
Two Geometric Algorithms for Layout Analysis

Thomas M. Breuel

Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

tbreuel@parc.xerox.com

Abstract. This paper presents geometric algorithms for solving two key prob-

lems in layout analysis: finding a cover of the background whitespace of a doc-

ument in terms of maximal empty rectangles, and finding constrained maximum

likelihood matches of geometric text line models in the presence of geometric ob-

stacles. The algorithms are considerably easier to implement than prior methods,

they return globally optimal solutions, and they require no heuristics. The paper

also introduces an evaluation function that reliably identifies maximal empty rect-

angles corresponding to column boundaries. Combining this evaluation function

with the two geometric algorithms results in an easy-to-implement layout anal-

ysis system. Reliability of the system is demonstrated on documents from the

UW3 database.

1 Introduction

A wide variety of algorithms for geometric layout analysis of document images have

been proposed. Among them are morphology or “smearing” based approaches, projec-

tion profiles (recursive X-Y cuts), texture-based analysis, analysis of the background

structure, and others (for a review and references, see [6]). While layout analysis is a

simpler problem than general image segmentation, it still raises challenging issues in

geometric algorithms and image statistics.

This paper presents algorithms for addressing two key problems in geometric lay-

out analysis. The first is an efficient and easy to implement algorithm for analyzing

the whitespace or background structure of documents in terms of rectangular covers.

Background structure analysis as an approach to document layout analysis has been

described by a number of authors [13, 2, 12, 8, 1, 9]. The work by Baird et al. [2] ana-

lyzes background structure in terms of rectangular covers, a computationally convenient

and compact representation of the background. However, past algorithms for comput-

ing such rectangular covers have been fairly difficult to implement, requiring a number

of geometric data structures and dealing with special cases that arise during the sweep

(Baird, personal communication). This has probably limited the widespread adoption of

such methods despite the attractive properties that rectangular covers possess. The al-

gorithm presented in this paper requires no geometric data structures to be implemented

and no special cases to be considered; it can be expressed in less than 100 lines of Java

code. In contrast to previous methods, it also returns solutions in order of decreasing

quality.



2

The second algorithm presented here is a text line finding algorithm that works in the

presence of “obstacles”. That is, given a set of regions on the page that are known to be

free of text lines (e.g., column separators) and a collection of character bounding boxes,

the algorithm will find globally optimal maximum likelihood matches to text lines under

a Gaussian error model, subject to the constraint that no text line crosses an obstacle.

In contrast, many previous message to line finding (e.g., projection methods, Hough

transform methods, etc.) either do not work reliably for multi-column documents or

multiple text orientations on the same page, or they require a complete physical layout

segmentation into disjoint text regions with uniform text line orientations prior to their

application.

Each of the algorithms presented in this paper has useful applications in existing

layout analysis systems. Taken together, these two algorithms permit us to take a new

approach to document layout segmentation.

Traditional document layout analysis methods will generally first attempt to per-

form a complete global segmentation of the document into distinct geometric regions

corresponding to entities like columns, headings, and paragraphs using features like

proximity, texture, or whitespace. Each individual region is then considered separately

for tasks like text line finding and OCR. The problem with this approach lies in the fact

that obtaining a complete and reliable segmentation of a document into separate regions

is quite difficult to achieve in general. Some decisions about which regions to combine

may well involve semantic constraints on the output of an OCR system. However, in

order to be able to pass the document to the OCR system in the first place, we must al-

ready have identified text lines, leading to circular dependencies among the processing

steps.

In contrast, if we can perform text line finding in the presence of obstacles, it is

not necessary to perform a complete segmentation of the document in order to perform

OCR. Rather, all that is needed is the identification of vertical spaces or lines separating

text in different columns. That problem turns out to be considerably simpler. It can be

accomplished quite reliably using the whitespace analysis algorithm described in this

paper using a novel evaluation function.

