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Two geometric constants for operators acting
on a separable Banach space
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ABSTRACT. The main result of this paper is the following: A separable Banach space
X is reflexive if and only if the infimum of the Gelfand numbers of any bounded linear
operator defined on X can be computed by means of just one sequence of nested,
closed, finite codimensionat subspaces with null intersection.

INTRODUCTION

Let A be an operator from a separable Banach space X into another
Banach space Y. For every Markushevich basis of X, (a,), we define two
numbers i@y, Haw), which give some geometrical insight about the
space X and also the operator A. In fact reflexivity of X is characterized by
stability of Hau, through changes of the M-basis, for every operator A, as
theorem 1 states.

In the framework of reflexive Banach spaces these constants will be
denoted simply Ha and h4 and they coincide respectively with the infimum of
the Gelfand numbers of A, and with a precise lower bound of the Bernstein
numbers of A defined by Zemanek in [11]. So we come to the conclusion
stated in theorem 2, that the infimum of the Gelfand numbers can be
computed by means of a nested sequence of closed finite codimensional
subspaces of null intersection.

In the third part we relate these numbers also with the spectral properties
of A. Finally we see that for the particular case of a Hilbert space X, they are
exactly the maximum and.the minimum of the limit points of the spectrum of
(A*A)'2,
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NOTATIONS, DEFINITIONS AND REMARKS

We denote a Banach space by letters such as X, Y. The symbol [ ] will
stand for closed linear span, and the symbol * for weak convergence. An M-
basis will be the short name of a Markushevich basis, i.e. a fundamental
sequence (a,) in a separable Banach space X, for which there exists another
sequence (a7) in the dual X *, called the conjugate sequence, with aX{a,) =3,
and such that a}¥(x)=0VneN, implies x=0. It is a well known result that M-
bases always exist in a separable Banach space.

An M-basis (a,) of X is called shrinking if for every f of X*

1 law 21l =0

n= o

James has proven that this condition is equivalent to completeness of (a¥) in
X * that is [(a¥)]=X*.

The set of all bounded linear operators from X into Y will be called
B(X, Y), and ®.(X, V) will stand for the set of semi-Fredholm + oper-
ators, i¢. those bounded linear operators with closed range and finite
dimensional kernel,

. Let X be a separable Banach space, A€ B(X, Y) and let (ay) be an M-
basis of X. We define the two numbers:

Ha oy =1nfl|Aka, 4|
and

hA, (a) =8UP m(A |[a,,_ ])

where m stands for minimum modulus, i.e.

m(A)= inf ||Ax||

IIxll=1

The first of these numbers leads us to a characterization of reflexivity of
X, as can be seen in

Theorem 1. The following statements are equivalent:

1. X is reflexive,

2. For every bounded linear operator from X into an arbitrary Banach
space Y, Ha w, is independent of the M-basis (a,).

3. For every feX* Hju, is independent of the M-basis {an).

Before giving the proof of the theorem we state three lemmas, which are
easy to prove.
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Lemma 1. If X is reflexive and separable, (a,) an M-basis of X and
xXn€lan, ...} with ||x,)|=1, then x,*>0.

Lemma 2. Let (x,) be a normalized sequence in a Banach space X. Then
xa"0 if and only if for every finite codimensional, closed subspace E, there
exists (xb) in E, with x50, {|x,l|=1 and [}x, —x,||—0.

It is a well known result, due to Zippin, that a Banach space X with a
basis is reflexive, if and only if every basis of X is shrinking. The following
lemma is a slight modification of this, not requiring the space to have a basis.

Lemma 3. A separable Banach space X is reflexive if and only if every M-
basis of X in shrinking.

Proof. If X is reflexive a closed subspace F of X * which is total on X
must be the whole of X* Thus, for every M-basis (a.), [(a¥)]=X* and
equivalently (a,} is shrinking.

Conversely, if X is non reflexive two cases arise. First, if X* is non
separable, no M-basis can be shrinking, Second, if X * is separable, by the
result of Gaposkin and Kadets, (see [4] p. 120), for every total subspace F of
X* there exists an M-basis (a,) of X such that [(a¥)]=F. Thus (a,) is a
non shrinking M-basis.

Proof of theorem 1

1} —2) Let (a.), (bn) be two different normalized, M-bases of X. Denote by
tin=\Altay aurs, 1]l Clearly pa2 12 = >0 and analogously pf=|4le., 3]l

Let (¢,) be a decreasing sequence of real numbers with &,— 0. Choose for
every 1, Xn&[ap, ...] such that |Ixql|=1 and ju.—Ax.l|| <& By lemma 1,
x,%0, For a fixed peN, take into account the descomposition X =[b,, ...,
bp—1]1@ [by, ...] and choose (x,) in [by, ...], such that |[|x}]|=1 and
[1% — Xal| =0.

