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Two geometr¡c constants for operators acting
on a separable Banach space

E. MARTIN, E. INDURAIN, A. PLANS and A. RODES

ABSTRACT. Ibe main resulí of this paper is the following: A separable Banach space
Xis reflexive if and only it the infimum of tIte Gelfand numbera of any bounded linear
operator defined on X can be computed by means of just one sequence of nested,
closed, finite codimensional subspaces with nulí intersection.

INTRODUCTION

Let A be an operator from a separable Banach space IV into another
Banach space Y For every Markushevich basis of IV, (at,), we define two
numbers hÁ.(a,), HÁ,(a.), which gixte sorne geometrical insight about die
space X and also the operator A. In fact reflexivity of X is characterized by
stability of HA,<,,,) through changes of the M-basis, for every operator A, as
theorem 1 states.

In the framework of reflexive Banach spaces these constants will be
denoted simply H4 and itA and they coincide respectively with the infimum of
the Oelfand numbers of A, and with a precise lower bound of the Bernstein
numbers of A defrned by Zemanek in [11]. So we come to the conclusion
stated in theorem 2, that the inf,mum of the Gelfand numbers can be
computed by means of a nested sequence of closed finite codimensional
subspaces of nulí intersection.

In the third part we relate these numbers also with the spectral properties
of A. Finally we see that for the particular case of a 1-{ilbert spaee IV, they are
exactly the maximum and.the minimum of the limit points of the spectrum of
(A*A)l/

2.
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NOTATTONS, DEFINITiONS AND REMARKS

We denote a Banach space by letters such as X, Y The symbol [] will
stand br closed linear span, aud the symbol ~‘4for weak convergence. An M-
basis wiJl be the short name of a Markushevich basis, i.e. a fundamental
sequence (a,,) in a separable Banach space X, br which there exists another
sequence (a~) in the dual IV’t, called the conjugate sequence, with a~,(a,,)=¿m.
and such that a~(x)=O VncN, implies x=0. It isa well known resulí that M-
bases always exist in a separable Banach space.

An M-basis (a,,) of X is called shrinking if for every f of X’t

¡lilia ]
a — o,

James has proven that this condition is equivalent to completeness of (afl in
IV’t, that is [(a’t)]— X *

Ihe set of alí bounded linear operators from X into Y will be called
B(X, 19, añd ~L+(X, 1) will stand for the set of semi-Fredholm + oper-
aíors, i.e. tbose bounded linear operators with closed range and finite
dimensíonal kernel.

1. Let X be a separable Banach space, A eB(X, 19 and let (a,,) be an M-
basis of X. We define the two nurnbers:

HA (a,) =infllA¡1a ~lI
and

JIA.(ajsup rn(¡4¡1~

where rn stands for minirnum modulus, je.

rn(A)= infilAxil
ll~II =

The firsí of these numbers leads us to a charaeterization of reflexivity of
IV, as can be seen in

Theorem 1. Tite Jbllowing staternents are equivalent:
1. X is reflexive.
2. [‘or euery baunded linear operator frorn X into an arbftrary Banadi

space Y HA. <,,> Es independent of tite M-basis (a,,).
3. For every feX’t, Hg (a,> is independent of tite M-basis (a,,).

Before giving die proof of the theorem we state three lemmas, which are
easy to prove.
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Lemnia 1. If X is reflexive ant) separable, (a,,) cm M-basis of X ant)
X,,E[a,,, ...] with Ilx,,Il= 1, then x,,W.0.

Lemnia 2. Let (x,,) be a normalized sequence in a Banacit space IV. Titen
x,,~40 ¿f ami only ~jffor every finite codirnensional, closed subspace E, there

It is a well known result, due to Zippin, that a Banach space X with a
basis is reflexive, if and only ib every basis of IV is shrinking. The following
lemma is a slight modification of this, not requiring the space to have a basis.