2 Whitespace Cover

2.1 Problem Definition

We define the maximal white rectangle problem as follows. Assume that we are given a

collection of rectangles C = {r0, . . . , rn} in the plane, all contained within some given

bounding rectangle rb. In layout analysis, the ri will usually correspond to the bounding

boxes of connected components on the page, and the overall bounding rectangle rb will

represent the whole page. Also, assume that we are given an evaluation function for

rectangles Q : R
4 → R satisfying, for any two rectangles r and r′ that

r ⊆ r′ ⇒ Q(r) ≤ Q(r′) (1)

In the case described in [8], the Q function is simply the area of the rectangle, which

is easily seen to satisfy the condition expressed in Equation 1. The maximal white



3

(a) (b) (c) (d)

Fig. 1. Figure illustrating the recursion step of the branch-and-bound whitespace cover algorithm.

See the text for an explanation.

rectangle problem is to find a rectangle r̂ ⊆ rb that maximizes Q(T ) among all the

possible rectangles r ⊆ rb, where r overlaps none of the rectangles in C. Or, expressed

using mathematical notation:

r̂ = r̂(C, rb, Q) = arg max
r∈U

Q(r) where U = {r ⊆ rb|∀c ∈ C : r ∩ c = ∅} (2)

2.2 Algorithm

As noted above, there are several algorithms for maximal empty rectangle problems,

including those from computational geometry (e.g., [11]) and document analysis (e.g.,

[2]). Unfortunately, such algorithms tend to be fairly complex to implement and have

not found widespread use.

The algorithm presented in this paper for the maximum empty rectangle problem

can be used with obstacles that are points or rectangles. The key idea is analogous to

quicksort or branch-and-bound methods. It is illustrated in Figure 1. Figure 1(a) shows

the start of the algorithm: we are given an outer bound and a collection of rectangles

(obstacles). If none of the obstacles are contained within bound, then we are done:

the bound is itself the maximal rectangle given the obstacles. If one or more obstacles

are contained within bound, we pick one of those rectangles as a “pivot” (Figure 1(b)).

A good choice is a rectangle that is centrally located within the bound. Given that we

know that the maximal rectangle cannot contain any of the obstacles, in particular,

it cannot contain the pivot. Therefore, there are four possibilities for the solution to

the maximal white rectangle problem: to the left and right of the pivot (Figure 1(c)) or

above and below the pivot (Figure 1(d)). We compute the obstacles overlapping each

of these four subrectangles and evaluate an upper bound on the quality of the maximal

empty rectangles that is possible within each subrectangle; because of the monotonicity

property (Equation 1), the quality function Q applied to the bounds of the subrectangles

itself serves as an upper bound. The subrectangles and their associated obstacles and

qualities are inserted into a priority queue and the above steps are repeated until the

first obstacle-free rectangle appears at the top of the priority queue; this rectangle is the

globally optimal solution to the maximal empty rectangle problem under the quality

function Q. This algorithm is given in pseudo-code in Figure 2.

To obtain the n-best solutions, we can keep expanding nodes from the priority queue

until we obtain n solutions in order of decreasing quality. However, many of those so-

lutions will overlap substantially. The following greedy variant of the algorithm for



4

def find_whitespace(bound,rectangles):

queue.enqueue(quality(bound),bound,rectangles)

while not queue.is_empty():

(q,r,obstacles) = queue.dequeue_max()

if obstacles==[]:

return r

pivot = pick(obstacles)

r0 = (pivot.x1,r.y0,r.x1,r.y1)

r1 = (r.x0,r.y0,pivot.x0,r.y1)

r2 = (r.x0,pivot.y1,r.x1,r.y1)

r3 = (r.x0,r.y0,r.x1,pivot.y0)

subrectangles = [r0,r1,r2,r3]

for sub_r in subrectangles:

sub_q = quality(sub_r)

sub_obstacles =

[list of u in obstacles if not overlaps(u,sub_r)]

queue.enqueue(sub_q,sub_r,sub_obstacles)

Fig. 2. Pseudo-code for finding the globally optimal whitespace rectangle. A complete Java im-

plementation is about 200 lines of code (statements).

finding the n best solutions addresses this. After we have found the maximal empty

rectangle r̂, we can add it to the list of obstacles and keep expanding. When we de-

queue a search state, we check whether the list of obstacles has changed and, if so,

recompute the quality of the node and re-enqueue it. This will result in a greedy cover

of the whitespace with maximal rectangles and is considerably faster than restarting the

algorithm.