Clearly |||Ax,,||—||Ax’,,]|]sl]A(xn—x;)Iiao and J|Ax}||—= Ha. s For every
ne N, j|Axu <AL, .1lt=#p and thus Ha, @) <pp (Vpe N). Therefore

Ha wy<infpy=Ha e,
P
Changing the roles of (a,) and (bs), the converse inequdlity is obtained, so
H @y =Ha vy, which we will call Ha.

2—3 is obvious.
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3—1 Assume X non reflexive. By lemma 3 there is a non shrinking M-
basis (a,) in X. Take g¢[(a¥)] and take a biorthogonal system {c,, c¥) with

[(ca)n=1]=Ker g and (c¥) total on Ker g. Choose then b; € X such that

g(by)=1 and b,=c,_; for n=22. Now (b,) is an M basis of X with conjugate
system (bY) given by bt =g and b}. =c¥—c¥bi)g, n=2. Since ge[(b})],
Hy »y=0. On the other hand g¢[(aX)], which implies Hj »)£0. Thus
H,, b %Hg. [CHE

Remark 1. A parallel té the theorem, setting ha, ) instead of Hu s, does
not hold. Although 1)—2) could be proved with the same argument, in 3)—1)
we would obtain hy ) =0 for every (a,), not depending on reflexivity of X.

Remark 2. Recall the following result of Milman and Tumarkin: «For a
separable Banach space X and a sequence (E,) of closed subspaces of X such
that codim E,=n, E,oE,,, YneN, and N,E,={0}, there exists a biorthogo-
nal system (@, a¥) such that [@.41, Gni2, ..]=E». (see [4], thm 1.6).
According to it, theorem 1 could be stated without reference to an M-basis,
only with a sequence of nested subspaces of finite codimension and null
intersection.

From now on we abreviate ha and Ha for haw, and Ha, o, respectively,

taking for granted that we are dealing with a separable, reflexive, Banach
space X.

2. We relate now hs and Hs with s-numbers and some characteristics
given by Zemanek in [11]. First recall that the Gelfand numbers of an
operator A are cA)=inf{|[Alw|, codim W<n}, and that the Bernstein
numbers are u,(A}=sup{m (Alw), dim Wxzn},

The sequences c(4) and u,(A) are decreaéing, bounded from below by
c(A)=inf{j|4lw||, codim W< oo}
and
u(A}==sup{m(Alw), dim W=oo0}

respectively. Also note that

GA)=inf{|| 4w, dim W= a0} <c(A)
and
B(A)y=sup{m(Alw), codim W< o} <u(A)

In the quoted paper Zemanek obtains nice results congerning these
numbers, and Kolmogorof numbers, Mityagin numbers, and their infima; he
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compares them with each other and with geometrical concepts such as Semi-
Fredholm radius, reduced minimum modulus, etc. In the frame of separable
reflexive Banach spaces we relate them with hs and Ha as follows:

Proposition k. Let X be a separable reflexive Banach space and A an
operator from X into any Banach space Y. Then Hy=c(A) and ha=B(A).

Proof. Fix an M-basis (a,) and define as before j, = || 4. ...]'lI. Since ¢(A)
=inf{||4}w|l, codim W<n}, it follows that e A)< tty, Yne N, Therefore

c(Ay=inf cA)<inl pp=Ha

For the converse inequality, fix a real number &> 0. Take K eN such that
cx(A)<c(A)+& and take also a subspace W with codim W<k and
|A|Wi <c(A)+e. Any M-basis of Wcan be extended in order to obtain an M-
basis of X (see [4] thm. 1.8). Thus, assume (a)z=x i an M-basis of W and
extend it to an M-basis of X, (a,)i=1. We have Ha< [iA}as, .31l <c(A)+e. This
implies Ha <c(A), and so Ha=c(A).

A similar argument proves ha=B(A). -

Now we can rewrite theorem 1 as follows:

Theorem 2. A separable Banach space X is reflexive if and only if for every
decreasing sequence of closed subspaces (E") such that

a) n=codim E".

b) N, E"={0}.

and for every operator A from X into another Banach space Y, inf]|A|e-|| = ¢(A),
where c(A) is the infimum of the Gelfand numbers of A.

Proof. Just take into account Remark 2, and Proposition 2.

We can say further that when X is separable and reflexive, B(A) can also
be computed by means of a nested sequence of closed subspaces satisfying the
same conditions as those of theorem 2.

Open questions. 1) What can be said when separability.of X is dropped?
2) Why does reflexivity establish such a difference?