Lemnia 3. A separable Banach space IV is reflexive ~f ant) only ~ every 41-
basis of IV in shrinking.

Proof. If IV is reflexive a closed subspace F of X* which is total on X
must be the whole of X*. Thus, for every M-basis (a,,), [(a~fl]=~X’t and
equivalently (a,,) is shrinking.

Conversely, if X is non reflexive two cases arise. First, ib IV * is non
separable, no M-basis can be shrinking. Second, if X * is separable, by the
result ob Gaposkin and Kadets, (see [4] p. 120), for every total subspace F of
X” there exists an M-basis (a,,) of X such that [(a’t)]—F Thus (a,,) is a
non shrinking M-basis.

Proof of theorem 1

1) —.2) Let (a,,), (b,,) be two different normalized, M-bases of X. Denote by
g,,#IAIía>~a ~¡¡. Clearly y,,~p72±~=.. ~0 and analogously !4=IIAkb iii-

Let (e,,) bea decreasing sequence of real numbers with et,—~O. Choose for
every n, x,,E[a,,, ...] such that lIx»II = 1 and Iw~ — IIAx,,lI j.c e,,. Uy lernma 1,
x,,~h0. For a fixed psN, take into account the descomposition IV = [b,
b~1] e [be, ...] and choose (4) in [br, ...], such tbat 11411 = 1 and

Clearly ¡ ¡Ax,,¡¡ — 11A411 1=¡jA(x,, — xt)lj—.0 and 11A411 *HA, la.). For every
n~N, 1A411=IIAkb ]¡j=p~, and thus HÁ,ta.)=P’p(VpeN). Therefore

HA, (a.) =inbp’~ = HA, Ib.)
p

Changing the roles of (a,,) and (b,,), the converse mequality is obtained, so
HA, í,,,~ = HA. (U, which we will calI HA.

2—+3 is obvious.
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3—4 Assume X non reflexive. By lemma 3 there Ls a non shrinking 41-

basis (a,,) in X. Take g«[(afl] and take a biorthogonal system (c,,, 4) with

= Ker g and (4) total on Ker g. Choose then b1 eX such that

q(bí)=1 and b,,=C,,1 for n=2.Now (b,,) is an 41 basis of X with conjugate
system (b~) given by b?=g and b~± i=4—4(b1)g, n~2. Since ge[(b~fl],
Hg. ea.> = 0. On the other hand g ~ [(4)], which implies Hg la.>½0. Thus

Remark 1. A parailel to the theorem, setting itA, (a.) instead of HA, (,,,), does
not hold. Although 1)—*2) could be proved with the same argument, in 3)—*1)
we would obtain itj (a,) = O for every (a,,), nol depending on reflexivity of X.

Reniark 2. Recalí 4w following result of Milman and Tumarkin: «For a
separable Banach space IV and a Sequence (E,,) of closed subspaces of X such
thaI codirn E,,=n, E,,DE~+I VncN, and fl,,E,,={0}, there exisís a bioríhogo-
nal systern (a,,, 4) such that [a,,+j, O,,+2, ...]=E,,». (see [4], thm 1.6).
According to it, theorem 1 could be stated without reference to an 41-basis,
only with a sequence of nested subspaces of Imite codimension and nuJí
intersection.

From now Ofl we abreviate hA and HA for hÁ4a.) and HA, (a.> respectively,
taking for granted that we are dealing with a separable, reflexive, Banach
space X.