Furthermore, rather than insisting on a cover of completely disjoint rectangles, we

can allow for some fractional or absolute overlap among them. A careful implementa-

tion of finding such partially overlapping maximal empty rectangles might incorporate

the overlap constraint into the computation of the upper bound during the partition-

ing process. However, the algorithm runs fast enough on real-world problems, and the

number of solutions we desire is usually small enough, that it is sufficient merely to

generate maximal empty rectangles in order of decreasing quality using the unmodified

algorithm, test for overlap of any new solution with all the previously identified ones,

and reject any new solution that overlaps too much with a previously found solution.

An application of this algorithm for finding a greedy covering of a document from

the UW3 database with maximal empty rectangles is shown in Figure 7. Computation

times for commonly occurring parameter settings using a C++ implementation of the

algorithm on a 400MHz laptop are under a second. As it is, this algorithm could be

used as a drop-in replacement for the whitespace cover algorithm used by [8], and it

should be useful to anyone interested in implementing that kind of page segmentation

system. However, below, this paper describes an alternative use of the algorithm that

uses different evaluation criteria.



5

(a) (b)

Fig. 3. Application of the constrained line finding algorithm to simulated variants of a page.

Gutters (obstacles) were found automatically using the algorithm described in the paper and are

shown in green. Text lines were found using the constrained line finder and are shown in faint

red. (a) Two neighboring columns have different orientations (this often occurs on the two sides

of a spine of a scanned book). (b) Two neighboring columns have different font sizes and, as a

result, the baselines do not line up.

3 Constrained Line Finding

3.1 Problem Definition

We will now turn to a second geometric algorithm, one for finding text lines in the

presence of obstacles. The “obstacles” will turn out to be the rectangles comprising

the whitespace cover found by the algorithm described in the previous section and the

evaluation criteria described in the next section. The constrained line finding algorithm

is also linked with the algorithm described in the previous section by taking a similar

algorithmic approach: branch-and-bound.

The problem that constrained line finding addresses in document analysis is the

following. Many documents contain text in multiple columns. Some documents or doc-

ument images may even contain text at multiple orientations, either because of complex

document layouts, or (more commonly) because the two facing pages of a book were

scanned at slightly different rotations within the same image. Text lines that are close to

each other may therefore still have different line parameters. Some cases are illustrated

in Figure 3.

Traditional approaches attempt to cope with such cases by first finding a complete

and correct page segmentation and then performing line finding within each text block;

that is, they take a hierarchical top-down approach. Unfortunately, finding a complete

and correct page segmentation without knowledge of the line structure is difficult. Glob-

ally integrated solutions to page layout analysis, like those proposed by Liang et al. [10]

avoid this issue, but appear to be complex to implement and so far have not found wide

application.

Constrained line finding provides a simpler alternative. A constrained line finder

only needs a list of obstacles that lines of text do not cross. These obstacles are gener-

ally gutters, and a few graphical elements such as figures or thin vertical lines. Based

on the results presented below, finding gutters appears to be a much simpler problem

than a complete (even if provisional) layout analysis, and even complex layouts tend



6

Fig. 4. The text line model used for constrained line finding.

to have a simple gutter structure (see the examples in Figure 7). Those gutters can be

identified easily using the whitespace cover method described in the previous section.

Furthermore, the constrained line finding method described in this paper can also be

used together with orientation independent layout analysis techniques, allowing us to

find text lines at arbitrary orientations even in incompletely segmented text.

