude

that either (a) P1 or G25 can be embedded in G, or (b) P0 or G25 can
be embedded in G. Observe that both P0 and P1 can be embedded in G25.
Evidently S2(G) 6⊆ {P0} and S2(G) 6⊆ {P1}. Thus in either case ((a) or (b))
both P0, P1 can be embedded in G. Conversely, assume now that S2(G) ⊆
{P0,P1,G

2
5} and both P0, P1 can be embedded in G. By Theorem 2.1(5),

G ∈ G25. The term operation xy evidently depends on both variables x and
y (xy depends on x in P0 and on y in P1). Moreover xy is noncommutative.
Thus p2(G) ≥ 2. As G ∈ G25 we have p2(G) = 2.
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(6) Assume that G ∈ G26 and p2(G) = 2. Then by Theorem 2.1(6),
S2(G) ⊆ {P0,Sl2,Sl3, Ĝ

2
6,G

2
6} and (a) there exist a, b ∈ G such that ab 6=

ba and (b) there exist a, b ∈ G such that ab 6= a.
(a) Assume that a, b ∈ G and ab 6= ba. Suppose that a = ab. Then either

b = ba and G(a, b) = P0, or b 6= ba and G(a, b) = Ĝ26. Assume that a 6= ab.
Then b 6= ab (if b = ab, then ba = ab2 = ab, a contradiction). So we have two
possibilities: either b = ba and G(a, b) = Ĝ26, or b 6= ba and G(a, b) = G26.

(b) Assume now that a, b ∈ G and ab 6= a. If ab = b then ba = b(ab) = b
and G(a, b) = Sl2. Assume that ab 6= b. If ab = ba then G(a, b) = Sl3. If
ab 6= ba we have two possibilities only: either ba = b and G(a, b) = Ĝ26, or
ba 6= b and G(a, b) = G26. Evidently Ĝ26 can be embedded in G26 and both
P0 and Sl2 can be embedded in Ĝ26. Thus in each case both P0 and Sl2
can be embedded in G.

Assume now that S2(G) ⊆ {P0,Sl2,Sl3, Ĝ
2
6,G

2
6} and both P0 and Sl2

can be embedded in G. Then by Theorem 2.1(6), G ∈ G26 and the term oper-
ation xy is noncommutative and depends on both variables. Thus p2(G) = 2.

(8) If G ∈ G28 then p2(G) = 1.
(9) This is a consequence of [4].

Acknowledgments. The author is greatly indebted to Professor An-
drzej Kisielewicz for his valuable remarks and suggestions.

REFERENCES

[1] J. Berman, Free spectra of 3-element algebras, in: Universal Algebra and Lattice
Theory (Puebla, 1982), Lecture Notes in Math. 1004, Springer, Berlin, 1983, 10–53.
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