2. We relate now hA and HA with s-numbers and sorne characteristics
given by Zernanek in [11]. First recalí that the Gelfand numbers of an
operator A are c,,(A)=inf{IIAIwII, codim W<n}, and that the Bernstein
nurnbers are ut,(A)=sup{rn (A[w), dim W~n}.

ihe sequences 4(A) and u,,(A) are decreasing, bounded from below by

c(A)=inf{IIAIwII, codim W<ce}
and

u(A»zsup{rn(Alw), dirn W= ce>

respectively. Also note that

G(A)=inf{IlAIwIj, dim W=09}Cc(A)
and

B(A)=sup{rn(AIw), codirn W<cc}=u(A)

In the quoted paper Zemanek obtains fice results concerning Ihese
numbers, and Kolmogorof numbers, Mityagin nurnbers, and Iheir infima; he
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compares them with each other and with geometrical concepts such as Semi-
Fredholm radius, reduced minimum modulus, etc. in the frame of separable
reflexive Banach spaces we relate them with itA and HA as follows:

Proposition 1. Let IV be a separable reflexive Banatúh space ant) A an
operator frorn IV into any Banach space Y Titen HA = c(A) ant) itA = fi(A).

Proof. Fix an M-basis (a,,) and define as before y,, = 1141ra ~¡¡.Since c,,(A)
=inf{j¡AIw¡j, codim W.cn}, it bollows that c,,(A)=pt,,VneN. Iherefore

c(A)=inf c,,(A)Cinf p,,=HA
72

For the converse inequality, lix a real number c>0. Take KeN such that
CK(Afr.IC(A)+S and take also a subspace W with codim W<k and
11A11411 .cc(A)+s. Any M-basis of Wcan be extended in order to obtain an
basis of IV (see [4] thm. 1.8). Ihus, assume (a,,)~k is an M-basis of 1V and
extend it toan M-basis of X, (a,,)~s. We have HACIIAIcas, ...jj¡ <c(A)+c. This
implies HA cc(A), and so HA =c(A).

A similar argument proves hA = B(A). -

Now we can rewrite theorem 1 as follows:

Tbeorem 2. A separable Banadi spa’ze IV Ls reflexive ~f ant) only 1/for every
decreasing sequence of closet) subspaces (Ea) such that

a) n=codim E”.
b) It E”={0}.

ant) for every operator A frorn X into anotiter Banacit sp¿iCe Y, inflIAV”II =4A),
72

witere e(A) Es tite infirnuni of the Gelfaná nurnbers ofA.

Proof. Just take into account Remark 2, and Proposition 2.
We can say further that when IV is separable and reflexive, B(Á) can also

be computed by means of a nested sequence ob elosed subspaces satisfying the
same conditions as those of theorem 2.

Open questions. 1) What can be said when separability of X is dropped?
2) Why does reflexivity establish such a difference?

3. We relate these constants now with spectral theory. The real numbers
of the interval [hA,HA] can be characterized as follows:

Tbeorem 3. Let IV be a separable reflexive Banach space, A an operator
defznedfrorn IV into an arbitrary Banach space Y Titen ¿6{IIA, HA] ~fand only
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Proof. Let AS(itA, HA) and let (a,,) be an M-basis of X. For every neN, let
v,,=inf{IIAxII; xe [a,,, ...], [lxii= fi. Then v72=h4<A <HA ClinlIAWa 4 Take
now z,,, y,,e[a,,, ...], with 11z7211=IIy,,II= 1 such that v72=IIAz,,II<A and
I’n ~ ¡¡Ayt,¡~ > A. Because the unit sphere of [a,,, ...] is connected, one can find
x,,e[a,,, ...], ¡jx,,fl = 1 sueh that IiAx,,II = A. Iterating for nEN we obtain a
sequence (x,,), which by lemma 1 converges weakly to zero, and IIAx,,Ii = A.

Slight modif¡cations in this argument give the proof br A = hA and A = HA.

By lemma 2, for every fixed pEN we can choose (z¶P)W.i c[a~, ap+¡, ...]

with ii4r~ii = 1 V’nsN, z?> ~-*0and ¡¡x,,—4f>¡¡ --.0 wich implies
72~ o, 72—. o,

¡ I¡Az~PI¡ — JjAx,,j¡ —.0. Thus jAzif>—’tA.