The approach to constrained text line finding underlying the algorithm in this paper

has previously been described for geometric object recognition [3], and applied to text

line finding [5]. Let us represent each character on the page by the point at the bottom

and center of its bounding box (the alignment point). In the absence of error, for most

Roman fonts, each such point rests either on the baseline or on another line parallel to

the baseline, the line of descenders. This is illustrated in Figure 4.

For finding “optimal” matches of text line models against the bounding boxes of a

page, we use a robust least square model. That is, the contribution of each character to

the overall match score of a text line is penalized by the square of the distance of the

alignment point from the base line or line of descenders, up to a threshold. This match

score corresponds to a maximum likelihood match in the presence of Gaussian error on

location and in the presence of a uniform background of noise features, as shown in the

literature [7].

Let us assume that lines are parameterized by their distance r from the origin and the

orientation θ of their normal. An additional parameter, d, gives the distance of the line

of descenders from the baseline. These three parameters (r, θ, d) then determine a text

line model. If the alignment points of all connected components on the page are given

by {p1, . . . , pn} ⊆ R
2, we can express the quality of match (monotonically related to

the log likelihood) function as:

Q(r, θ, d) =
∑

i

φǫ(dist(lr,θ,d, pi)) (3)

Here, dist(·, ·) is the Euclidean distance and φ is a threshold function

φǫ(x) = max(0, 1 −
x2

ǫ2
) (4)

Maximizing Q(r, θ, d) over all parameters gives us the globally optimal solution to

the unconstrained line finding problem. For the constrained line finding problem, we



7

Fig. 5. Illustration of the constrained line finding problem with obstacles. The rectangle is the

obstacle and the dots represent points to be matched by a line. Two candidates lines are shown:

one dashed line matches four points but is stopped by the obstacle, another dashed line matches

five points and narrowly avoids the obstacle.

consider line segments instead of lines and require finding a maximal line segment that

does not intersect any of the given obstacles.

3.2 Algorithm

An algorithm for finding globally optimal solutions to the unconstrained text line find-

ing problem has been presented in [5], based on previous work on branch-and-bound

methods for geometric matching [4]. We will briefly review the unconstrained method

here. The basic idea is to consider rectangular subsets (boxes; cartesian products of line

parameter intervals) of the three-dimensional space of text line parameters and com-

pute upper bounds on the value of the quality function achievable over those subsets.

Subsets with large upper bounds are subdivided into smaller subsets and reevaluated.

Eventually, the rectangular subsets arrived at in this process are small enough to bound

the optimal solution to the optimization problem with any desired numerical accuracy.

This is an instance of a branch and bound algorithm.

In order to be practical for geometric optimization problems, two difficulties need to

be overcome: first, we need to be able to find an upper bound Q̂ to the quality function

Q over some region, and second, we need to be able to compute that upper bound

efficiently. [4] describes the computation of the upper bound Q̂ function for a box of line

parameters [r, r] × [θ, θ]. Let us review this approach briefly here. For the moment, to

simplify the discussion, consider only the baseline, not the line of descenders. Consider

the region LB swept out by lines with parameters contained in the box of parameters

B = [r, r] × [θ, θ]. We use as our upper bound Q̂(LB) = max(r,θ)∈B Q(r, θ). Taking

advantage of the monotonicity of φǫ(x), this bound is easily seen to be

Q̂(B) =
∑

i

min
(r,θ)∈B

φǫ(dist(lr,θ, pi)) (5)

=
∑

i

φǫ(dist(LB , pi)) (6)



8

def find_constrained_lines(linebox,points,obstacles):

queue.enqueue(quality(linebox,points),linebox,points,obstacles)

while not queue.is_empty():

(q,linebox,points,obstacles) = queue.dequeue_max()

if accurate_enough(linebox):

return linebox

excluded_obstacles =

[list of obstacle in obstacles

if linebox.can_not_intersect(obstacle)]

if excluded_obstacles!=[]:

...split linebox at excluded obstacles and enqueue...

sublineboxes = split(linebox)

for sub_linebox in sublineboxes:

sub_points =

[list of point in points

if point.may_match(line)]

sub_q = quality(sub_linebox,sub_points)

queue.enqueue(sub_q,sub_linebox,sub_points,obstacles)

Fig. 6. Pseudo-code for finding the globally optimal constrained match of a line model against a

set of points.