3. We relate these constants now with spectral theory. The real numbers
of the interval [h4, Ha] can be characterized as follows:

Theorem 3. Let X be a separable reflexive Banach space, A an operator
defined from X into an arbitrary Banach space Y. Then A€[ha, Ha] ifand only
if there exists (xn) in X, with ||x.i=1, x,"»0, such that | Axal|— 4.
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Proof. Let Ae(hs, H4) and let (a,) be an M-basis of X. For every neN, let
vn=inf{||Ax||; X € [an, ...], [|x|]|=1}. Then v, <hs <A <Ha4 < pa=|lAke. 1. Take
NOwW 2z, y.€[a,, ..], with ||zul=[|ysll=1 such that v,<||Az.|<A and
Hn 2 ||Ays|| > A. Because the unit sphere of [a,, ...] is connected, one can find
Xn€[an, ...], [Ixal|=1 such that [|Ax,||=4. Iterating for neN we obtain a
sequence (x,), which by lemma 1 converges weakly to zero, and [|AX || = A.

Slight modifications in this argument give the proof for 2=h, and A=H .
Conversely, let x, 0, |ix,)|=1 and ||4x,|[—4.

By lemma 2, for every fixed pe N we can choose (z)%, <[ap, ap+1, ...]
with |iP|=1 ¥reN, 2’ *»0 and [|x,—z%|| -0 wich implies
nR—*cwo

[ 42| = [|Ax,]] |~0. Thus |{Az® — A,

n—=o

Select now a diagonal sequence (zE Ve, with 1AzEL - 4.

oo
For every peN, v, <||4z8),)|| < . Therefore, ie[ha, Hal.

Equality of hs and H., for"an operator satisfying the former conditions, is
determined by:

Corollary 1. The following are equivalent:

1) ha= HA =r.
2) Every normalized sequence (x,) of X, with x,">0 verifies ||Ax,||—r.
3) For every normalized (x,)c X with x,*0, (IlAx4))) is convergent.

Corollary 2. The operator A is compact if and only if hha=Ha=0.

Corollary 3. The operator A is semi-Fredholm+ if and only if ha>0.

We omit the proof of these corollaries which are straight-forward, and do
the same with the following propositions.

Proposition 2. Let AeB(X, Y). The following properties hold:

1}.ha and Ha are stable through compact perturbations, Le., ha,x =hs and
Haix=Ha, for every compact operator K.
2) If A, TeB(X, X)
Har <||A||Hr
har = hahr
If Ted,, Hyr <H.H7,
3) Hiso<Hi+Hp and hasp < ha+ hs.

Proposition 3. Let AeB(X, Y). The following properties are equivalent:
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1) 1|All|=||A]| for every closed, linear finite-codimensional subspace E.

2) [|All=Ha.

3) There exists a normalized weakly null sequence, (x.), such that
Axall = 1IAll.

4. GEOMETRICAL MEANING OF THE CONSTANTS
ha AND Hi FOR A HILBERT SPACE OPERATOR 4

Now let X be a separable Hilbert space, 4 a selfadjoint operator on X,
and E the spectral measure of A. Recall that a number 4 is a limit point of the
spectrum of A, o(A), iff E(V) has infinite rank for every neighborhood V of 4.

Theorem 4. If A is a selfadjoint operator on X, Ha and hy are respectively,
the maximum and the minimum of the limit points of the spectrum of A.

Proof. Suppose / is a limit point. According to Weyl’s result (s. [3], p- 266)
there exists (x,) in X, [[Xi=1 x, *0 and ||(A—Ax,]|—0. In particular,
[|Ax,||—A and therefore ha <A< Ha, although obviously not all the points
of [ha, Ha] are limit points. Taking into account that addition of a self
adjoint compact operator does not change the limit points on the spectrum,
and by the results of Weyl and Von Neumann (s. [3], th. 2.1 p. 253), without
loss of generality, we assume A is a diagonal operator (obviously referred
to an orthonormal basis of eigenvectors (e,)), say

A :
Az[ol:::g,.._} L;o.v:'eN_
Let p,= sup ||Ax|.

x€[es, -]
flxll=1

Clearly u,=supi;

i>n

Choose now {4.)(4,) such that p,— A, — 0. We have Jp,—Ha.

The fact Ae,. = An.e,., ¥neN, implies |[{A — Ha)e.[| -0, and therefore Hais
a limit point, actually the largest of them. A similar argument proves that ha is
the minimum of the limit points of A. -

Remark 3. If 4 is not selfadjoint then Ha and ha are not necessarily limit
points of a(4). Nevertheless it can be easily proved, by polar descomposition
and theorem 2, that ha and H. are exactly the maximum and the minimum
of the limit points of (4*A)"/.

Remark 4. Other geometric properties of operators A with hs = Ha, can be
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seen in [ 7] and [8], where such operators are called «asymptotic similarities»,
because of their geometric behaviour.
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