Select now a diagonal sequence (z~>)~1, with jlAz¶Q,>[I —0.
p—.oo

For every peN, vp=IIAz~3,>II=p~.Iherefore, Ae[hA, HA].

Equality of itA and HA, fo¡’an operator satisfying the former conditions, is
determined by:

Corollary 1. TIte following are equivalent:

1) hA=HA=r.
2) Every norrnalized sequenCe (x,,) of IV, witit x,, ‘~-*0 verjfles IIAx,,Il—.r.
3) For every normal izet) (x,,) cX with x,, ‘~-*0, (IIAx,,¡I) Es conv«rqent.

Corollary 2. TIte operator A is compact ji ant) only ji It4 = HA = 0.

Corollary 3. TIte operator A is serni-Fret)Itolrn + ji ami only ji It,< >0.

We omil the proof of these corollaries which are straight-forward, and do
the same with tIte following propositions.

Proposition 2. Ler AeB(X, Y). TIte following properties boU:

1) hA ant) H4 are stable Éhrough CornpaCt perturbations, i.e., ItÁ+x = hA and
HÁ+K =H4,for every conzpact operator K.

2) If A, TeB(IV, X)
HAT < IIA¡JHT
ItAT=ItAIIT
If TeC~, HAR CHAHT.

3) H4+a=H4+H11 ami it4+11=It4+it~.

Proposition 3. Le¿ AsB(X, Y). Tite following properties are equivalent:
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1) IIAIslI = líAn for every closet), linear finite-cot)irnensional subápace E.
2) ¡¡A¡¡=HA.
3) There exists a normalized weakly nulí sequence, (x,,), such that

4. GEOMETRICAL MEANING OF THE CONSTANTS
ItA AND HA FOR A HILBERT SPACE OPERATOR A

Now let IV be a separable Hilbert space; A a selfadjoint operator on IV,
and E the spectral measure of A. Recalí that a number ¿ is a limit point of the
spectrurn of A, «(A), itt E(V) has infinite rank for every neighborhood V of 2.

Theoreni 4.>If A is a selfat)joint operator on IV, HA ant) it4 are respectively,
tite rnaxirnurn and tIte rninirnurn of <he lirnit points of rIte speetrurn of A.

Pí-oof. Suppose 2 is a limit point. According to Weyl’s result (s. [3], p. 266)
<here exists (x,,) in IV, Ilx,,ll = 1 x. ~-‘tOand lI(A — 2I)x72j ¡ —.0. Inpartieular,
IIAx,,Il-.2 and therefore hA C2=HA,although obviously not alí the points
of [It4, HA] are limit points. Taking into account that addition of a self
adjoint compact operator does not change the limit points on <he spectrum,
and by the results of Weyl and Von Neumann (s. [3], th. 2.1 p. 253), without
loss of generality, we assume A is a diagonal operator (obviously referred
to an orthonormal basis of eigenvectors (e,,)), say

2~0. ~/ieN

Let fl,,= sup lIAxiI.
xe[e. .3

ix>> = 1

Clearly fi,, = 5Up..~q
¡‘.72

Choose now (4,)c(2,,) su’zh tItar p,,—4. —* 0. Wc have 4.—*HA.
72~O,

The fact Ae~. =4,e~., VneN, implies ¡j(A ~H4)ep.lI—*0,and therefore HA is
a limit point, actually the largest of them. A similar argument proves that hA ~5
the rninimum of the lirnit points of A.

Remark 3. Ib A is not selfadjoint <lien HA and It4 are not necessarily limit
points of u(A). Nevertheless it can be easily proved, by polar descomposition
and theorem 2, that it4 and HA are exactly the maxirnum and the minimum
of the limit points of (A*A)l

12.

Reniark 4. Other geometric properties of operators A with hA = H
4, can be
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seen in [7] and [8], where such operators are called «asyrnptotic similai-ities»,
because of their geornetric behaviour.
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