The region LB is a bow-tie shaped region. It is bounded on four sides by lines given

by the extreme values of the line parameter box. The fifth side is bounded by a small cir-

cular arc. For the computation of the upper bound Q̂(B), we therefore need to compute

the distance of a point p from this region, or at least a lower bound. This computation

can be simplified by bounding the circular arc using a fifth line. A lower bound on the

distance dist(LB , pi) can then be computed using five dot products and a combination

of min and max operations, as described in more detail in [4]. For the computation of

descender lines, we replace dist(LB , p) by min (dist(LB , p), dist(L′

B , p)), where L′

B

is the bow-tie shaped region swept out by the line of descenders in parallel with the

baseline (see [5] for more detail).

The second technique that makes implementing geometric matching problems using

branch and bound methods simple and efficient is the use of matchlists. That is, for each

box B of line parameters, we maintain a list of all and only the alignment points that

make non-zero contributions to the quality function Q. We call this list the “matchlist”.

When the box B gets subdivided, only alignment points on the matchlist need to be

considered.

Up to this point, this section has been a review of prior work on globally optimal

line finding. Let us now turn to the question of how we introduce geometric obstacles

into this framework to text line finding. When finding text lines with obstacles, we

do not allow matches in which a text line model lr,θ,d intersects an obstacle. This is

illustrated in Figure 5. The figure shows two candidate lines (dashed). One line avoids

the obstacle and matches points from both sides. Another line matches points on one

side of the obstacle better, but cannot “pick up” alignment points on the other side of

the obstacle. In fact, in the constrained textline finding problem, solutions are textline

segments, not infinite lines.

Perhaps surprisingly, incorporating obstacles into the branch-and-bound textline

finding algorithm is simple and does not noticeably increase the complexity of the algo-

rithm on problems usually encountered in practice. The approach is as follows. During



9

Fig. 7. Examples of the result of whitespace evaluation for the detection of column boundaries in

documents with complex layouts (documents A00C, D050, and E002 from the UW3 database).

Note that even complex layouts are described by a small collection of column separators.

the branch-and-bound evaluation, we consider successively smaller boxes of line pa-

rameters B. When these boxes are large, some of the lines implied by their parameters

may intersect an obstacle and some may not. However, as the boxes of parameters get

smaller and smaller, at some point, the lines corresponding to these parameter values

will either all intersect an obstacle or will all fail to intersect an obstacle. In the case

that all lines fail to intersect an obstacle, we simply remove the obstacle from further

considerations in subsequent subdivisions of that box of parameters. In the case where

all lines intersect an obstacle, we split the set of potentially matching alignment points

into two subsets, those to the left of the obstacle and those to the right of the obstacle.

We then continue the search with the same box B of line parameters and two separate

matchlists, the matchlist for the alignment points to the left of the obstacle, and the

matchlist for the alignment points to the right of the obstacle. The algorithm is given in

pseudo-code in Figure 6.

This approach to line matching with obstacles uses the matchlists not just as an opti-

mization, but also to structure the search and remove points from further consideration.

The line segments that the algorithm finds are implicitly defined by the set of alignment

points on a matchlist, the obstacles, and the line. This is a considerably more efficient

approach than if we had attempted a search in the space of line segments directly. For

finding obstacle-free line segments with baselines, this would have been a search over

a five-dimensional parameter space, while the approach based on restricting matchlists

requires only a search in the original three-dimensional space of parameters. As a re-

sult, using this approach, text line finding with obstacles runs in approximately the same

amount of time as text line finding without obstacles.



10

4 Layout Analysis

So far, this paper has presented two geometric algorithms potentially useful in the im-

plementation of document image analysis systems. The algorithm for the computation

of whitespace covers can be used as an easy-to-implement drop-in replacement for the

method used in [8]. In that work, rectangles with certain aspect ratios are preferred,

and, overall, larger whitespace rectangles are preferred to smaller ones. Their evalu-

ation function is based on statistical measurements on the distribution of whitespace

rectangles in real documents, and it is intended to favor those rectangles that are mean-

ingful horizontal or vertical separators.

To test the performance of evaluation functions based on area, aspect ratio, and po-

sition on the page, the whitespace coverage algorithm described above was applied to

character bounding boxes obtained from document images in the UW3 database. For

each document image, a collection of the 200 largest whitespace rectangles with pair-

wise overlap of less than 80% were extracted. This resulted, as expected, in a collection

of whitespace rectangles that almost always completely covered the background, plus

additional whitespace rectangles that intruded into text paragraphs. To arrive at a layout

analysis, an evaluation function is needed that permits us to select only the rectangles

whose union makes up the whitespace that isolates the components of the document

layout.

To obtain such an evaluation function, a decision tree was trained to estimate the

probability that a given whitespace rectangle is part of the page background. No formal

evaluation of the performance was attempted, but the visual inspection showed that a

significant fraction of the documents in the UW3 database could not be segmented fully

using this approach. As reported in [8], tall whitespace rectangles were usually classi-

fied correctly, but for wide whitespace rectangles (those separating paragraphs or sec-

tions from one another), a significant number of positive and negative errors occurred.

Ittner and Baird’s system copes with these issues by computing the wide whitespace

rectangles but ignoring spurious wide rectangles until later processing stages (they are

not counted as incorrect in the evaluation of their method). Furthermore, visual inspec-

tion suggested that there were no rules or evaluation functions based just on the shape of

the whitespace rectangles alone that would work reliably in all cases–the UW3 database

contained such a diversity of documents that there were inherent ambiguities.

This means that, while evaluation functions based on the shape of whitespace rect-

angles alone may be useful and reliable for somewhat document collections, for very

heterogeneous collections, we probably need another approach. Taken together, these

results suggested taking an approach that classifies tall whitespace separately and that

takes into account features other than just the shape and position of the whitespace rect-

angle in its evaluation. Furthermore, several observations suggest that wide whitespace,

while sometimes visually salient, is neither necessary nor sufficient for the layout anal-

ysis of a document along the vertical axis. For example, paragraph breaks are indicated

in many US-style documents by indentation, not additional whitespace, transitions from

document headers to body text are most reliably indicated by changes in alignment (cen-

tering, left justification, right justification), and some section headings are indicated not

by extra spacing but by changes in font size and style.

This then leads to the following four-step process for document layout analysis:



11

1. Find tall whitespace rectangles and evaluate them as candidates for gutters, column

separators, etc.

2. Find text lines that respect the columnar structure of the document.

3. Identify vertical layout structure (titles, headings, paragraphs) based on the rela-

tionship (indentation, size, spacing, etc.) and content (font size and style etc.) of

adjacent text lines

4. Determine reading order using both geometric and linguistic information.

The key idea for identifying gutters, which we take to mean here tall whitespace

rectangles that are a meaningful part of a layout analysis, is to take into account, in

addition to the shape and position of the rectangles, their proximity to neighboring text.

This constraint is suggested both by document structure, as well as the observation that

in a simple maximal white rectangle algorithm, many of the rectangles identified will be

bordered only by a few textual components near their corners. Based on considerations

of document layouts and readability, we can tentatively derive some rules that we would

expect to apply to gutters (in future systems, we intend to base these constraints on

statistical properties of pre-segmented document databases):

– gutters must have an aspect ratio of at least 1:3

– gutters must have a width of at least 1.5 times of the mode of the distribution of

widths of inter-word spaces

– additionally, we may include prior knowledge on minimum text column widths

defined by gutters

– gutters must be adjacent to at least four character-sized connected components on

their left or their right side (gutters must separate something, otherwise we are not

interested in them)

To test the feasibility of the approach, these rules were encoded into a whitespace

evaluation function and the whitespace cover algorithm was applied to finding gutters

on pages. To evaluate the performance, the method was applied to the 221 document

pages in the “A” and “C” classes of the UW3 database. Among these are 73 pages with

multiple columns. The input to the method consisted of word bounding boxes corre-

sponding to the document images. After detection of whitespace rectangles represent-

ing the gutters, lines were extracted using the constrained line finding algorithm. The

results were then displayed, overlayed with the ground truth, and visually inspected. In-

spection showed no segmentation errors on the dataset. That is, no whitespace rectangle

returned by the method split any line belonging to the same zone (a line was consid-

ered “split” if the whitespace rectangle intersected the baseline of the line), and all lines

that were part of separate zones were separated by some whitespace rectangle. Sample

segmentations achieved with this method are shown in Figure 7.

5 Discussion and Conclusions

This paper has presented two geometric algorithms. The first algorithm finds globally

optimal solutions to the n-maximum empty rectangle problem in the presence of rect-

angular obstacles, under a wide class of quality functions (including area). The second



12

algorithm finds globally optimal maximum likelihood solutions to the textline finding

problem in the presence of obstacles. Both algorithms are easy to implement and prac-

tical and have uses in a variety of document analysis problems, as well as other areas of

computational geometry.

These algorithms form the basis for an approach to document layout analysis that

concentrates on the two arguably most salient and important aspects of layout: gutters

(whitespace separating columns of text) and maximal segments of text lines that do

not cross gutters. Paragraphs and other layout structure along the vertical dimension

can then be found in a subsequent step. Applying this method to the UW3 database

suggests very low segmentation error rates (no errors on a 223 page sample). The results

also suggest that a description of pages in terms of column separators, text lines, and

reading order, is a very compact and stable representation of the physical layout of a

page and may be a better goal for the initial stages of layout analysis than traditional

hierarchical representations.

References

1. H. S. Baird. Background structure in document images. In H. Bunke, P. S. P. Wang, & H. S.

Baird (Eds.), Document Image Analysis, World Scientific, Singapore, pages 17–34, 1994.

2. H. S. Baird, S. E. Jones, and S. J. Fortune. Image segmentation by shape-directed covers.

In Proceedings of the Tenth International Conference on Pattern Recognition, Atlantic City,

New Jersey, pages 820–825, 1990.

3. Thomas M. Breuel. Fast Recognition using Adaptive Subdivisions of Transformation Space.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages 445–451,

1992.

4. Thomas M. Breuel. Finding Lines under Bounded Error. Pattern Recognition, 29(1):167–

178, 1996.

5. T.M. Breuel. Robust least square baseline finding using a branch and bound algorithm. In

Proceedings of the SPIE - The International Society for Optical Engineering, page (in press),

2002.

6. R. Cattoni, T. Coianiz, S. Messelodi, and C. M. Modena. Geometric layout analysis tech-

niques for document image understanding: a review. Technical report, IRST, Trento, Italy,

1998.

7. William Wells III. Statistical approaches to feature-based object recognition. International

Journal of Computer Vision, 21(1/2):63–98, 1997.

8. D. Ittner and H. Baird. Language-free layout analysis, 1993.

9. K. Kise, A. Sato, and M. Iwata. Segmentation of page images using the area voronoi diagram.

Computer Vision and Image Understanding, 70(3):370–82, June 1998.

10. J. Liang, I. T. Philips, and R. M. Haralick. An optimization methodology for document

structure extraction on latin character documents. Pattern Analysis and Machine Intelligence,

pages 719–734, 2001.

11. M. Orlowski. A new algorithm for the largest empty rectangle problem. Algorithmica, 5(1),

1990.

12. T. Pavlidis and J. Zhou. Page segementation by white streams. In 1st ICDAR, Saint-Malo,

pages 945–953, 1991.

13. J. P. Trincklin. Conception d’un systéme d’analyse de documents. PhD thesis, Thêse de

doctorat, Université de Franche-Compté, 1984.


